
1/15

Buer Loader, new Russian loader on the market with
interesting persistence

krabsonsecurity.com/2019/12/05/buer-loader-new-russian-loader-on-the-market-with-interesting-persistence/

Posted on December 5, 2019
In the middle of November, a friend told me of a new malware being sold on Russian
forums under the name “Buer Loader”. A translated copy of the thread where it is advertised
can be found here. A google search revealed no one having mentioned “Buer Loader”
before, nor provided an analysis of it. However, a forum administrator had already provided
an analysis of the malware, in which the following screenshot of strings was provided.

https://krabsonsecurity.com/2019/12/05/buer-loader-new-russian-loader-on-the-market-with-interesting-persistence/
https://krabsonsecurity.com/2019/12/05/
https://pastebin.com/6C5V06tK

2/15

With this, we can now hunt for Buer Loader samples. Based on the strings, a variety of
samples that drop Buer Loader or is Buer Loader were found. Their hashes are listed
below:

3/15

ddc4d9fa604cce434ba131b197f20e5a25deb4952e6365a33ac8d380ab543089
fcdf29266f3508bd91d2446f20a73a811f53e27ad1f3e9c1f822458f1f30b5c9
1db9d9d597636fb6e579a91b9206ac25e93e912c9fbfc91f604b7b1f0e18cc0a

MalwareHunterTeam also found a sample, though he did not refer to it by name. Strings for
the file was posted by James_inthe_box.

A large number of samples, such as
0dd7e132fb5e9dd241ae103110d085bc4d1ef7396ca6c84a3b91dc44f3aff50f which was
spotted on November 12th multiple times, are packed with Themida. We thankfully found
one that wasn’t, with the hash of
6c694df8bde06ffebb8a259bebbae8d123effd58c9dd86564f7f70307443ccd0.

The file in question is a VB6 file, and can be found on Hybrid-Analysis.

After starting, the process executes a shellcode that is stored on the heap. Due to the
process not having DEP enabled, the shellcode runs fine.

The shellcode does a typical process hollowing. The original image is unmapped below.

Next NtWriteVirtualMemory is called using DllCallFunction to write the malicious payload.

https://twitter.com/James_inthe_box/status/1194358787513077766
https://www.hybrid-analysis.com/search?query=context:0dd7e132fb5e9dd241ae103110d085bc4d1ef7396ca6c84a3b91dc44f3aff50f

4/15

Dumping it from memory and trimming the overlay, we have a 27kb executable file that
appears to be compiled with Visual Studio 2017. This would seem to be our original Buer
Loader file. The TimeDateStamp indicates that it was compiled on Thu, 29 Aug 2019
05:48:03 UTC.

The file starts out with checking for debugger by reading PEB->BeingDebugged. If this
check is passed, it checks for virtualization, and then enter the real code.

5/15

Here, the code uses sidt/sgdt to detect the presence of virtualization. More details on that
can be found here.

The bot then enters the “real” main function.

http://charette.no-ip.com:81/programming/2009-12-30_Virtualization/www.offensivecomputing.net_vm.pdf

6/15

Here, APIs are resolved and strings are decrypted. String decryption is done in a slightly
peculiar manner, rather than passing a string directly to the decryption function the pointer
to the WORD before it is passed. The first WORD is then ignored, and the rest is decrypted.
In order to facilitate easy IDA reference searches, I opted to create a simple struct so that
both the call to decrypt and the reference to the strings are in one place.

Interestingly, IDA did not detect the prototype of decrypt_str (and several other functions)
correctly, and ignored the parameter passed in ECX. When the file was originally loaded,
the original prototype was “unsigned int __cdecl decrypt_str(int length)”. Changing it to “void
__usercall decrypt_str(int length, strdec_header *encryptedStr)” is necessary for IDA to
decompile the function and calls to it successfully.

7/15

I modified an IDAPython script for decrypting strings (a few strings will fail due to duplicates
or unicode, but the vast majority works fine). The script can be found on GitLab.

APIs are resolved by hash. The hashing algorithm is the typical ror13 algorithm that is often
used in shellcodes.

After resolving the APIs and decrypting strings, the file checks to see whether it is operating
in CIS countries. This is mandated as a part of the rule of the forum where the malware
operates.

https://gitlab.com/krabsonsecurity/buer-loader-analysis/blob/master/stringdec.py

8/15

After the check is passed, the file adds itself to startup using a peculiar method. It first
gathers the command required to create a task that runs the bot every 2 minutes, and then
add that command to the RunOnce key.

9/15

After this, it enters the main loop and attempts to ensure persistence. To prevent the file
from being deleted (or opened), it performs an interesting technique of forcing open a
handle to the file inside the context of Explorer.exe. First, it gets a handle to explorer
indirectly by first getting a handle with PROCESS_DUP_HANDLE privilege, and then using
DuplicateHandle to create a handle with PROCESS_ALL_ACCESS. Thus far I have not
seen this trick in malware but rather only in the cheating scene, perhaps indicative of the
author’s involvement in such areas.

10/15

After this, it creates a handle to it’s own file with dwSharing set to 0 (thus preventing any
other process from accessing the file), and duplicates the handle into the explorer process.

A rather unique choice of persistence that I have not observed before. Interestingly, it would
appear that this effectively blocks Hybrid Analysis from reading the file (despite their
analysis operating primarily at ring 0), with reports not displaying the file icon. Possibly part

11/15

of their analysis currently runs from usermode and as a result was blocked by this.

At this point in the analysis, I found out that ProofPoint published an analysis of the loader a
few hours before. As such, I’ll refer to their description of the HTTP requests and focus
instead on how commands are handled.

The command handling function is decompiled relatively unclean, due to it’s size and the
amount of switches and conditions IDA did not do a terrific job, however the decompilation
serves it’s purposes. A few things of note:

A lot of commands result in the process exiting, and as such SpawnInstanceOfSelf is
called beforehand to create another instance of Buer before the command is
executed. It is unclear why the loader could not perform the hollowing and continue
execution.
my_string_compare is equivalent to lstrcmpW and returns 0 if the string matches.
Strings are duplicated a lot for unknown reasons.

Memload

Memload attempts a very basic process hollowing if the file successfully spawns another
instance of itself. API callchain: CreateProcessW->GetThreadContext-
>ZwUnmapViewOfSection (optional)->VirtualAllocEx->WriteProcessMemory-
>NtQueryIformationProcess->SetThreadContext->ResumeThread->CloseHandle-
>ExitProcess.

https://www.proofpoint.com/us/threat-insight/post/buer-new-loader-emerges-underground-marketplace

12/15

LoadDllMem

13/15

Depending on the option set and whether it is running under WoW64 or not, LoadDllMem
will either “inject” the DLL into itself (by using
GetCurrentProcess/INVALID_HANDLE_VALUE as the handle) or repeat the trick of stealing
explorer’s handle from itself. The injection is fairly standard, if 64 bit is set it will use
heaven’s gate and it will use the normal API otherwise.

To initialize the DLL, a bootstrap shellcode is injected and called. A structure with pointers
to the DLL and function pointers are passed to it.

14/15

Update

The update mechanism of Buer Loader is relatively simple, and there is not much to say
about it.

15/15

In conclusion, Buer is a new loader on the Russian malware scene and is relatively complex
(especially when contrasted against certain bots such as Amadey). It still show
inconsistencies that indicate a developer who is not experienced with low level development
however, and it’s anti-analysis methods (such as API hashing or string encryption) are
easily defeated with the use of IDAPython.

Comments (2)

1. Ftest95Posted on 9:34 am December 11, 2019
Hi, very nice writeup, but could you explain how GetHandleProcessStealth works?
After getting handle to explorer why do we call duplicate handle? Wouldn't this call fail
if explorer.exe doesn't already have handle to buer loader file ?

Mr. KrabsPosted on 11:33 am December 13, 2019
The first handle does not have PROCESS_ALL_ACCESS, it only has
PROCESS_DUP_HANDLE privilege. It probably is less likely to be seen as
suspicious than using OpenProcess directly with PROCESS_ALL_ACCESS.
With PROCESS_DUP_HANDLE, you can duplicate any handle that explorer
has, and since all processes have a pseudo-handle
(INVALID_HANDLE_VALUE/0xffffffff/-1) which acts as a handle with all access
to oneself, you can then duplicate that handle to get a full access handle to the
target process. I am not so good at explaining this perhaps, so you can refer to
Microsoft here: "A process that has some of the access rights noted here can
use them to gain other access rights. For example, if process A has a handle to
process B with PROCESS_DUP_HANDLE access, it can duplicate the pseudo
handle for process B. This creates a handle that has maximum access to
process B. For more information on pseudo handles, see GetCurrentProcess."
(from https://docs.microsoft.com/en-us/windows/win32/procthread/process-
security-and-access-rights)

View Comments (2) ...

