
THE ART OF MALWARE C2
SCANNING - HOW TO REVERSE
AND EMULATE PROTOCOL
OBFUSCATED BY COMPILER

TAKAHIRO HARUYAMA
BINARLY

1

WHO AM I?

• Takahiro Haruyama (@cci_forensics)
• Principal Security Researcher at Binarly
• Previously Staff Threat Researcher at Carbon Black TAU

• Past Research
• Scalable RE automation (e.g., hunting vulnerable drivers)
• Anti-Forensics (e.g., firmware acquisition MitM attack)
• Malware Analysis (e.g., Internet-wide C2 scanning)

2

https://twitter.com/cci_forensics
https://speakerdeck.com/takahiro_haruyama

AGENDA

BACKGROUND

PEELING HODUR: DEFEATING
COMPILER-LEVEL
OBFUSCATIONS

HODUR PROTOCOL REVERSING

HODUR PROTOCOL EMULATION

WRAP-UP

3

BACKGROUND

4

WHY MALWARE C2 SCANNING?
5

• IP reputation is not effective for catching fresh C2s
• Internet-wide C2 scanning is beneficial from both

detection and threat intel perspectives

HOW MALWARE C2 SCANNING?

Protocol reversing

• Identify
• Data format
• Encoding/encryption

algorithm

Protocol emulation

• Develop PoC scanner
• Validate

request/response with
fake/real C2

6

CASE: PLUGX

• Long used, but still many variants in the wild
• Most variants has almost the same C2 protocol except the

packet encoding algorithm
• The “Hodur” variants (aka MiniPlug) were obfuscated

with multiple methods likely applied at compile time
• EclecticIQ and Check Point reported the latest variants last

year, but no one had described the updated C2 protocol
details

• I focus on the Hodur de-obfuscations, then explain the
protocol reversing and emulation briefly

7

https://www.welivesecurity.com/2022/03/23/mustang-panda-hodur-old-tricks-new-korplug-variant/
https://jsac.jpcert.or.jp/archive/2023/pdf/JSAC2023_2_LT4.pdf
https://blog.eclecticiq.com/mustang-panda-apt-group-uses-european-commission-themed-lure-to-deliver-plugx-malware
https://research.checkpoint.com/2023/chinese-threat-actors-targeting-europe-in-smugx-campaign/

PEELING HODUR:
DEFEATING
COMPILER-LEVEL
OBFUSCATIONS

8

CONTROL FLOW
FLATTENING
DEFEATING COMPILER-LEVEL OBFUSCATIONS

9

WHAT’S CONTROL FLOW
FLATTENING?
• Control flow flattening (CFF) transforms a program's

control flow to make it much harder to understand,
while preserving the original functionality

10

http://tigress.cs.arizona.edu/transformPage/docs/flatten/index.html

First Block(s)

Control Flow
Dispatcher(s)

Flattened
Blocks

HOW CFF WORKS

• Control flow dispatchers decide which block to
execute next based on a state variable

• The state variable is updated in first/flattened blocks

11

CONTROL FLOW UNFLATTENING:
BASIC STRATEGY
1. Identify control flow dispatchers and state variables
2. Trace back the state variable values from the end of

flattened blocks
3. Associate the values with the block IDs
4. Re-order the code flow based on the associations
• I Use IDA Pro microcode for the unflattening task

• Intermediate representation used by Hex-Rays decompiler
• We can implement the algorithm in the optblock_t callback

12

https://i.blackhat.com/us-18/Thu-August-9/us-18-Guilfanov-Decompiler-Internals-Microcode-wp.pdf

CONTROL FLOW UNFLATTENING:
BASIC STRATEGY
1. Identify control flow dispatchers and state variables
2. Track back the state variable values from the end of

flattened blocks
3. Associate the values with the block IDs
4. Re-order the code flow based on the associations
• I Use IDA Pro microcode for the unflattening task

• Intermediate representation used by Hex-Rays decompiler
• We can implement the algorithm in the optblock_t callback

13

https://i.blackhat.com/us-18/Thu-August-9/us-18-Guilfanov-Decompiler-Internals-Microcode-wp.pdf

CONTROL FLOW UNFLATTENING:
IDA MICROCODE TOOL HISTORY
• HexRaysDeob (2018)

• The first implementation breaking CFF
• Ported to IDAPython by Hex-Rays (2019)
• Tested on only one binary, so some versions implemented
• APT10 ANEL (2019), Emotet (2022)

• D-810 (2020)
• Effective for not only OLLVM but also Tigress Flatten
• Works reliably with different binaries

14

https://github.com/RolfRolles/HexRaysDeob
https://github.com/idapython/pyhexraysdeob
https://blogs.vmware.com/security/2019/02/defeating-compiler-level-obfuscations-used-in-apt10-malware.html
https://news.sophos.com/en-us/2022/05/04/attacking-emotets-control-flow-flattening/
https://gitlab.com/eshard/d810
https://github.com/obfuscator-llvm/obfuscator/wiki
https://tigress.wtf/flatten.html

D-810 ISSUES

• D-810 worked for the most functions of the Hodur
samples, but some key functions related to the C2
protocol were still flattened
• Additional CFF settings?

• Two issues
1. The control flow dispatcher detections failed
2. The block state variable tracking failed

15

ISSUE1: CONTROL FLOW
DISPATCHER DETECTION FAILURE

• The dispatcher
detection algorithm
misses dispatchers
whose predecessors
are conditional jumps
by the state variable

• The genmc plugin
was useful for
troubleshooting

16

dispatcher

predecessor

https://github.com/patois/genmc

ISSUE1: FIX
• I added another dispatcher detection algorithm

• The algorithm simply guesses a dispatcher block based on
the biggest number of predecessors

• The dispatcher will be validated based on the entropy
value of the state variable (only effective for OLLVM)

17

ISSUE1: FIX
• I added another dispatcher detection algorithm

• The algorithm simply guesses a dispatcher block based on
the biggest number of predecessors

• The dispatcher will be validated based on the entropy
value of the state variable (only effective for OLLVM)

18

ISSUE2: BLOCK STATE VARIABLE
TRACKING FAILURE
• The state variable tracking fails if the value is assigned

in the first blocks
• D-810 only traces in the flattened blocks and doesn’t

recognize the dispatcher has been reached -> loop L

19

Tracking fails
The value is assigned

D810.emulator - WARNING - Can't evaluate instruction: ..Variable '%var_depend_on_a10_1.4{24}' is not defined
D810.tracker - DEBUG - Computing: ['ebx.4'] for path [8, 22, 44, 45, 46, 47, 48, 49, 50, 8, 9, 35, 36, 109, 110, 111, 112]

ISSUE2: FIX

• The added code detects dispatchers in tracking and
resumes the tracking from the end of the first blocks
• The unflattening performance is also improved

20

ISSUE2: FIX

• The added code detects dispatchers in tracking and
resumes the tracking from the end of the first blocks
• The unflattening performance is also improved

21

MIXED BOOLEAN
ARITHMETIC
EXPRESSIONS
DEFEATING COMPILER-LEVEL OBFUSCATIONS

22

• Mixed Boolean
Arithmetic (MBA)
expressions
transform a
simple expression
into a complex
but semantically
equivalent form

23

The same encoded string
is decoded in different

expressions

The same encoded string
is decoded in different

expressions

The same encoded string
is decoded in different

expressions

SIMPLIFYING MBA EXPRESSIONS
1. Find an obfuscation pattern

and hypothesize for
simplification

2. Validate the hypothesis by
equivalence checking
• e.g., using Z3 or Arybo

3. Replace the pattern with the
simplified one

24

$ iarybo 8

In [1]: ~(x ^ ~y) == x ^ y
Out[1]: True

$ ipython

In [1]: import z3

In [2]: x, y = z3.BitVecs("x y", 8)

In [3]: s = z3.SolverFor("QF_BV")

In [4]: s.add((~(x ^ ~y)) != (x ^ y))

In [5]: s.check()
Out[5]: unsat

https://github.com/Z3Prover/z3
https://github.com/quarkslab/arybo

SIMPLIFICATION ON IDA + D-810
• D-810 uses a custom AstNode class to represent an

(abstract) microcode instruction
• I could easily define several new replacement patterns
• genmc is useful to show microcode instruction structures

25

https://github.com/patois/genmc

SIMPLIFICATION ON IDA + D-810
• D-810 uses a custom AstNode class to represent an

(abstract) microcode instruction
• I could easily define several new replacement patterns
• genmc is useful to show microcode instruction structures

26

https://github.com/patois/genmc

LIMITATION

• More functions, more complicated patterns L
• It was difficult to defeat all MBA expressions perfectly

• I only handled interesting patterns, especially related to
the string decoding used by the samples

27

POLYMORPHIC
STACK STRINGS
DEFEATING COMPILER-LEVEL OBFUSCATIONS

28

STACK STRINGS
29

• All strings are constructed and decoded in the stack area
• After defeating CFF and MBA expressions, the decoding

algorithm was identified
• enc[i] ^= (i + Const) ^ Const

• The constant value is different per function

COPYING THE ENCODED STRING
BYTES INTO STACK
• Sometimes the Hex-Rays decompiler partially recognizes the

copy or only shows the assignments
• For static decoding, we need to

• Construct the bytes from the assigned variables

• Detect the length and constant value used in the decoding algorithm

30

Length and
constant value

Length and
constant value

Combination of
global variable and
hard-coded bytes

VARIOUS ACCESS PATTERNS
31

Referencing
another variable
(enc is decoded)

Defeating MBA expressions
is not perfect

I decided to take an emulation approach

Additional XORs
before decoding

EMULATION ISSUE IN GENERAL

• Unicorn-based flare-emu library provides users with a flexible
interface for scripting emulation tasks on IDA

• The iterateAllPaths API emulates all basic block paths in a
function
• Looked to be useful to de-obfuscate stack strings (e.g., ironstrings)

• This API emulates only once per basic block

• I modified the code to reproduce xor loops detected by CAPA

32

https://github.com/mandiant/flare-emu
https://github.com/unicorn-engine/unicorn
https://github.com/mandiant/flare-emu
https://github.com/mandiant/flare-ida/tree/master/python/flare/ironstrings
https://github.com/mandiant/capa

EMULATION ISSUE IN THIS SAMPLE
• The flare-emu API takes only one path in CFF functions

• The code simply tracks basic block successors
• The search ends when revisiting the CFF dispatchers

• Microcode-based solutions
• Emulate x86 code in an unflattened microcode block order
• Extend D-810 microcode emulation functionality

• I tried both a little bit, but I realized that they are not
straightforward L

33

SOLUTION

• I utilized another flare-emu API (emulateRange) that
emulates the code as is, without changing the code flow
• Some quick hacks added to flare-emu (e.g.,

LoadLibrary/GetProcAddress hook, infinite loop detection, etc.)

• The created script worked for 58% of the tested functions

• I also implemented a script based on the IDA debug hook
class (DBG_Hooks) to handle the failed functions

• Not elegant, but the combination covers most strings
quickly

34

SOLUTION (CONT.)

• Both scripts recover argument strings on call instructions in
emulation/debugging
• The information such as calling convention and argument type is

taken through the Hex-Rays decompiler APIs

• The sample dynamically resolves all API addresses except
GetProcAddress after decoding the API name strings
• When an address assignment is detected, the script applies the

API function type to the local variable pointer

• GetTypeSignature() written by Rolf Rolles

35

https://github.com/RolfRolles/Miscellaneous/blob/d0e6c9a1fccb34bcefed19929a44540693a46f43/PrintTypeSignature.py

36

Set type to the local variable by
ida_hexrays.modify_user_lvars()

Set type to the operand of the call instruction
by ida_nalt.set_op_tinfo()

SOLUTION (CONT.)

• The scripts still don’t
cover all strings

• A semi-automatic
script handles minor
cases individually
• flare-emu

emulateSelection +
static decoding

37

IDA_CALLSTRINGS SCRIPTS
Used Library
and API

Static
decoding

Flare-emu
iterateAllPaths

Flare-emu
emulateRange

Flare-emu
emulateSelection

IDA
DBG_Hooks

Automated? Yes Yes Yes No Yes

Effective for
another
malware?

No Yes Yes No Yes

Effective in
CFF funcs?

Yes No Yes - Yes

API func
type set?

No Yes Yes No Yes

Limitation Strings used
by memcpy

Modifications
needed to
flare-emu and
CAPA

All execution
paths not
covered

Manual selection
required

Strings used
during
debugging

38

HODUR PROTOCOL
REVERSING

39

PROTOCOL OVERVIEW

• The latest Hodur samples only support HTTP/HTTPS
• Two header values (Sec-Dest/Sec-Site) used to

authenticate clients
• GET request for the initial handshake

• A RC4 key returned
• Periodical POST requests to receive C2 commands

after the handshake
• The request/response data are encrypted with the key

40

AUTHENTICATION HEADERS
• Sec-Dest: %2.2X%ws (e.g., “7BnqmmCg”)

• A random byte (0x64-0x99)

• 0x64 + 0-0x35 by QueryPerformanceCounter

• A random 6 characters

• The checksum depends on the method

• GET = 99, POST = 88

• Sec-Site: %2.2X%2.2X%ws (e.g., “896B2AC144C9E2E09836”)

• Two random bytes (0x64-0x99)

• 8-bytes victim ID generated by time-related APIs

41

In [2]: sum(b for b in b'nqmmCg') & 0xff
Out[2]: 99

INITIAL HANDSHAKE

• GET request with the authentication headers
• A RC4 key is returned if the header values are valid

• If not valid, no content returned
• The Hodur sample code checks if the Content-Type is

application/octet-stream
• The Content-Length was unknown at static analysis but

revealed during the scanner development

42

AFTER HANDSHAKE

• The sample receives a C2 command by POST requests
• The POST request and response data are encrypted

using RC4
• The POST data header is the same as the PlugX variants,

but the head key is not used
• The C2 response body also has the same header

43

POST DATA PAYLOAD
44

HODUR SCANNER
DEVELOPMENT

45

FAKE C2 SERVER FOR VALIDATION

• Developed a fake C2 server to validate the request
data of the PoC scanner and other recent samples
• fakenet (IP diverter) + Python HTTPS server

46

[*] Validating Sec-Dest..
[+] Prefix number 0x95 is valid
[+] The hash of the random bytes b'xbsYpB' matches 88
[*] Validating Sec-Site..
[+] Prefix numbers 0x7f/0x8e is valid
[+] victim_id='F4EB6EF3A8882016’
..
[+] The decrypted POST data is saved as dec_post_data.bin
[*] Responding with PlugX custom header data.. (C2 command = 0x7002)

POST request
validation

https://github.com/mandiant/flare-fakenet-ng

HUNTING RECENT SAMPLES

• VT-retrohunted
using yara_fn

47

{ 55 8B EC 6A ?? 68 ?? ?? ?? ?? 64 A1 ?? ?? ?? ?? 50 81 EC ?? ?? ?? ??
 53 56 57 A1 ?? ?? ?? ?? 33 C5 50 8D 45 ?? 64 A3 ?? ?? ?? ?? 89 65 ??
 8B 45 ?? 50 8D 8D ?? ?? ?? ?? E8 }

o_imm

fixup

o_mem

o_displ

o_near

https://github.com/TakahiroHaruyama/ida_haru/blob/master/fn_fuzzy/yara_fn_7x.py

HUNTING RECENT SAMPLES (CONT.)

• One of the rules hit the
latest sample in Dec last
year
• CFF was not applied to

the sample
• The C2 included in the

sample was active J
• I could check the

Content-Length and the
format of the GET
response

48

https://www.virustotal.com/gui/file/510b4c53dc6f5260d15824a97bff2f5def3f01c24cb621058177df7a22faaaf7/detection

APPROACH BASED ON VALIDATION

• All recent samples had exactly the same C2 protocol
encryption and data format
• Every sample’s C2 protocol/port is HTTPS/443

• No need to send the POST request after handshake
• The C2 likely responded without content until commands

are specified by operators
• I started to implement a scanner just checking the

difference between GET requests with/without the
authentication headers

49

TLS HANDSHAKE ISSUE

• OpenSSL caused an internal error during the TLS
handshake

50

* TLSv1.0 (OUT), TLS header, Certificate Status (22):
* TLSv1.3 (OUT), TLS handshake, Client hello (1):
* TLSv1.2 (IN), TLS header, Certificate Status (22):
* TLSv1.3 (IN), TLS handshake, Server hello (2):
* TLSv1.2 (IN), TLS handshake, Certificate (11):
* TLSv1.2 (IN), TLS handshake, Server key exchange (12):
* TLSv1.2 (IN), TLS handshake, Server finished (14):
* TLSv1.2 (OUT), TLS header, Unknown (21):
* TLSv1.2 (OUT), TLS alert, internal error (592):
* error:0800006A:elliptic curve routines::point at infinity
* Closing connection 0
curl: (35) error:0800006A:elliptic curve routines::point at infinity

TLS HANDSHAKE ISSUE (CONT.)

• I tested major open source TLS clients
• Only LibreSSL (pylibtls) worked for the TLS handshake

51

OpenSSL Mbed TLS
(python-mbedtls)

wolfSSL
(wolfssl-py)

LibreSSL
(pylibtls)

Tested version 1.1.1k, 3.0.2,
3.2.0

2.28.6 5.6.0 3.8.2

Worked? No No No Yes

DETECTION BY THIRD PARTY SCANS

• Shodan haven't been able to recognize the port since at least last Dec

• Censys can detect the port but the protocol is UNKNOWN (not HTTPS)

52

INTERNET-WIDE SCANNING WORKFLOW

• Automate with Python (Use asynchronous I/O for OpenSSL/JARM scans)

• Exclude as much as possible before the pylibtls scan

ZMap

• Get the list of
hosts open at
TCP/443

OpenSSL

• Try TLS
handshake

• Cause an
internal error?

JARM

• Match the
JARM fingerprint
value of the
Hodur C2?

pylibtls

• GET request
with/without auth
headers

• Get a RC4 key-like
string only when
sending with the
headers?

53

https://github.com/salesforce/jarm

RESULT

• Two C2 servers were found late last December
• 149[.]104.12.64 and 45[.]83.236.105

• Two months later, Trendmicro referred to the C2s in the
blog

• But they are still active

54

https://www.trendmicro.com/en_us/research/24/b/earth-preta-campaign-targets-asia-doplugs.html

DEMO
55

WRAP-UP

56

WRAP-UP

• Defeating compiler-level obfuscations is easier than
before
• 2-3 months for APT10 ANEL -> 3-4 weeks for Hodur
• We still need to improve or create tools when RE requires

de-obfuscating code precisely
• Code will be available online after the conference

• The developed scanner keeps tracking the malware
C2s on the Internet
• We can respond proactively using the intel

57

