
1/21

Bypassing MassLogger Anti-Analysis — a Man-in-the-
Middle Approach

fireeye.com/blog/threat-research/2020/08/bypassing-masslogger-anti-analysis-man-in-the-middle-approach.html

Threat Research

Nhan Huynh

Aug 06, 2020

16 mins read

Malware

Threat Research

https://www.fireeye.com/blog/threat-research/2020/08/bypassing-masslogger-anti-analysis-man-in-the-middle-approach.html

2/21

The FireEye Front Line Applied Research & Expertise (FLARE) Team attempts to always
stay on top of the most current and emerging threats. As a member of the FLARE Reverse
Engineer team, I recently received a request to analyze a fairly new credential stealer
identified as MassLogger. Despite the lack of novel functionalities and features, this sample
employs a sophisticated technique that replaces the Microsoft Intermediate Language (MSIL)
at run time to hinder static analysis. At the time of this writing, there is only one publication
discussing the MassLogger obfuscation technique in some detail. Therefore, I decided to
share my research and tools to help analyze MassLogger and other malware using a similar
technique. Let us take a deep technical dive into the MassLogger credential stealer and the
.NET runtime.

Triage

MassLogger is a .NET credential stealer. It starts with a launcher
(6b975fd7e3eb0d30b6dbe71b8004b06de6bba4d0870e165de4bde7ab82154871) that uses
simple anti-debugging techniques which can be easily bypassed when identified. This first
stage loader eventually XOR-decrypts the second stage assembly which then decrypts,
loads and executes the final MassLogger payload
(bc07c3090befb5e94624ca4a49ee88b3265a3d1d288f79588be7bb356a0f9fae) named Bin-
123.exe. The final payload can be easily extracted and executed independently. Therefore,
we will focus exclusively on this final payload where the main anti analysis technique is used.

Basic static analysis doesn’t reveal anything too exciting. We notice some interesting strings,
but they are not enough to give us any hints about the malware’s capabilities. Executing the
payload in a controlled environment shows that the sample drops a log file that identifies the
malware family, its version, and most importantly some configuration options. A sample log
file is described in Figure 1. We can also extract some interesting strings from memory as
the sample runs. However, basic dynamic analysis is not sufficient to extract all host-based
indicators (HBIs), network-based indicators (NBIs) and complete malware functionality. We
must perform a deeper analysis to better understand the sample and its capabilities.

User Name: user
 IP: 127.0.0.1

 Location: United States
 OS: Microsoft Windows 7 Ultimate 32bit

 CPU: Intel(R) Core(TM) i7-6820HQ CPU @ 2.70GHz
 GPU: VMware SVGA 3D

 AV: NA
 Screen Resolution: 1438x2460

 Current Time: 6/17/2020 1:23:30 PM
 MassLogger Started: 6/17/2020 1:23:21 PM

 Interval: 2 hour
 MassLogger Process: C:\Users\user\Desktop\Bin-123.exe

 MassLogger Melt: false
 MassLogger Exit after delivery: false

 As Administrator: False

https://cert-agid.gov.it/wp-content/uploads/2020/06/CERT-AGID_MassLogger-20200609.pdf
https://github.com/mandiant/jitm

3/21

Processes:
Name:cmd, Title:Administrator: FakeNet-NG - fakenet
Name:iexplore, Title:FakeNet-NG - Internet Explorer
Name:dnSpy-x86, Title:dnSpy v6.0.5 (32-bit)
Name:cmd, Title:Administrator: C:\Windows\System32\cmd.exe
Name:ProcessHacker, Title:Process Hacker [WIN-R23GG4KO4SD\user]+ (Administrator)

WD Exclusion
Disabled

USB Spread
Disabled

Binder
Disabled

Window Searcher
Disabled

Downloader
Disabled

Bot Killer
Disabled

Search And Upload
Disabled

Telegram Desktop
Not Installed

Pidgin
Not Installed

FileZilla
Not Installed

Discord Tokken
Not Installed

NordVPN
Not Installed

Outlook
Not Installed

FoxMail
Not Installed

Thunderbird
Not Installed

QQ Browser
Not Installed

4/21

FireFox
Not Installed

Chromium Recovery
Not Installed

Keylogger And Clipboard

[20/06/17] [Welcome to Chrome - Google Chrome]
[ESC]

[20/06/17] [Clipboard]
Vewgbprxvhvjktmyxofjvpzgazqszaoo

Figure 1: Sample MassLogger log

Just Decompile It

Like many other .NET malwares, MassLogger obfuscates all of its methods names and even
the method control flow. We can use de4dot to automatically deobfuscate the MassLogger
payload. However, looking at the deobfuscated payload, we quickly identify a major issue:
Most of the methods contain almost no logic as shown in Figure 2.

5/21

dnSpy showing empty methods

Figure 2: dnSpy showing empty methods
Looking at the original MassLogger payload in dnSpy’s Intermediate Language (IL) view
confirms that most methods do not contain any logic and simply return nothing. This is
obviously not the real malware since we already observed with dynamic analysis that the
sample indeed performs malicious activities and logging to a log file. We are left with a few
methods, most notably the method with the token 0x0600049D called first thing in the main
module constructor.

6/21

dnSpy IL view showing the method's details

Figure 3: dnSpy IL view showing the method's details
Method 0x0600049D control flow has been obfuscated into a series of switch statements.
We can still somewhat follow the method’s high-level logic with the help of dnSpy as a
debugger. However, fully analyzing the method would be very time consuming. Instead,
when first analyzing this payload, I chose to quickly scan over the entire module to look for
hints. Luckily, I spot a few interesting strings I missed during basic static analysis: clrjit.dll,
VirtualAlloc, VirtualProtect and WriteProcessMemory as seen in Figure 4.

7/21

Interesting strings scattered throughout the module

Figure 4: Interesting strings scattered throughout the module
A quick internet search for “clrjit.dll” and “VirtualProtect” quickly takes us to a few publications
describing a technique commonly referred to as Just-In-Time Hooking. In essence, JIT
Hooking involves installing a hook at the compileMethod() function where the JIT compiler is
about to compile the MSIL into assembly (x86, x64, etc). With the hook in place, the malware
can easily replace each method body with the real MSIL that contains the original malware
logic. To fully understand this process, let’s explore the .NET executable, the .NET methods,
and how MSIL turns into x86 or x64 assembly.

.NET Executable Methods

A .NET executable is just another binary following the Portable Executable (PE) format.
There are plenty of resources describing the PE file format, the .NET metadata and the .NET
token tables in detail. I recommend our readers to take a quick detour and refresh their

https://xoofx.com/blog/2018/04/12/writing-managed-jit-in-csharp-with-coreclr/
https://georgeplotnikov.github.io/articles/just-in-time-hooking.html
http://antonioparata.blogspot.com/2018/02/analyzing-nasty-net-protection-of.html
https://bytepointer.com/resources/pietrek_peering_inside_pe.htm
https://docs.microsoft.com/en-us/archive/msdn-magazine/2002/february/inside-windows-win32-portable-executable-file-format-in-detail
https://docs.microsoft.com/en-us/windows/win32/debug/pe-format?redirectedfrom=MSDN
https://www.ntcore.com/files/dotnetformat.htm

8/21

memory on those topics before continuing. This post won’t go into further details but will
focus on the .NET methods instead.

Each .NET method in a .NET assembly is identified by a token. In fact, everything in a .NET
assembly, whether it’s a module, a class, a method prototype, or a string, is identified by a
token. Let’s look at method identified by the token 0x0600049D, as shown in Figure 5. The
most-significant byte (0x06) tells us that this token is a method token (type 0x06) instead of a
module token (type 0x00), a TypeDef token (type 0x02), or a LocalVarSig token (type 0x11),
for example. The three least significant bytes tell us the ID of the method, in this case it’s
0x49D (1181 in decimal). This ID is also referred to as the Method ID (MID) or the Row ID of
the method.

Method details for method 0x0600049D

Figure 5: Method details for method 0x0600049D

9/21

To find out more information about this method, we look within the tables of the “#~” stream
of the .NET metadata streams in the .NET metadata directory as show in Figure 6. We
traverse to the entry number 1181 or 0x49D of the Method table to find the method metadata
which includes the Relative Virtual Address (RVA) of the method body, various flags, a
pointer to the name of the method, a pointer to the method signature, and finally, an pointer
to the parameters specification for this method. Please note that the MID starts at 1
instead of 0.

Method details from the PE file header

Figure 6: Method details from the PE file header
For method 0x0600049D, the RVA of the method body is 0xB690. This RVA belongs to the
.text section whose RVA is 0x2000. Therefore, this method body begins at 0x9690 (0xB690 –
0x2000) bytes into the .text section. The .text section starts at 0x200 bytes into the file
according to the section header. As a result, we can find the method body at 0x9890 (0x9690
+ 0x200) bytes offset into the file. We can see the method body in Figure 7.

10/21

Method 0x0600049D body in a hex editor

Figure 7: Method 0x0600049D body in a hex editor

.NET Method Body

The .NET method body starts with a method body header, followed by the MSIL bytes. There
are two types of .NET methods: a tiny method and a fat method. Looking at the first byte of
the method body header, the two least-significant bits tell us if the method is tiny (where the
last two bits are 10) or fat (where the last two bits are 11).

.NET Tiny Method

Let’s look at method 0x06000495. Following the same steps described earlier, we check the
row number 0x495 (1173 in decimal) of the Method table to find the method body RVA is
0x7A7C which translates to 0x5C7C as the offset into the file. At this offset, the first byte of
the method body is 0x0A (0000 1010 in binary).

11/21

Method 0x06000495 metadata and body

Figure 8: Method 0x06000495 metadata and body
Since the two least-significant bits are 10, we know that 0x06000495 is a tiny method. For a
tiny method, the method body header is one byte long. The two least-significant bits are
10 to indicate that this is the tiny method, and the six most-significant bits tell us the size
of the MSIL to follow (i.e. how long the MSIL is). In this case, the six most-significant bits are
000010, which tells us the method body is two bytes long. The entire method body for
0x06000495 is 0A 16 2A, followed by a NULL byte, which has been disassembled by dnSpy
as shown in Figure 9.

12/21

Method 0x06000495 in dnSpy IL view

Figure 9: Method 0x06000495 in dnSpy IL view
.NET Fat Method

Coming back to method 0x0600049D (entry number 1181) at offset 0x9890 into the file (RVA
0xB690), the first byte of the method body is 0x1B (or 0001 1011 in binary). The two least-
significant bits are 11, indicating that 0x0600049D is a fat method. The fat method body
header is 12-byte long whose structure is beyond the scope of this blog post. The field we
really care about is a four-byte field at offset 0x04 byte into this fat header. This field
specifies the length of the MSIL that follows this method body header. For method
0x0600049D, the entire method body header is “1B 30 08 00 A8 61 00 00 75 00 00 11” and
the length of the MSIL to follow is “A8 61 00 00” or 0x61A8 (25000 in decimal) bytes.

13/21

Method 0x0600049D body in a hex editor

Figure 10: Method 0x0600049D body in a hex editor

JIT Compilation

Whether a method is tiny or fat, it does not execute as is. When the .NET runtime needs to
execute a method, it follows exactly the process described earlier to find the method body
which includes the method body header and the MSIL bytes. If this is the first time the
method needs to run, the .NET runtime invokes the Just-In-Time compiler which takes the
MSIL bytes and compiles them into x86 or x64 assembly depending on whether the current
process is 32- or 64-bit. After some preparation, the JIT compiler eventually calls the
compileMethod() function. The entire .NET runtime project is open-sourced and available on
GitHub. We can easily find out that the compileMethod() function has the following prototype
(Figure 11):

https://github.com/dotnet/runtime

14/21

CorJitResult __stdcall compileMethod (
 ICorJitInfo *comp, /* IN */

 CORINFO_METHOD_INFO *info, /* IN */
 unsigned /* code:CorJitFlag */ flags, /* IN */

 BYTE **nativeEntry, /* OUT */
 ULONG *nativeSizeOfCode /* OUT */

);

Figure 11: compileMethod() function protype

Figure 12 shows the CORINFO_METHOD_INFO structure.

struct CORINFO_METHOD_INFO
 {

 CORINFO_METHOD_HANDLE ftn;
 CORINFO_MODULE_HANDLE scope;

 BYTE * ILCode;
 unsigned ILCodeSize;

 unsigned maxStack;
 unsigned EHcount;

 CorInfoOptions options;
 CorInfoRegionKind regionKind;

 CORINFO_SIG_INFO args;
 CORINFO_SIG_INFO locals;

 };

Figure 12: CORINFO_METHOD_INFO structure

The ILCode is a pointer to the MSIL of the method to compile, and the ILCodeSize tells us
how long the MSIL is. The return value of compileMethod() is an error code indicating
success or failure. In case of success, the nativeEntry pointer is populated with the address
of the executable memory region containing the x86 or the x64 instruction that is compiled
from the MSIL.

MassLogger JIT Hooking

Let’s come back to MassLogger. As soon as the main module initialization runs, it first
decrypts MSIL of the other methods. It then installs a hook to execute its own version of
compileMethod() (method 0x06000499). This method replaces the ILCode and ILCodeSize
fields of the info argument to the original compileMethod() with the real malware’s MSIL
bytes.

In addition to replacing the MSIL bytes, MassLogger also patches the method body header
at module initialization time. As seen from Figure 13, the method body header of method
0x060003DD on disk (at file offset 0x3CE0) is different from the header in memory (at RVA

15/21

0x5AE0). The only two things remaining quite consistent are the least significant two bits
indicating whether the method is tiny or fat. To successfully defeat this anti-analysis
technique, we must recover the real MSIL bytes as well as the correct method body headers.

Same method body with different headers when resting on disk vs. loaded in
memory

Figure 13: Same method body with different headers when resting on disk vs. loaded in
memory

Defeating JIT Method Body Replacement With JITM

To automatically recover the MSIL and the method body header, one possible approach
suggested by another FLARE team member is to install our own hook at compileMethod()
function before loading and allowing the MassLogger module constructor to run. There are
multiple tutorials and open-sourced projects on hooking compileMethod() using both
managed hooks (the new compileMethod() is a managed method written in C#) and native
hooks (the new compileMethod() is native and written in C or C++). However, due to the

https://georgeplotnikov.github.io/articles/just-in-time-hooking.html
https://ntcore.com/files/netint_injection.htm
https://xoofx.com/blog/2018/04/12/writing-managed-jit-in-csharp-with-coreclr/
https://github.com/maddnias/SJITHook

16/21

unique way MassLogger hooks compileMethod(), we cannot use the vtable hooking
technique implemented by many of the aforementioned projects. Therefore, I’d like to share
the following project: JITM, which is designed use inline hooking implemented by PolyHook
library. JITM comes with a wrapper for compileMethod() which logs all the method body
headers and MSIL bytes to a JSON file before calling the original compileMethod().

In addition to the hook, JITM also includes a .NET loader. This loader first loads the native
hook DLL (jitmhook.dll) and installs the hook. The loader then loads the MassLogger payload
and executes its entry point. This causes MassLogger’s module initialization code to execute
and install its own hook, but hooking jitmhook.dll code instead of the original
compileMethod(). An alternative approach to executing MassLogger’s entry point is to call
the RuntimeHelpers.PrepareMethod() API to force the JIT compiler to run on all methods.
This approach is better because it avoids running the malware, and it potentially can recover
methods not called in the sample’s natural code path. However, additional work is required to
force all methods to be compiled properly.

To load and recover MassLogger methods, first run the following command (Figure 14):

jitm.exe Bin-123.exe [optional_timeout]

Figure 14: Command to run jitm

Once the timeout expires, you should see the files jitm.log and jitm.json created in the
current directory. jitm.json contains the method tokens, method body headers and MSIL
bytes of all methods recovered from Bin-123.exe. The only thing left to do is to rebuild the
.NET metadata so we can perform static analysis.

https://github.com/mandiant/jitm
https://github.com/stevemk14ebr/PolyHook_2_0

17/21

Sample jitm.json

Figure 15: Sample jitm.json

Rebuilding the Assembly

Since the decrypted method body headers and MSIL bytes may not fit in the original .NET
assembly properly, the easiest thing to do is to add a new section and a section header to
MassLogger. There are plenty of resources on how to add a PE section header and data,
none of which is trivial or easy to automate. Therefore, JITM also include the following
Python 2.7 helper script to automate this process: Scripts\addsection.py.

With the method body header and MSIL of each method added to a new PE section as
shown in Figure 16, we can easily parse the .NET metadata and fix each method’s RVA to
point to the correct method body within the new section. Unfortunately, I did not find any
Python library to easily parse the .NET metadata and the MethodDef table. Therefore, JITM

https://reverseengineering.stackexchange.com/questions/15045/adding-a-new-pe-section-for-a-code-cave
https://reverseengineering.stackexchange.com/questions/8390/python-adding-a-asection-to-a-pe-file
https://reverseengineering.stackexchange.com/questions/13995/adding-section-to-pe-binary-using-stud-pe
http://www.rohitab.com/discuss/topic/41466-add-a-new-pe-section-code-inside-of-it/

18/21

also includes a partially implemented .NET metadata parser: Script\pydnet.py. This script
uses pefile and vivisect modules and parses the PE file up to the Method table to extract all
methods and their associated RVAs.

Bin-123.exe before and after adding an additional section named FLARE

Figure 16: Bin-123.exe before and after adding an additional section named FLARE
Finally, to tie everything together, JITM provides Script\fix_assembly.py to perform the
following tasks:

1. Write the method body header and MSIL of each method recovered in jitm.json into a
temporary binary file named “section.bin” while at the same time remember the
associated method token and the offset into section.bin.

2. Use addsection.py to add section.bin into Bin-123.exe and save the data into a new
file, e.g. Bin-123.fixed.exe.

3. Use pydnet.py to parse Bin-123.fixed.exe and update the RVA field of each method
entry in the MethodDef table to point to the correct RVA into the new section.

19/21

The final result is a partially reconstructed .NET assembly. Although additional work is
necessary to get this assembly to run correctly, it is good enough to perform static analysis to
understand the malware’s high-level functionalities.

Let’s look at the reconstructed method 0x0600043E that implements the decryption logic for
the malware configuration. Compared to the original MSIL, the reconstructed MSIL now
shows that the malware uses AES-256 in CBC mode with PKCS7 padding. With a
combination of dynamic analysis and static analysis, we can also easily identify the key to be
“Vewgbprxvhvjktmyxofjvpzgazqszaoo” and the IV to be part of the Base64-encoded buffer
passed in as its argument.

Method 0x0600043 before and after fixing the assembly

Figure 17: Method 0x0600043 before and after fixing the assembly
Armed with that knowledge, we can write a simple tool to decrypt the malware configuration
and recover all HBIs and NBIs (Figure 18).

20/21

 BinderBytes:
AA
 BinderName: Mzvmy_Nyrrd
 BinderOnce: false
 DownloaderFilename: Hrebxs
 DownloaderOnce: false
 DownloaderUrl: Vrwus
 EmailAddress: appfoil@outlook.com
 EmailClient: smtp.outlook.com
 EmailEnable: true
 EmailPass: services000
 EmailPort: 587
 EmailSendTo: appfoil@outlook.com
 EmailSsl: True
 EnableAntiDebugger: false
 EnableAntiHoneypot: false
 EnableAntiSandboxie: false
 EnableAntiVMware: false
 EnableBinder: false
 EnableBotKiller: false
 EnableBrowserRecovery: true
EnableDeleteZoneIdentifier: false
 EnableDownloader: false
 EnableForceUac: false
 EnableInstall: false
 EnableKeylogger: true
 EnableMemoryScan: false
 EnableMutex: false
 EnableScreenshot: false
 EnableSearchAndUpload: false
 EnableSpreadUsb: false
 EnableWDExclusion: false
 EnableWindowSearcher: false
 ExectionDelay: 6
 ExitAfterDelivery: false
 FtpEnable: false
 FtpHost: ftp://127.0.0.1
 FtpPass:
 FtpPort: 21
 FtpUser: Foo
 InstallFile: Pkkbdphw
 InstallFolder: %AppData%
 InstallSecondFolder: Eqrzwmf
 Key:
 Mutex: Ysjqh
 PanelEnable: false
 PanelHost: http://example.com/panel/upload.php
 SearchAndUploadExtensions: .jpeg, .txt, .docx, .doc,
 SearchAndUploadSizeLimit: 500000
 SearchAndUploadZipSize: 5000000
 SelfDestruct: false
 SendingInterval: 2

21/21

 Version: MassLogger v1.3.4.0
 WindowSearcherKeywords: youtube, facebook, amazon,

Figure 18: Decrypted configuration

Conclusion

Using a JIT compiler hook to replace the MSIL is a powerful technique that makes static
analysis almost impossible. Although this technique is not new, I haven’t seen many .NET
malwares making use of it, let alone trying to implement their own adaptation instead of
using widely available protectors like ConfuserEx. Hopefully, with this blog post and JITM,
analysts will now have the tools and knowledge to defeat MassLogger or any future variants
that use a similar technique.

If this is the type of work that excites you; and, if you thrive to push the state of the art when
it comes to malware analysis and reverse engineering, the Front Line Applied Research and
Expertise (FLARE) team may be a good place for you. The FLARE team faces fun and
exciting challenges on a daily basis; and we are constantly looking for more team members
to tackle these challenges head on. Check out FireEye’s career page to see if any of our
opportunities would be a good fit for you.

Contributors (Listed Alphabetically)

Tyler Dean (@spresec): Technical review of the post
Michael Durakovich: Technical review of the post
Stephen Eckels (@stevemk14ebr): Help with porting JITM to use PolyHook
Jon Erickson (@evil-e): Technical review of the post
Moritz Raabe (@m_r_tz): Technical review of the post

https://github.com/mandiant/jitm
https://www.fireeye.com/company/jobs.html
https://twitter.com/spresec
https://github.com/stevemk14ebr/
https://github.com/evil-e
https://twitter.com/m_r_tz?lang=en

