
1/9

Remsec driver analysis
artemonsecurity.blogspot.com/2016/10/remsec-driver-analysis.html

Remsec or Cremes malware already was perfectly described by Kaspersky in their report.
Symantec also did a blog post about it. This sophisticated malware toolkit refers to so-called
state-sponsored actor, which was named by KL as ProjectSauron or Strider by SYMC. There
are some similarities between Remsec and other serious state-sponsored projects like
EvilBunny (Animal Farm) or Flame (Equation Group). The toolkit contains a lot of modules
for cyberespionage. As already declared by the Russian special service (FSB), the attackers
have used unique malware files in case of each victim. This means that attacks were
implemented in highly targeted manner.

One of the malware components was not described by KL or other AVers. This component is
a driver and it works into kernel mode (Ring 0). Frankly speaking, the driver has compact
size and is designed only for one purpose: execute Ring 3 code from kernel mode with
SMEP bypass. Nothing special, but...The quality of written code confirms for us the fact that
driver was written by skilled developers and intended to be hidden. These properties are
ideally suited to the task the malware should perform.

Below are listed the facts about the driver (aswfilt.dll).

 It has small size and fits in one memory page (4KB).
It has the zeroed timestamp and one unnamed NONPAGED section.
It has dynamic imports that is stored into special driver struct with ptr at DeviceObject-
>DeviceExtension.
The code uses some sort of offsets obfuscation inside its body.
The code is written in right way.

https://artemonsecurity.blogspot.com/2016/10/remsec-driver-analysis.html
https://securelist.com/analysis/publications/75533/faq-the-projectsauron-apt/
http://www.symantec.com/connect/blogs/strider-cyberespionage-group-turns-eye-sauron-targets
https://2.bp.blogspot.com/-WDoJu3I5dog/V_JVXtImWSI/AAAAAAAADec/scoWe_DPF3EO9-bXCiGhrExLlHbch9f9gCLcB/s1600/cv.jpeg

2/9

The driver is loaded into a system by the dropper that exploits vulnerability in Agnitum driver
called Sandbox.sys. The dropper contains inside itself driver file, file of Agnitum Sandbox.sys
and code for its exploitation. Below you can see part of the dropper that drops Sandbox.sys
to disk.

After loading Agnitum Sandbox.sys, it sends to it a special IOCTL that forces it to load the
rootkit driver.

https://3.bp.blogspot.com/-vEzrflgjwbA/V_Jd7UDBySI/AAAAAAAADe4/rbk8cPAqQsAtzH1lZL-rWpxN7ytS92ayACLcB/s1600/hn.png

3/9

The rootkit driver creates device with name \Device\rwx and the client uses path
 \\.\GLOBALROOT\Device\rwx to communicate with it.
To disable SMEP, the client should sent to driver IOCTL with code 0x1173000C.

https://2.bp.blogspot.com/-8IKpZ7yY84s/V_J0A54r3mI/AAAAAAAADfM/V-dHIM-a9NE8UhpHsCLkcxkotFDylhEBQCEw/s1600/wq.png

4/9

Note that unlike developers of Capcom.sys driver, authors of Remsec disables SMEP in right
way.
Next structure describes DeviceContext that is used by rootkit as storage for run-time global
data.

struct RootkitStruct {

PVOID ExAllocatePool;
PVOID ExFreePool;
PVOID IoCompleteRequest;
PVOID IoCreateDevice;
PVOID IoDeleteDevice;
PVOID KeAcquireSpinLock;
PVOID KeCancelTimer;
PVOID KeInitializeEvent;
PVOID KeInitializeSpinLock;
PVOID KeInitializeTimer;
PVOID KeQueryInterruptTime;
PVOID KeReleaseSpinLock;
PVOID KeSetEvent;
PVOID KeSetTimer;
PVOID KeWaitForMultipleObjects;
PVOID ObfReferenceObject;
PVOID ObDereferenceObject;

https://2.bp.blogspot.com/-HT0ZLkndRNI/V_JcVyrLdvI/AAAAAAAADes/Xh8hZHH2RvEsdftT0ciJy-AEDqoT-aOpACLcB/s1600/bvc.png
https://twitter.com/TheWack0lian/status/779397840762245124

5/9

PVOID PsCreateSystemThread;
PVOID PsGetVersion;
PVOID PsTerminateSystemThread;
PVOID ZwClose;
PVOID ZwCreateKey;
PVOID ZwDeleteKey;
PVOID ZwEnumerateKey;
PVOID ZwOpenKey;
PVOID ZwSetValueKey;
PVOID ZwUnloadDriver;
PVOID KeQueryActiveProcessors;
PVOID KeSetSystemAffinityThread;
PVOID KeRevertToUserAffinityThread;
ULONG Flag;
KEVENT Event;
ULONG dwField1;
KTIMER Timer;
KSPIN_LOCK SpinLock;
ULONG dwField2;
LARGE_INTEGER IntervalTime;
UNICODE_STRING unDriverRegistryPath;
};

The driver supports an interesting method of unloading. It creates additional thread in
DriverEntry and supports timer object for unloading from this thread. As there are two
possible threads which can compete for the possession of the object, the driver supports
special spinlock object. This object is captured each time when function wants to get access
to timer. The timer interval can be set by client with special IOCTL code 0x117300CC. Timer
guarantees the client that driver will unload as soon as possible.

6/9

Driver plays with spinlock in next manner. Before executing code in
IRP_MJ_DEVICE_CONTROL handler, the rootkit cancels timer and set it again before
exiting from it.

KeAcquireSpinLock();
Flag1 = DeviceExtension->Flag1;
Flag2 = DeviceExtension->Flag2;
if(Flag1 & Flag2) {
 KeSetTimer();
}
KeRelaseSpinLock();

And

KeAcquireSpinLock();
Flag1 = DeviceExtension->Flag1;
Flag2 = DeviceExtension->Flag2;
if(Flag1 & Flag2) {
 KeCancelTimer();
}
KeRelaseSpinLock();

https://2.bp.blogspot.com/-YugT2xoI0t4/V_J6dmUOImI/AAAAAAAADfc/1A1vp_XascYYlLyXsE28KbW-RTGJ4qrpgCEw/s1600/ghj.png

7/9

The thread waits on timer and executes cleanup after time has elapsed.

https://2.bp.blogspot.com/-SQiLouYK5J8/V_J7bUsq5iI/AAAAAAAADfg/wo5ca_jI1TYTCx-Tw6_NMCKaNOzAtNcDwCLcB/s1600/oiu.png

8/9

Driver also has function with name fnRemoveRegKeyTree that recursively removes registry
key.

As it became clear from the analysis, the driver is intended for one purpose: execute function
from user mode address space and next, unload as fast as possible. Driver's code uses
spinlock and this is reason why authors are forced to use nonpaged section, that's untypical
for such type of drivers.

UPDATE
I noticed interesting thing in procedure of driver unloading that looks like mistake for
me. Let's look at this situation in more detail.

As I already mentioned above, the driver supports unloading procedure when some
conditions were triggered. It is waiting for timer object in fnThreadStartFunction and when
time elapses, the code calls fnCreateDriverRegKeyOrRemoveIt. Below you can see a chart
of this process.

https://1.bp.blogspot.com/-zpl9BNW5ZkM/V_TGvgy32nI/AAAAAAAADg4/azwfepoWHxgE-_XUqWWFsa-T3iAgufifQCEw/s1600/xz.png

9/9

As you can see, when system thread has returned from ZwUnloadDriver, there is a high
probability that page with driver's code is already invalid, because IopDeleteDriver
calls MmUnloadSystemImage for mark virtual memory page which belong to driver as free
for further using.

https://2.bp.blogspot.com/-4nkhCDSloOc/V_TP_HJSr8I/AAAAAAAADhM/KO-XSSam6FoKoji3-5I4FXmOz-t1FfQkwCLcB/s1600/ui.png

