
1/25

Shaun Hurley May 1, 2020

The Many Paths Through Maze
crowdstrike.com/blog/maze-ransomware-deobfuscation/

Maze ransomware is a recent addition to the ever-growing list of ransomware families. It
stands out from the others by leveraging a technique called control flow obfuscation to make
static and dynamic analysis difficult for anyone attempting to reverse engineer the binary.
Maze lives up to its name — anyone doing analysis will get lost through the endless amount
of paths that can be taken through the code. But automated deobfuscation of Maze is not a
terribly difficult task.

Code obfuscations are legitimate techniques used to protect code from analysis by reverse
engineers. The most common form of code obfuscation that a malware analyst will run into
daily is a packed binary. Various forms of anti-disassembly and control flow obfuscations are
next in line. Deobfuscation of these obfuscations range from trivial to bashing your head on
the keyboard and hoping for a miracle. For more information on code obfuscation, read
Surreptitious Software by Christian Collberg and Jasvir Nagra and Practical Binary Analysis
by Dennis Andriesse.

The primary purpose of this blog post is to present an approach to attack and deobfuscate
the various obfuscations leveraged by Maze’s author. The primary tools leveraged are the
IDA Pro disassembler and Python. We cover some foundation material, the obfuscations, the
deobfuscated obfuscations, and how to accomplish deobfuscation using IDA’s Python API.

https://www.crowdstrike.com/blog/maze-ransomware-deobfuscation/
https://www.crowdstrike.com/epp-101/what-is-ransomware/

2/25

Figure 1. IDA’s Navigation Bar Depicting Maze Ransomware

Once any binary is opened up in IDA, the analyst should take a look at the navigation bar.
This bar is a quick method to determine how difficult a binary may be to reverse engineer.
The bar depicted in Figure 1 is of Maze. The vast majority of the gray and brown areas are
legitimate code, junk code and undefined functions. The fact that there is so little blue
(regular function code) lets an analyst know that they are about to have a rough day.

The approach taken in this blog post is blunt, effective and approachable by inexperienced
reverse engineers. The primary method for identifying the obfuscations is to search for byte
patterns and then deobfuscate all located patterns. The following section, “Understanding
Program Control Flow,” covers the basic technical details to pave the way for the rest of the
blog.

Understanding Program Control Flow

A program’s control flow is a path created out of the instructions that can be executed by the
program. Disassemblers, like IDA, visualize control flow as a graph by creating a series of
connected blocks (called “basic blocks”). Each basic block has a single implicit entry point
and a single implicit exit point. The entry points for a basic block are reached by jump
instructions, by call instructions or through the binary’s code entry point specified by the
format (PE, ELF, etc). This section can be skipped if the reader already understands program
control flow.

3/25

Figure 2. Standard Control Flow Example

Figure 2 is an example of visualizing a program’s control flow. To start, take the highlighted
TEST instruction at address 004 . A TEST instruction will perform a bitwise AND operation
on the two operands (EAX, EAX). If the result of the bitwise AND is zero, then the CPU’s
Zero Flag (ZF) is set to one; otherwise, the ZF is set to zero. The ZF is used by the JZ (“jump
if zero”) instruction at address 006 to determine which path (left or right) to take. This is one
example of something called a “conditional jump.” If the ZF is set to one, then the jump is
taken (right path), and instruction 020 will be executed next. Otherwise, the fall-through
side (left path) of the conditional branch is taken, and the instruction at address 00C is
executed.

There are two more instructions that need to be discussed: CALL and JMP. The CALL
instruction at 02A will jump to the address of Function001 , execute the body of the
function and return the address following the call instruction (02F). This is explained in
more detail in the section on function calls. A JMP instruction (01F , 040) is called an
“absolute jump” — the program will always jump to the specified target address.

Absolute Jumps, Conditional Jumps and Opcodes

This section is a quick overview of opcodes, jumps and conditional jumps. Before diving into
the different types of jumps, know that all assembly instructions are human-readable
representations of binary data. This binary data is put together into strings of bytes called

https://docs.microsoft.com/en-us/cpp/cpp/bitwise-and-operator-amp?view=vs-2019

4/25

“opcode bytes.” When patching code for binaries is discussed, what’s being patched are the
opcode bytes and not an operation on the readable assembly instruction.

Figure 3. JZ Breakdown

Let’s take the JZ from Figure 2, break it down and explain each component at address 006 .
This is done in Figure 3. The first component is the instruction address, which indicates the
location in process memory where an instruction exists. The opcode bytes are the machine
code that represent the mnemonic and the operand. The mnemonic is the human readable
representation of the operation going to be performed on the operand.

In this example, the kind of conditional jump being performed here is a relative jump if zero.
This can be determined based on the opcode bytes, 0F 84 (Figure 3). To calculate the
jump target address for a relative jump, the last four bytes of the opcode are added to the
address of the next instruction (00C). In this case, the value of the JZ operand is the four
bytes following 0F 84 which are: 14 00 00 00 . The operand value is little endian and will
be reversed when the instruction is executed, that is 14 00 00 00 is actually 00 00 00
14 or 14h . So, the calculation to get a jump target address of 020 is 14h + 0Ch , which
adds up to 020h .

Opcode (in
hexadecimal)

Mnemonic Operand Value
Size

Description

EB XX JMP 1 Byte Short relative jump

E9 XX XX XX XX JMP 2 or 4 Bytes Near relative jump

75 XX JNZ 1 Byte Short relative jump if ZF =
0

0F 85 XX XX XX XX JNZ 2 or 4 Bytes Near relative jump if ZF =
0

74 XX JZ 1 Byte Short relative jump if ZF =
1

0F 84 XX XX XX XX JZ 2 or 4 Bytes Near relative jump if ZF =
1

Table 1. Absolute and Conditional Jump Instructions

5/25

A core part of deobfuscating Maze involves modifying the various jump instructions to
remove control flow obfuscation. Table 1 describes the opcode, mnemonic and operand
value size for each type of jump instruction that will be discussed.

How Function Calls Work

There are many different types of calling conventions for functions, but this section provides
a general explanation into how function calls work. The primary takeaway from this section
should be that a prologue sets up a function, an epilogue tears down a function, and a return
address is where execution resumes when a RETN instruction is executed.

Every function starts by executing a series of instructions designed to allocate space that will
contain the memory necessary for the function to complete its purpose. This is called a
“function prologue.” The allocated space is called a “stack frame,” and a function needs it to
store and reference arguments, variables, and the return address. Two registers are used
when referencing the stack: a stack pointer and a base pointer. On an x86 system, the stack
and base pointers are called ESP and EBP, respectively.

The stack pointer (ESP) always points to the top of the stack. That means the value of ESP
will change when values are added or removed from the stack. This differs from EBP (the
base pointer), which remains the same throughout the lifetime of the function. By not being
modified, EBP can be used as a reference by the program’s code to know where local
variables (EBP-4), arguments (EBP+8) and the return address (EBP+4) are located on the
stack.

Figure 4. Function Prologue for Function_100

For example, in Figure 4, the Caller function (on the left) executes the CALL instruction at
address 002 . The CALL pushes the return address, 008 , to the stack and shifts ESP so
that it points to the top of the stack. On the right is the prologue for Function_100 that will set
up the function’s stack frame. Starting at address 100 , the base pointer for Caller (current
value of EBP) is saved to the stack. The base pointer for Function_100 is set to ESP. At

https://en.wikipedia.org/wiki/Call_stack#Structure

6/25

address 102 , 13Ch bytes are reserved for use by Function_100 ’s local variables.
Finally, before anything else is done, the value stored in ECX is saved to the stack. This
value will be restored in the function’s epilogue.

Figure 5. Function Epilogue for Function_100

The epilogue in Figure 5 undoes everything that was done by the prologue. The original
value of ECX is restored, local variable stack space is removed, both ESP and EBP are
restored to their original values, and the return instruction is executed. After the pop ebp
instruction (09B), ESP points to the stack space where the return address 008 is stored. The
RETN instruction at 09C will return to whatever value is pointed to by ESP, in this case 008.
After the RETN instruction is executed, control flow returns to 008, and ESP will point to the
top of the stack for Caller.

The information covered in this section can be a bit tricky to follow at first. However, a
complete understanding is not necessary to follow along.

Absolute Jump Obfuscation

A simple obfuscation is to insert extraneous control flow, and Maze does this quite a bit. On
the left side of Figure 6 is an absolute JMP instruction located at 004 . This will jump to
location 020 . However, on the right side, a series of conditional jumps is used to ultimately
end up at the same destination, loc_020. Walking through it, if the JZ instruction is followed,
loc_020 is reached. If it is not followed, however, the JNZ instruction will be followed, and

the program jumps t0 loc_010 . At 010 is another JNZ that will jump to loc_020 . And, if
the JNZ at 008 was followed because the zero flag is set to zero, then the JNZ instruction
at 010 is also going to be followed because the ZF is going to be the same. Therefore, the
program will always reach loc_020 .

7/25

Figure 6: Absolute Jump Obfuscation

The fall-through branch for the JNZ instruction at 010 is the address 015 . This JZ
instruction will never be reached because the JNZ will always jump. Conditional branches
that will never be executed are called “opaque predicates.” As IDA starts to identify what is
and isn’t code, it reaches these opaque predicates and displays them in the GUI. IDA
expects the JZ instruction at 010 to have two branches: the code following 015 and the
code located at address 019 . Although none of this will be reached, all of it is displayed as
code in IDA, creating a cluttered mess. The analyst has to sift through all of this and decide
which instructions are pertinent.

The following subsections describe the types of conditional jump patterns and how they can
be deobfuscated.

JMP Type One: Absolute, Conditional Jump

This obfuscation takes an absolute jump and transforms it into a conditional jump that will
always end up at one of two jump target addresses. As can be seen in Figures 7, 8 and 9,
this obfuscation places the jump JZ and JNZ instructions in sequence. As mentioned
previously, each conditional jump has a fall-through branch and a jump target. In the case of
Figure 7, if the fall-through branch of the JZ instruction is executed (address 000), that
means ZF is set to zero. The next instruction, JNZ, is executed and the jump target will
always be taken (loc_004+4). This means that the address at 004 will never be reached.

Figure 7. Short JMP Type One Obfuscation, Incorrect JNZ Target Label in IDA

8/25

IDA, however, expects the JNZ instruction at 002 to fall through if ZF is set to one. That
means the bytes located at 004 should be marked and displayed as valid x86 code. The
consequence of displaying the binary data at 004 as code is that IDA ends up incorrectly
displaying both the operand (loc_004+4) for 002 , and the code at jump target address
008 . It is jumping to the last byte of the instruction at 004 . Confusing the disassembler in

this manner is called “anti-disassembly.” In IDA, this can be resolved by undefining the
instruction at address 004 and marking the instruction at 008 as code (Figure 8).
Throughout the rest of this post, each example will display the corrected code.

Figure 8. Short JMP Type One Obfuscation, Correct JNZ Target Label in IDA

Figure 9 is the same thing as Figure 7, but the instruction at 000 is a near (rather than a
short) JZ. As expected, the bytecode starts with 0F 84 and the entire instruction length
goes from two to six.

Figure 9. Near JMP Type One Obfuscation

Deobfuscation

If the instruction at 000 is not taken, then the instruction at 002 will always be taken. That
means that the JNZ instruction at 002 is actually a short JMP. The transformation here is
simple — the JNZ instruction at address 002 (Figure 8) can be changed to a short JMP
instruction by modifying the first byte from 75 to EB.

9/25

Figure 10. Short JMP Type One Obfuscation, Correct JNZ Target Label in IDA

JMP Type Two: Absolute, Multiple Conditional Short Jump

This obfuscation is similar to the JMP Type One obfuscation but with added JZ/JNZ blocks to
further confuse IDA’s ability to visualize control flow. In Figure 11, either the JZ instruction at
000 will be taken, or the JNZ instruction at 002 will be executed. The JNZ instruction

at 002 jumps to the JNZ target at 008. A JNZ jumping to another JNZ is extraneous
because the second JNZ jump will always be taken. In this example, one of two jump targets
will always be reached: loc_6E456049 or loc_6E456049 .

Figure 11. Short JMP Type One Obfuscation, Correct JNZ Target Label in IDA

The instructions at 004 , 00A , 00C and loc_6E456002 are all unreachable. This
technique multiplies the number of paths through Maze that IDA believes are accessible.
Each one is a dead end.

Like the JMP Type One obfuscation, the Type Two obfuscation has a short and a near
version.

Deobfuscation

10/25

The deobfuscation here is similar to the JMP Type One obfuscation. The JNZ instruction at
002 (Figure 12) is changed to a short JMP by changing the first opcode byte 75 to EB .
The JNZ instruction at 000 is not touched. The JNZ/JZ block at 008 is zeroed out.

Figure 12. Near JMP Type Two Obfuscation, Correct JNZ Target Label in IDA

Call Instruction Obfuscation

Similar to the previous obfuscation types, Maze transforms CALL instructions into conditional
jumps. Not only will this confuse control flow, it combines multiple functions into a single
function. This process is called “function inlining,” and it makes it difficult for IDA to properly
identify where functions begin and end. Figure 13 illustrates the obfuscation process.

11/25

Figure 13. Obfuscated Function Call

Each function follows a similar template. At instruction 000 in Figure 13, the return address,
loc_020 , for the function call is pushed to the stack. The next instruction jumps to the

address of the function being called. The function prologue instructions preserve the state of
registers by pushing them on the stack and to allocate memory for local variables. After the
prologue, the function body executes, and then the epilogue restores the state of the stack
prior to the function being called. Once the state of the stack has been restored, control flow
resumes to the address that was pushed at instruction 000 .

There are multiple minor variations to the template, but the core part of the control flow
remains intact. The following series of sections breaks down each variation of the control
flow obfuscation into numbered types.

Call Type One: Indirect Absolute Jump

This obfuscation pushes the return address to the stack and then executes an indirect jump.
An indirect jump is a jump instruction where the operand of the JMP instruction is a register
rather than the target address or the offset to a target address. The jump target address is

12/25

stored in the register. In Figure 14, at address 005 , the JMP instruction operand is the EDI
register. To reach the destination of the JMP, the CPU needs to get the address from EDI.
This obfuscation breaks control flow, because IDA does not know where to jump and where
to return.

Figure 14. Call Type One Obfuscation

Indirect jumps are a common instruction, and that on its own does not constitute control flow
obfuscation. It’s the PUSH instruction followed by jmp edi that makes this a Call Type One
obfuscation. In Maze, these obfuscations are often used to execute a Windows procedure
(VariantClear , in this example). When a Windows procedure is called, it is more or less
always going to return to the instruction proceeding the call instruction. In this case, the
return address for the function is pushed to the stack, and the JMP instruction is executed.

Deobfuscation

To deobfuscate, the indirect jump at 005 (Figure 14) gets changed to a call by subtracting
10h from the second opcode byte (E7), the PUSH instruction at 000 gets changed to an

absolute near jump, and the instructions are reordered so that the call instruction comes
before the jump (Figure 15).

Figure 15. Call Type One Deobfuscation

Call Type Two: Absolute, Conditional Jump

The primary difference between this obfuscation type and the JMP Type One obfuscation is
the addition of pushing the return address at 001 (Figure 16). The first instruction at 000
pushes whatever value is stored to ESI as an argument to the function.

Figure 16. Call Type Two Obfuscation

13/25

Deobfuscation

This deobfuscation is a case where the deobfuscation instructions don’t require as many
opcode bytes as the original obfuscation instructions. There are a few different approaches
to resolve this issue — in this case, no operation (NOP) instructions are used to overwrite
the original bytes. After overwriting the unnecessary bytes, the JZ/JNZ instructions are
replaced with a relative CALL instruction, and the return address pushed to the stack is used
as the target for the absolute near jump at 00E .

Figure 17. Call Type Two Obfuscation

A cleaner approach may be to move the CALL/JMP instruction sequence to address 001 ,
just after the PUSH instruction, and then zero out the unused bytes. This method would
remove the extraneous NOP instructions from the basic block.

Call Type Three: Absolute, Multiple Conditional Jump

Once again, the primary difference between this obfuscation type and the JMP Type Two
obfuscation is the addition of pushing the return address at 001 (Figure 16). The first
instruction at 000 pushes whatever value is stored to EDI as an argument to the function.

14/25

Figure 18. Call Type Three Obfuscation, Correct JNZ Target Label in IDA

The example in Figure 18 is only a double jump, but there are variations where three of
these linked JNZ instructions ultimately end up in the same place. Deobfuscation has to be
able to handle these cases.

Deobfuscation

The deobfuscation for this type is similar to the method used in Call Type Two.

Figure 19. Call Type Three Deobfuscation

Deobfuscation with IDA Python

IDA Python is built on the IDA SDK and this section will discuss how it can be leveraged to
deobfuscate Maze. Deobfuscating the various control flow obfuscations discussed above
gets redundant, so the only case covered is the Call Type One obfuscation. This example will

https://www.hex-rays.com/products/ida/support/sdkdoc/index.html

15/25

be enough to follow along in both the source code and in the later sections.

Locating Call Type One Obfuscations

Prior to patching the IDA database (IDB) to remove the obfuscations, the locations for each
obfuscation have to be identified. The simplest method for locating the obfuscations is by
searching the IDB for all instances of a specific opcode pattern.

Figure 20. Call Type One Obfuscation

In Figure 20, the opcode pattern for address 000 is 68 E8 52 44 6E . This instruction is
pushing the four-byte address 6E4452E8 (little endian byte order) onto the stack. Because
the four bytes following the 68 opcode byte are going to change based on which address is
being pushed, these will have to be excluded. This same issue pops up with the second
opcode byte E7 for the jump instruction at 005 . The search string ends up looking like:
68 ? ? ? ? FF . The ? is a wildcard match that will match any byte.

Figure 21. Opcode Searching for Call Type One Obfuscation

The loop in Figure 21 will iterate over each address where the opcode pattern was found.
The body of the loop (the snipped out code) will contain all of the logic used to verify that the
found byte pattern is a Type One Obfuscation.

https://github.com/shamrockhoax/mazedecoder

16/25

Figure 22. Verify PUSH Instruction for Call Type One Obfuscation

Once an opcode pattern has been found, the instruction at that address needs to be
interpreted. IDA may or may not have the correct instruction displayed here, but there is no
way of knowing if that is the case. This blog post takes the approach of not trusting the
current state of the IDB. So, an ida_ua.insn_t object is created and populated using the
ida_ua.decode_insn (insn_t , ea) method. The reference for this instruction can be

found in the online documentation. The key to success is using the online documentation
along with searching the IDA Python source located in IDAs installation directory. In short,
the inst_t object gives us access to the following information about the instruction:

Instruction size
Operand type
Operand value
Operand address

The two highlighted blue functions in Figure 22 are helper functions. The first retrieves the
target address for the instruction (in this case, what is being pushed). The
CheckValidTargettingInstr() function validates that the PUSH instructions operand is

an o_imm type, o_far type or o_near type. After the type has been validated, the code
address being pushed — 6E4452E8 (Figure 20) — needs to be verified that the address
points to executable code in the Maze binary.

Once this has been confirmed, the JMP instruction located at 005 can be validated. The
steps are mostly the same, but instead of validating the address, the operand type will be
o_reg , o_phrase or o_displ .

Patching Call Type One Obfuscations

Once these instructions have been validated, the IDB can be patched to transform the
obfuscation into the code in Figure 23. This is where things can get a bit frustrating. The goal
is to get IDA to disassemble the code and present a cleaned-up version to whomever is
analyzing the Maze binary. To ensure that this occurs, the deobfuscation script takes the
steps discussed in this section.

https://www.hex-rays.com/products/ida/support/sdkdoc/classinsn__t.html
https://www.hex-rays.com/products/ida/support/sdkdoc/group__o__.html#ga85e77bd8098a47465cd8e1193b6e154c
https://www.hex-rays.com/products/ida/support/sdkdoc/classop__t.html#a6baa38b521c143a794640d82df109ae2
https://www.hex-rays.com/products/ida/support/sdkdoc/classop__t.html#acaaeff517df0b7156b4b8521a3900cdc

17/25

Figure 23. Call Type One Deobfuscation

In order to accurately patch the program, the deobfuscation script needs to know the address
for each of the obfuscated instructions, the address of the deobfuscated instructions, and the
address that is going to be the jump target. The first item is the address of the byte pattern
match from the previous section.

Figure 24. Getting the Deobfuscation Instruction Addresses

For all cases, the call edi instruction is going to overwrite the push offset
loc_6E4452E8 (Figure 20) instruction. In Figure 24, this is accomplished by the following
code: deobf_patch_call_addr = obf_push_instr_ea.

Now that the location of call edi has been determined (000), the address for the jmp
loc_6E4452E8 instruction needs to be calculated. Figure 23 shows that the JMP instruction
will come after the two-byte CALL instruction, so the address is 002 . The question is, will
that always be the case?

Figure 25. Call Type One Obfuscation

18/25

Figure 25 shows that the length of the CALL will not always be two. However, calculating the
correct address is not difficult. Remember that the length of the deobfuscated CALL
instruction (call edi) will always be the same length as the obfuscated jump (jmp edi).
The address of the obfuscated jump is already known, so the instruction can be decoded into
an ida_ua.isn_t object. Once the instruction has been decoded, the address of the
deobfuscated jump (jmp loc_6E4452E8) can be calculated: deobf_patch_jmp_addr =
obf_push_instr_addr + obf_jmp_insn.size .

Now that the address of the deobfuscated jmp instruction is known, the JMP target address
can be calculated. Take a look at the JMP instruction at 003 in Figure 23. The E9 opcode
indicates that this is going to be a relative near jump. The four opcode bytes after the E9
byte are going to be the offset between the address of the next instruction and the return
address pushed by the PUSH instruction.

Figure 26. Getting the JMP Target Address

The address of the next instruction is always going to be the address of the deobfuscated
JMP instruction + five. This is known because a relative near JMP instruction has a size of
five bytes, and that is what will always be used in the Call Type One deobfuscation code.
The highlighted sections in Figure 26 show how the offset is calculated. The IDB can now be
patched.

19/25

Figure 27. Writing the Deobfuscated CALL Instruction

We start with the deobfuscated CALL instruction (Figure 27). First, the original PUSH
instruction is deleted using the IDA Python del_items (insn_addr, FLAG)procedure.
Next, the “for” loop walks over each byte of the obfuscated indirect JMP instruction (jmp
edi). It writes the first byte to the address of the CALL instruction, subtracts 16 from the
second byte to convert the JMP to a CALL, then writes the rest of the instruction. After the
CALL instruction has been written, it is created using the create_insn (insn_addr)
procedure.

Figure 28. Writing the Deobfuscated Relative Near JMP Instruction

In Figure 28, the instruction that exists at this location is undefined using the
CleanupPatchArea (addr, size) function (see source code). The first opcode byte (E9)

is written to the location using patch_byte (addr, byte). Next, the offset address for the
relative near jump is written using patch_dword(addr , dword) . The instruction is created,
and plan_and_wait (addr_start , addr_end) is called to force IDA to reanalyze the
instruction.

20/25

Figure 29. Ensure that the Code at the Jump Target is Recognized as Code

The instruction located at the jump target address may not be recognized as code by IDA. To
ensure that this will be interpreted not only as a valid instruction but the correct instruction,
the steps in Figure 29 are followed. Once this has completed, the Call Type One obfuscation
is now deobfuscated.

Windows Procedure Call Obfuscation

Some of the Windows API calls are obfuscated using the method outlined in this section.
This obfuscation connects all of the obfuscations covered in the previous sections and adds
a few twists. The purpose of this obfuscation is to call the
Winapi_LookupWindowsProcedure function. This function looks up the address of a

module name by hash and then executes the procedure. The method used to retrieve a
Microsoft Windows procedure address will not be covered in this blog.

21/25

Figure 30. Windows Procedure Call Obfuscation, Incorrect IDA Rendering

The CALL instruction at address 010 in Figure 30 is doing something shifty. Recall that a
CALL instruction pushes the address of the next instruction to the stack — in this case, the
address is going to be 015 . Following the CALL instruction, the
Winapi_LookupWindowsProcedure is immediately called using a Call Type Three

obfuscation (highlighted green). So the CALL pushes 015 , and the Call Type Three pushes
the return address loc_050 . This is somewhat new, so let’s take a look at address 015 .

22/25

Figure 31. Windows Procedure Call Obfuscation, Correct IDA Rendering

Figure 31 shows what is actually located at address 015 . It is the name of a Microsoft
Windows DLL (gdi32.dll , in this case). This DLL is going to be the first argument to the
Winapi_LookupWindowsProcedure function. The CALL instruction is used to push the first

argument. IDA interprets the bytes at 015 as code, and that makes it difficult to follow.

Deobfuscation

In Figure 30, instruction 01F is a Call Type Three obfuscation, and instruction 050 is a
Call Type One obfuscation. Each obfuscation is deobfuscated using previously mentioned
methods.

Figure 32. Windows Procedure Call Deobfuscation

In order to pass the first argument (module name) to Winapi_LookupWindowsProcedure ,
the CALL instruction at 010 (Figure 31) will be replaced with a PUSH instruction. To
accomplish this, the module name is shifted from 015 to address 01F (Figure 32). Now,
the PUSH instruction can be added at 010 to be used as the first argument for the CALL to
Winapi_LookupWindowsProcedure (015).

Function by the Slice

All of the obfuscations that have been discussed turn the code into spaghetti. This confuses
disassemblers, like IDA, and makes it difficult to automatically identify and create functions.
After deobfuscation has occurred, it may not be the case that IDA can automatically identify
the functions. This can be resolved by using IDA Python to identify and create functions
based on byte search patterns.The approach identifies an artifact from the prologue and an
artifact from the epilogue, and then connects the two using a recursive descent parser.

23/25

Figure 33. Function Epilogue

The function identification algorithm starts by locating a set of potential function epilogues.
The algorithm for epilogue identification:

Search for all add esp , value opcodes (000): 83 C4 or 81 C4
Track the amount being added to ESP (38h)
Starting at 000 , walk over the instructions until the return instruction is reached at
00A

Track the registers being popped off the stack (ESI, EDI, EBP)

This algorithm can be repeated until all of the epilogues have been identified.

Figure 34. Function Prologue

To locate a set of all of the potential prologues, the start address for each prologue (000 , in
this case) needs to be identified. This is difficult because none of the functions that need to
be identified have a standard prologue (Figure 34). Since each prologue will have an
equivalent epilogue and the epilogues are known, this can be used to identify the start
address for each prologue:

Search for all sub esp , value opcodes (004): 83 EC or 81 EC

24/25

Starting with the first SUB instruction located:
Compare the number of bytes subtracted from ESP (38h) to what was added to
ESP for each of the function epilogues that were found.

The expectation is that the same amount subtracted in the prologue will be
added in the epilogue.

Walk backward, from 004 to 000 , and verify that each register being pushed to
the stack is in the same order as what was popped from the stack in the set of
potential epilogues for this function.

If the ESP manipulation value (38h) and the register value PUSH/POP instructions match,
then it is safe to say that a function prologue has been identified and the start address has
been located.

Control Flow Graph Recovery

Both the start address and the end address for the function have been identified, and now
the pieces in between, the basic blocks, need to be walked to confirm that the prologue and
epilogue actually connect. A recursive descent parser is used to walk the control flow graph.
The implementation used in the source code is based on the example from the book
Practical Binary Analysis by Dennis Andriesse.

Function Creation

The only thing left to do is create the functions that were identified and cleaned up using the
algorithm outlined in the CFG Recovery section.

1. Create the identified functions during the CFG Recovery process using IDA’s
add_func (start_address, end_address) method.

2. Redefine functions that were undefined during the CFG Recovery process.

Conclusion

As demonstrated throughout this discussion, Maze’s obfuscated control flow can cause quite
a headache for an analyst, but with a little bit of planning (and Python), these obfuscations
can be removed. In the opening paragraphs of this blog post an IDA navigation bar of the
obfuscated Maze binary was shown (Figure 1). The expectation is that this will be
significantly different after deobfuscation.

Figure 35. IDA Navigation Bar for Deobfuscated Maze Binary

https://github.com/shamrockhoax/mazedecoder/blob/master/bytesearch/maze_function_analysis.py

25/25

Figure 35 shows a significant improvement. Still, there is plenty of brown and gray space. It’s
to be expected. Not everything is going to be part of a regular function. The presented
solution is not going to deobfuscate 100% of the code. It will provide an analyst with enough
deobfuscated code that the control flow is both easier to follow and easier to manually
correct.

For further reading on binary analysis and software obfuscation, both “Surreptitious
Software” by Christian Collberg and Jasvir Nagra and “Practical Binary Analysis” are
excellent resources.

The source code has been published on GitHub.

Additional Resources

Download the CrowdStrike® 2020 Global Threat Report.
See the CrowdStrike Falcon® platform in action, and learn how true next-gen AV
performs against today’s most sophisticated threats — get a full-featured free trial of
CrowdStrike Falcon Prevent™ today.
To learn more about how to incorporate intelligence on threat actors and their tactics
techniques and procedures (TTPs) into your security strategy, please visit the Falcon
X™ Threat Intelligence page.
For more information on the cellular automation depicted in the blog header image,
read about John Conway’s Game of Life.

https://github.com/shamrockhoax/mazedecoder/
https://www.crowdstrike.com/resources/reports/2020-crowdstrike-global-threat-report/
https://go.crowdstrike.com/try-falcon-prevent.html
https://www.crowdstrike.com/endpoint-security-products/falcon-x-threat-intelligence/
https://en.wikipedia.org/wiki/Conway%27s_Game_of_Life

