

New MuddyWater Activities

Uncovered:
Threat Actors Used Multi-Stage Backdoors, New Post-

Exploitation Tools, Android Malware, and More

Daniel Lunghi and Jaromir Horejsi

1

New findings on MuddyWater's old and recent activities

We came across new campaigns that seem to bear the markings of MuddyWater – a threat actor group
with a history of targeting organizations in Middle Eastern and Asian countries. The group used new tools
and payloads in campaigns over the first half of 2019, pointing to the continued work the group has put in
since our last report on MuddyWater in November 2018.

Apart from discovering new campaigns related to MuddyWater, we also uncovered crucial information
related to the group’s old and recent activities. These include findings on the threat actor group’s connection
to some Android malware variants, its use of false flags to misattribute campaigns to certain countries, its
infrastructure, and its target countries and industries. We will also share our independent findings regarding
certain information about the threat actor group’s operations, which was leaked on Telegram in April 2019.

https://blog.trendmicro.com/trendlabs-security-intelligence/new-powershell-based-backdoor-found-in-turkey-strikingly-similar-to-muddywater-tools/

2

Threat actors found using POWERSTATS V3 – a multi-

stage backdoor
In one of the MuddyWater campaigns we spotted, we detected spear-phishing emails that the group sent
to a university in Jordan and the Turkish government. In both cases, the threat actor group did not spoof
the said legitimate entities’ sender address to deceive email recipients, but instead used compromised
legitimate accounts to trick users into installing malware.

Figure 1. Screenshot of a spear-phishing email spoofing a government office, dated April 8, 2019.

Figure 2. Email headers showing the origin of the spear-phishing email

The legitimate owners of the compromised email accounts were from the same countries the target

entities are based. As of this writing, it’s unclear how they were compromised, but it’s possible that the

group had used the Gophish toolkit since they have already utilized it in an old campaign.

3

The threat actor group deployed a new multi-stage PowerShell-based backdoor called POWERSTATS v3

(detected by Trend Micro as Trojan.PS1.POWERSTATS.C). The spear-phishing email that contains a

document embedded with a malicious macro will drop a VBE file encoded with Microsoft Script Encoder.

The VBE file, which holds a base64-encoded block of data containing obfuscated PowerShell script, will

then execute. This block of data will be decoded and saved to the %PUBLIC% directory under various

names ending with image file extensions such as .jpeg and .png. The PowerShell code will then use

custom string obfuscation and lots of useless blocks of code to make it difficult to analyze.

Figure 3. Code snippet of obfuscated and useless code

The final backdoor code will be shown after the deobfuscation of all strings and removal of all

unnecessary code. But first, the backdoor will acquire the operating system (OS) information and save

the result to a log file.

Figure 4. Code snippet of OS information collection

This file will be uploaded later to the command and control (C&C) server. Each victim machine will

generate a random GUID number, which will be used for machine identification. Later on, the malware

variant will start the endless loop, querying for the GUID-named file in a certain folder on the C&C server.

If the file is found, it will be downloaded and executed using the Powershell.exe process.

The threat actor group can then proceed to a second stage attack by sending commands to a specific

victim in an asynchronous way. In essence, they can download another backdoor payload from the C&C

server and install it on their targets' systems.

Figure 5. The code in POWERSTATS v3 that downloads the second attack stage

4

We were able to look into an instance where the group proceeded to launch a second stage attack. In this

scenario, another backdoor was downloaded. The backdoor supports the following commands:

 Take screenshots

 Command execution via the cmd.exe binary

 If there’s no keyword, the malware variant assumes that the input is PowerShell code and

executes it via the “Invoke-Expression” cmdlet

Figure 6. The code in POWERSTATS v3 (second stage) that handles the screenshot command

The C&C communication is done using PHP scripts with a hardcoded token and a set of backend

functions, e.g., sc (screenshot), res (result of executed command), reg (register new victim), and uDel

(self-delete after an error).

Figure 7. In an endless loop, the malware variant queries a given path on C&C server, trying to download a
GUID-named file with commands to execute.

5

Other MuddyWater campaigns that used different

payloads and tools
Since 2018, the threat actors behind MuddyWater have been actively targeting victims using a variety of

methods and techniques, and they seem to keep on adding more as they move forward with new

campaigns.

The abovementioned campaign that used POWERSTATS v3 is not the only one we found using new

tricks. We observed other campaigns with different delivery methods and dropped file types. Notably,

these campaigns have also changed payloads and publicly available post-exploitation tools.

Payload changes

Discovery date
Method for dropping

malicious code

Type of files
dropped

Final payload

2018-03 Macros SCT, INF, base52
encoded

POWERSTATS

2018-11 Macros VBS, JS, base52
encoded

POWERSTATS

2018-11 Macros DLL, REG CLOUDSTATS

2019-01 Macros EXE SHARPSTATS

2019-01 Macros INF, EXE DELPHSTATS

2019-03 Macros Base64 encoded,
BAT

POWERSTATS v2

2019-04 Template injection Document with
macros

POWERSTATS v1 or v2

2019-05 Macros VBE POWERSTATS v3

Table 1. The evolution of MuddyWater’s delivery methods and payloads since 2018

One of the said custom tools was POWERSTATS (Trojan.PS1.POWERSTATS.A), a PowerShell-based

backdoor that the group first used in 2017. Another one is CLOUDSTATS, a PowerShell-based backdoor

that uses a cloud file hosting provider for its command and control (C&C) communication. We discussed

the use of CLOUDSTATS in a previous report.

In January 2019, we discovered that the campaign started using SHARPSTATS

(Trojan.Win32.SHARPSTATS.A), a .NET-written backdoor that supports DOWNLOAD, UPLOAD, and RUN

functions. In the same month, DELPHSTATS (Trojan.Win32.DELPSTATS.A) emerged. This backdoor is

written in the Delphi programming language, and queries the C&C server for a .dat file before executing it

via the Powershell.exe process. Similar to the SHARPSTATS backdoor, DELPHSTATS employs custom

PowerShell script with code similarities to the one embedded into the SHARPSTATS backdoor. A

campaign that dropped this variant was thoroughly discussed in this report.

https://unit42.paloaltonetworks.com/unit42-muddying-the-water-targeted-attacks-in-the-middle-east/
https://blog.trendmicro.com/trendlabs-security-intelligence/new-powershell-based-backdoor-found-in-turkey-strikingly-similar-to-muddywater-tools/
https://research.checkpoint.com/the-muddy-waters-of-apt-attacks/

6

Figure 8. SHARPSTATS can be used to collect system information by dropping and executing a PowerShell
script.

Figure 9. The code in DELPHSTATS that queries a certain directory on the C&C server. It’s where operators
upload additional payload.

In mid-March 2019, we came across POWERSTATS v2 (Trojan.PS1.POWERSTATS.B), a heavily

obfuscated backdoor. An earlier version of this backdoor decodes the initial encoded/compressed blocks

of code. An improved version appeared later on, and we saw that it heavily uses format strings and

redundant backtick characters. In the earlier version, function names were still somehow readable, but

they were completely randomized in later versions.

7

Figure 10. Obfuscated POWERSTATS v2

After deobfuscation, the main backdoor loop queries different URLs for a “Hello server” message to

obtain command and upload the result of the run command to the C&C server.

Figure 11. Deobfuscated main loop of POWERSTATS v2

8

Use of different post-exploitation tools
Since the emergence of MuddyWater, we found that its operators used multiple open source post-

exploitation tools, which they deployed after successfully compromising a target.

Name of the post-exploitation tool Programming language/Interpreter

CrackMapExec Python, PyInstaller

ChromeCookiesView Executable file

chrome-passwords Executable file

EmpireProject PowerShell, Python

FruityC2 PowerShell

Koadic JavaScript

LaZagne Python, PyInstaller

Meterpreter Reflective loader, executable file

Mimikatz Executable file

MZCookiesView Executable file

PowerSploit PowerShell

Shootback Python, PyInstaller

Smbmap Python, PyInstaller

Table 2. Tools used by MuddyWater campaigns over the years

One of our notable observations involved the LaZagne credential dumper, which was patched to drop

and run POWERSTATS in the main function.

Figure 12. LaZagne has been patched to drop and run POWERSTATS in the main function. See added
intimoddumpers() function. Note the typo in the function name (using INTI, not INIT).

https://github.com/byt3bl33d3r/CrackMapExec
https://www.nirsoft.net/utils/chrome_cookies_view.html
https://github.com/adnan-alhomssi/chrome-passwords
https://github.com/EmpireProject
https://github.com/xtr4nge/FruityC2
https://github.com/zerosum0x0/koadic
https://github.com/AlessandroZ/LaZagne
https://www.offensive-security.com/metasploit-unleashed/about-meterpreter/
https://github.com/stephenfewer/ReflectiveDLLInjection
https://github.com/gentilkiwi/mimikatz
https://www.nirsoft.net/utils/mzcv.html
https://github.com/PowerShellMafia/PowerSploit
https://github.com/aploium/shootback
https://github.com/ShawnDEvans/smbmap

9

Connections to Android malware variants
In addition to uncovering new campaigns, we were also able to find connections between MuddyWater

and four Android malware variants that posed as legitimate applications. We were able to establish proof

of connection through their shared infrastructure, e.g., IP addresses and C&C servers, and the code

similarities between some of the malware families.

We first noticed the first Android malware variant (AndroidOS_Mudwater.HRX) when we discovered that

its IP address and C&C server, 78[.]129[.]139[.]131, was used as the final C&C server of a MuddyWater

campaign. In the said campaign, we saw victims receiving commands for downloading a second stage

payload from the abovementioned IP address.

Apart from custom stealing capabilities, AndroidOS_Mudwater.HRX has two other interesting features:

 Brute forces hardcoded IP addresses (with a list of usernames and passwords).

 Spreads malicious apps by sending all contacts an SMS (in Turkish) containing a link to the

malicious APK. The link points to an APK in the directory tree of a legitimate website belonging to

a non-profit research organization in Turkey. Most likely, the organization’s website was

compromised, which is not surprising as its website was hosted on WordPress, a platform

MuddyWater is fond of targeting.

Figure 13. List of commands supported by the newer version of the malicious app

We found a connection between AndroidOS_Mudwater.HRX and the second malware variant

(AndroidOS_HiddenApp.SAB) based on similarities in their code structure. The figure below shows these

similarities.

10

Figure 14. List of commands supported by the older version of the malicious app

The second malware variant is a custom stealer that implements features for stealing call logs, contacts,

SMS messages, phone information, and screenshots. It posts all stolen data to a Telegram channel. We

found hints in the file that shows that it might be a test version.

We then discovered shared signed certificates that connect AndroidOS_HiddenApp.SAB and the third

malware variant (AndroidOS_Androrat.AXM). Its C&C server is a local IP address, which led us to think

that our detected sample is also a test version.

Meanwhile, we saw the connection of Droidjack RAT — the fourth malware variant

(AndroidOS_Androrat.AXMA) — to MuddyWater in the domain name of the former’s C&C server

(googleads[.]hopto[.]org), which shares C&C servers with some DELPHSTATS samples that we

analyzed. A Droidjack RAT variant is a remote access trojan that allows attackers to take full control of

an Android device when installed.

Potential targets
While we can’t say for sure who or what entities the four Android malware variants were specifically

targeting, our analysis of the indicators of compromise (IoCs) provided us with clues on the targets'

locations.

It likely targets users in Turkey, because the campaign used a malicious app that was hosted in a

compromised Turkish website. The campaign also spread an SMS written in the Turkish language to lure

users into downloading a malicious app.

Pakistan could be another target location: Some target IP addresses that were hardcoded in the brute

force functions of some samples were traced back to Pakistan.

Afghanistan is another potential target location as the file name of one of the malicious applications we

analyzed was “AfghanistanElection.apk.”

https://blog.trendmicro.com/malware-gotta-catch-em-all/

11

Use of false flag techniques
Some of the tools used by MuddyWater campaigns contained false flags, which are messages that threat

actors add into their programs to misattribute the campaign to a specific country. This technique was

discussed recently by other researchers.

Here are some false flags we spotted:

Figure 15. Several older POWERSTATS backdoors contained simplified Chinese text like “无法连接到网址，请

等待龙,” which translates to “Unable to connect to the URL, please wait for the dragon.“

Figure 16. The dragon reference also manifested in this dragon variable.

Figure 17. Some POWERSTATS backdoors were compiled with the PS2EXE tool to .EXE files. These contained
false flags, which are famous quotes of well-known people in Israel.

The translation of the two sets of text above are as follows: ”$god = "If the Arabs put down their weapons

today, there will be no more violence ... If the Jews put down their arms today, there will be no more

Israel" and “$SKey = "he will raise the people and confirm that his word and law are standing". Note that

these variables were not used in the rest of the code.

https://securelist.com/muddywaters-arsenal/90659/

12

Figure 18. These false flags try to misattribute an attack to Russia or a country that uses the Cyrillic alphabet.
Russian texts appeared in the metadata of some delivery documents and in a debug path of one DLL library.

13

MuddyWater-related information leaked on Telegram

In April, details related to the alleged operations of the threat actor group behind MuddyWater were

leaked on Telegram. The leaks contained images of the group’s C&C backends, source code, and a list

of past hacked victims.

Our monitoring efforts uncovered evidence that communication transpired between some victims (that

were listed in the leak) and a C&C server known to be from MuddyWater.

Independently, we also spotted two versions of the server backend, which contains code similar to the

details leaked on Telegram.

The code is a simple script written in Python, and encapsulated with PyInstaller. It will read a

configuration file to find which IP address and port to listen to, and it will display some commands

available to the operator.

The script displays two different ASCII art for two versions.

Figure 19. ASCII art for version 1.0.0, compiled on July 31, 2017

Figure 20. ASCII art for version 1.0.1, compiled on September 4, 2018.

Based on these findings, we speculate that the leaks were based on real data.

https://medium.com/cyber-journal/iranian-cyber-espionage-operations-exposed-via-telegram-channels-and-dark-web-websites-d8d190ee5404

14

The leak also included information regarding a certain individual. While we cannot confirm its veracity, we

noticed that a document with MuddyWater code has been posted to VirusTotal prior to the leak, and its

filename is similar to the name of the individual mentioned in the leak.

15

Infrastructure and targets
For the most part, the threat actor group used direct IP addresses as C&C servers and a few domain

names (dynamic or not). In 2018, the group mostly used compromised WordPress websites as proxies to

send commands that were forwarded to the final C&C servers.

Figure 21. Communication flow between the operator and the victim

We noticed that the said C&C servers were usually set up to listen to an uncommon port, and were shut

down a few hours later. The next time the servers were up, they usually listened on a different port.

As mentioned in our previous research, most targets were located in Middle Eastern and Asian countries.

Recently, we saw the group aiming for new targets in Europe. The figure below shows the target

countries of MuddyWater campaigns. We included the United States, and some European countries,

based on verified information from the leaks.

Figure 22. Countries that MuddyWater has targeted

Most victims were government entities, with the majority in the finance, education, foreign affairs, interior,

defense, trade, and customs sectors. We also found many victims in the telecommunications industry

such as telcos and web hosting providers.

16

Figure 23. Industries that MuddyWater has targeted

17

Conclusion
Aside from the abovementioned findings, we also found Twitter and Github accounts that we believe are

linked to MuddyWater. Researchers have made similar findings in the past. This discovery, as well as the

exposure of their operations to the public due to the leak, shows that the threat actor group has poor

operational security and lack diligence in covering their tracks.

However, the group also appears to be agile. One week after we published our November 2018 report on

their use of base52 encoding, we found out that they modified the alphabet from 52 characters to 40, 45,

and 48. In our opinion, this action is a result of our disclosure of their activities.

While MuddyWater appears to have no access to zero-days and advanced malware variants, it still

managed to be successful in compromising its targets over the last two years. This can be attributed to

the continuous evolution of their schemes.

Notably, the group’s use of email as an infection vector seems to have worked for their campaigns. In this

regard, apart from using smart email security solutions, organizations should inform their employees of

ways to stay protected from email threats to remove any security holes that they can exploit.

https://www.symantec.com/blogs/threat-intelligence/seedworm-espionage-group
https://www.trendmicro.com/vinfo/us/security/news/cybercrime-and-digital-threats/infosec-guide-email-threats

18

Indicators of Compromise (IoCs)

SHA-256s of malicious Word documents Detection names

4d72dcd33379fe7a34f9618e692f659fa9d318ab6231
68cd351c18ca3a805af1 Trojan.W97M.SLOAD.RTFPOL

7e7b6923f3e2ee919d1ea1c8f8d9a915c52392bd6f9a
b515e4eb95fa42355991 Trojan.W97M.POWLOAD.TIHAOHEC

1dae45ea1f644c0a8e10c962d75fca1cedcfd39a88ac
ef63869b7a5990c1c60b Trojan.W97M.RELSLOADR.AJ

3deaa4072da43185d4213a38403383b7cefe92524b6
9ce4e7884a3ddc0903f6b Trojan.W97M.POWLOAD.TIHAOHEC

36ccae4dffc70249c79cd3156de1cd238af8f7a3e47dc
90a1c33476cf97a77b0 Trojan.W97M.POWLOAD.TIHAOHEC

9389cf41e89a51860f918f29b55e34b5643264c990fe
54273ffbbf5336a35a45 Trojan.W97M.POWLOAD.TIHAOHEC

dab2cd3ddfe29a89b3d80830c6a4950952a44b6c97a
664f1e9c182318ae5f4da Trojan.W97M.RELSLOADR.AJ

200c3d027b2d348b0633f8debbbab9f3efc465617727
df9e3fdfa6ceac7d191b Trojan.W97M.SLOAD.RTFPOL

98f0f2c42f703bfbb96de87367866c3cced76d5a8812c
4cbc18a2be3da382c95 Trojan.W97M.CVE20170199.CI

20bf83bf516b12d991d38fdc014add8ad5db03907a55
303f02d913db261393a9 Trojan.W97M.CVE20170199.CI

f5ef4a45e19da1b94c684a6c6d51b86aec622562c45d
67cb5aab554f21eb9061 Trojan.W97M.CVE20170199.CI

ff349c8bf770ba09d3f9830e22ab6306c022f4bc1beb1
93b3b2cfe044f9d617b Trojan.W97M.CVE20170199.CI

95c650a540ed5385bd1caff45ba06ff90dc0773d744ef
c4c2e4b29dda102fcce Trojan.W97M.POWLOAD.THEADAI

3c0c58d4b9eefea56e2f7be3f07cdb73e659b4db688b
fbf9eacd96ba5ab2dfe5 Trojan.W97M.CVE20170199.CI

745b0e0793fc507d9e1ad7155beb7ac48f8a556e6ef0
6e43888cbefec3083f2f Trojan.W97M.CVE20170199.CI

9580aaca2e0cd607eaf54c3eb933e41538dc10cd341
d41e3daa9185b2a6341c4 Trojan.W97M.POWLOAD.THDEAI

0ae4ce8c511a22da99c6edc4be86af1c5d3a7d2baf1e
862925a503d8baae9fd7 Trojan.W97M.POWLOAD.THDIAI

c19095433ac4884d3205a59e61c90752ecb4e4fa6a8
4e21f49ed82d9ec48aa3c Trojan.W97M.DONOFF.MF

264f2ea4a8fad97e66d5ad41a57517b4645fe4c4959d
55370919379b844b0750 Trojan.W97M.DONOFF.MF

19

36be54812428b4967c3d25aafdc703567b42ad4536c
089aefaef673ce36a958f Trojan.W97M.DONOFF.MF

9112505ff574b43dd27efc8afcf029841e1ea5193db90
424b8b8b6b0e53c3437 Trojan.W97M.POWLOAD.THDDAI

d77d16c310cce09b872c91ca223b106f4b56572242ff
5c4e756572070fac210f Trojan.W97M.RELSLODR.AVX

d5b7a5ae4156676b37543a3183df497367429ae2d01
ef33ebc357c4bdd9864c3 Trojan.W97M.DONOFF.MF

c63f1d364b9fa2c1023ce5a1b5fed12e1eba780c6427
6811c4b47743dfcbadbd Trojan.W97M.RELSLODR.AVX

0e7e3c2c7fe34afc02c6e672ae00bc4e432b300ec184
dec08440fba91b664999 Trojan.W97M.RELSLODR.AVX

88e02850c575504bb4476f0d519cec8e6a562b72d17
ed50b9d465d8e0de50093 Trojan.W97M.POWLOAD.TIHAOHEC

67c3c5af27d19f25bc55c8e36ef19b57c03b211ce063
7055721ae4b0e57011a7 Trojan.W97M.VALYRIA.AAE

5194f84cc52093bb4978167a9f2d5c0903e9de0b81ca
20f492e4fc78b6a77655 Trojan.W97M.VALYRIA.AAE

3e6d39886d76ab3c08b26feae075e01e9fb3c90795fa
52dd6c74e4ef8b590fe8 Trojan.W97M.VALYRIA.AAE

525ba2c8d35f6972ac8fcec8081ae35f6fe8119500be2
0a4113900fe57d6a0de Trojan.W97M.VALYRIA.AAE

5d3d5fa9c6ffa64b2af0c5ce357cb6a16085280d32eb3
21d679b57472ffb1019 Trojan.W97M.VALYRIA.AAE

6ccb3882c516fafc54444e09f5c60738831292be0231
939bec9168a0203e01bb Trojan.W97M.DLOADR.TIOIBEDZ

c175b2e9f0d73db293ca061ce95cdd92a423348aa16
2b14c158d97e9e7c3ff10 Trojan.W97M.DLOADR.TIOIBEDZ

66733fe27591347f6b28bc7750ba1b47b2853f711adc
db1270951c6b92e795d6 Trojan.W97M.DLOADR.TIOIBEDZ

fbd63941a25253f5bafe69c9cc86c7effc6ff14b9adddd
6f69e2f26ed39a77a4 Trojan.W97M.DLOADER.THOABHAI

SHA-256s of compressed weaponized documents Detection names

2ba871586176522fe75333e834c16025b01e177
1e4c07bc13995adbfa77c45f5 Trojan.W97M.RELSLODR.AVX

6a441b2303aeb38309bf2cb70f1c97213b0fa2cf7
a0f0f8251fe6dc9965ada3b Trojan.W97M.RELSLODR.AVX

d698c1d492332f312487e027d0665970b0462ace
eeba3c91e762cff8579e7f72 Trojan.W97M.VALYRIA.AAE

99e9a816e6b3fe7868b9c535ed13028f41089e027 Trojan.W97M.VALYRIA.AAE

20

SHA-256s of executable files Detection names

c2c2adecff2e517395571f4f9bee
3b8cffed4521a8e1a3e3b363fd5e635f2eee

Backdoor.Win32.POWEMUDDY.B

b2242bc51ebe2c3abc5a8691
546827070540db43843b8328bdb81f450cd1254b

Backdoor.Win32.POWEMUDDY.B

SHA-256s of the Android malware variants Detection names

6b4d271a48d118843aee3dee4481fa2930
732ed7075db3241a8991418f00d92b

AndroidOS_Mudwater.HRX

02f54da6c6f2f87ff7b713d46e058ded

ac1cedabd693643bb7f6dfe994b2105d

AndroidOS_Mudwater.HRX

9af8a93519d22ed04ffb9ccf6861c9df1b77

dc5d22e0aeaff4a582dbf8660ba6

AndroidOS_Mudwater.HRX

dff2e39b2e008ea89a3d6b36dcd9b8c927fb

501d60c1ad5a52ed1ffe225da2e2

AndroidOS_Mudwater.HRX

26de4265303491bed1424d85b263481
ac153c2b3513f9ee48ffb42c12312ac43

AndroidOS_Mudwater.HRX

3bfec096c4837d1e6485fe0ae0ea6f1c0
b44edc611d4f2204cc9cf73c985cbc2

AndroidOS_Mudwater.HRX

5dbf6e347164d580665208b2bc0475685
7529121fd1c7861e84f18e8a6027924

AndroidOS_Androrat.AXM

e9617764411603ddd4e7f39603a4bdaf60

2e20126608b3717b1f6fcae60981f2

AndroidOS_HiddenApp.SAB

be9fb556a3c7aef0329e768d7f903e7dd
42a821abc663e11fb637ce33b007087

AndroidOS_GenMLX.DML

de4a1622b498c1cc989be1a1480a23f4
c4e9cd25e729a329cfadb7594c714358

AndroidOS_Androrat.AXMA

5eba1ba46ae7a62a7e47668

SHA-256s of POWERSTATS encoded with PS2EXE
tool

Detection names

df1bd693c11893c5259c591dceef707aa0480ef
5626529f8a5b0ef826e5c0dec

Backdoor.Win32.POWEMUDDY.B

4ba618c04cbdc47de2ab5f2c91f466bc42163fd54
1de80ab8b5e50f687bbb91c

Backdoor.Win32.POWEMUDDY.B

e241b152e3f672434636c527ae0ebbd08c777f488
020c98efce8b324486335c5

Backdoor.Win32.POWEMUDDY.B

21

a4f9509e865d0a387cb8f0367e3
5ffd259b193f5270aacb67cb99942071c60cc

Backdoor.Win32.POWEMUDDY.B

SHA-256s of the patched Lazagne Detection names

484f78eb4a3bb69d62491fdb84f2c81b7ae1
31ec8452a04d6018a634e961cd6a

HackTool.Win64.LAZAGNE.AB

a35406d9ef82a68fbabb3c1e19911c9ed4
1bed335ef44a15037d1580c2b9dd12

HackTool.Win64.LAZAGNE.AB

efdec1ad0830359632141186917fd3280
9360894e8c0a28c28d3d0a71f48ec2f

HackTool.Win64.LAZAGNE.AC

f1a69e2041ab8ab190d029d0e061f107ef12
23b553e97c302e973a3b3c80f83e

HackTool.Win64.LAZAGNE.AC

31cf13e8579f0589424631c6be659480f9a20
4a50a54073e7d7fe6c9c81fa0db

HackTool.Win64.LAZAGNE.AC

SHA-256s of POWERSTATS Detection names

8674058edfbe636e550109fabb6403827c1bba4

ab08833e9692099c96a43497a

Trojan.PS1.POWERSTATS.A

b134bde3d8d141b9b4e824adaac87fc3eb40d3ab

64682a73b2eb1743d7e3ceb0

Trojan.PS1.POWERSTATS.A

19e69e5925b9fac1a104fc37b06de42043276c17
dac88be2f1d1815f7b56b3f6

Trojan.PS1.POWERSTATS.B

46f6eaa082f3def929dfabf2b7ce62abc47496f85

43de932386bca6364023bad

Trojan.PS1.POWERSTATS.B

666625c87a29745b54710682823e3432fd7a54d27

88cbcba2243406bc1b48ab3

Trojan.PS1.POWERSTATS.B

ae7350a2713d9a7f788c2c670fda44046183dfe64
6d9837ceaa0b6bad1d45a6e

Trojan.PS1.POWERSTATS.C

ff9ef26fa3b0b76658a8c6696bf2f9d23f132d1d4220

50802749134c446f757e

Trojan.PS1.POWERSTATS.C

a55aedff23bcdc83748d4e87ab992c0fb674a0af6

b90687b2a2fc7cab52676a9

Trojan.PS1.POWERSTATS.C

17405e9f8f889925521912aea72467330f3dffeaf8
ec8678ef6f412204262896

Trojan.PS1.POWERSTATS.C

22

SHA-256s of SHARPSTATS Detection names

6ee79815f71e2eb4094455993472c
7fb185cde484c8b5326e4754adcb1faf78e

Backdoor.Win32.POWEMUDDY.C

81c7787040ed5ecf21b6f80dc84bc
147cec518986bf25aa933dd44c414b5f498

Trojan.Win32.SHARPSTATS.A

999e4753749228a60d4d20cc5c5e2
7ca4275fe63e6083053a5b01b5225c8d53a

Trojan.Win32.SHARPSTATS.A

8501c4df5995fd283e733ab00492f3
5aecb6ea2315b44e85abb90b3f067ccb64

Backdoor.Win32.POWEMUDDY.C

4bd93e4a9826a65ade60117f6136c
b4ed0e17beae8668a7c7981d15c0bed705a

Trojan.PS1.MUDDYPRETER.AA

3f06d2d2e1641952f44a2de4db037d3272cf
a621fb9388cdb1074643f50c0705

Trojan.Win32.SHARPSTATS.A

2967f1acceaa7d121f8f2c46bc04a3c146c
472997d43f11f98d967a88be6c095

Trojan.Win32.SHARPSTATS.A

SHA-256s of DELPHSTATS Detection names

503b2b01bb58fc433774e41a539ae9b06004c7557
ac60e7d8a6823f5da428eb8

Trojan.Win32.DELPSTATS.A

04acd5721ad37ac5aa84e7f7e20986de0a532fb625
a8bc75302a0f38c171cee3

Trojan.Win32.MUDDYPRETER.A

8ea17ed2cb662118937ed6fe189582cc11b2b73bb
27a223d0468881ac5fcc08e

Trojan.Win32.MUDDYPRETER.A

e2f82b074074955eeca3b0dd7b2831192bee49de3
29d5d4b36742c9721c8ad94

Trojan.Win32.DELPSTATS.A

SHA-256s of post-exploitation malware Detection names

e60c802b692a503f4f91e8809bb961b5423c602f6fb
374de1af4d983415de3f1

HackTool.Win64.CredStealer.A

c84a61ba8c84ca1e879c4d8ac802ec260a8c426d8
9a09d8627a8c08ff6d88faf

Trojan.PS1.MUDDYPRETER.AA

SHA-256s of the backend server Detection names

121adcf3a52cafd0204ca4d4a42a9a09d6c9f559bc
b997e51dba79c6a5a04efd

Backdoor.Win64.PYMUDDY.A

edde2eb39ed2f145c41e53e87d43add8de336d3e4
d5c8d261f471d35edf3ed47

Backdoor.Win32.PYMUDDY.A

23

78da47f5a341909d1e6f50f8d39fdde8129ede86f04
f3e88b2278e16c72e2461

HackTool.Win64.MuddyPreter.A.component

4e2cdfed691d6debab01c1733135b146817c94024
177f9ef4b22726fac84322f

Backdoor.Win64.MUDDYPRETER.A

3fee29fefe4aa9386a11a7a615dd052ff89e21d87ee
e0fff5d6f933d9384ede2

HackTool.Win32.Shootback.AA

3c75c2f7b299d9cc03a7ff91c568defaa39b4be02d5
8a75a85930ab23d2a2cff

Backdoor.Win64.MUDDYPRETER.A

276a765a10f98cda1a38d3a31e7483585ca3722ec
ad19d784441293acf1b7beb

HackTool.Win64.MuddyLazagne.A

818253f297fea7d8a2324ee1a233aabbaf3b0b4b9c
daa1ebd676fe00f2247388

HKTL_Shootback

f6707b5f41192353be3311fc7f48ee304650383663
86b909e6cefaade70c91bc

HackTool.Win64.CrackMapExec.A

de7b77f9c456d26e369263b6e1d001279b69e687b
2d3029803ede21417d4f5fa

HackTool.Win64.MuddyPreter.A.component

cc685f30e2f6039d12b4cbc92e38f1d64ba75ac12c
b86afce5261a11cf4931de

Trojan.PS1.MUDDYPRETER.AA

0faa2bb90de44ef87c7ee11165f7c702211dd603bd
aea94af09cfecc3f525138

TROJ_DROPPR.CNMOD

e6812fa0e12cc1913bfc7eb6dceb638429048e3cc5
9ce576c012a1d27fa20959

HackTool.Win64.Meterpreter.AA

fb773f7324fdca584fff7da490820c7243a10555c8ff7
17d21c039a5ba337a43

Trojan.PS1.MUDDYPRETER.AB

11761d6cf365932540ccb95b6f20aa45379736cfde
33742a004fc8ceccad7daf

HackTool.Win64.Meterpreter.AA

b9d4752b892759bb0cb166ab565f050f4b6385dd6
7f4288ff2231c69ab984a26

Trojan.JS.BYPASSUAC.AA

604e09e01e2bfbc8f3680abd8005906e3fbcd2f4eda
f24d80cd7105ec6f991b1

HackTool.Win32.Mpacket.SM

f2b8d7ce968ed8d6c33116bcfb8aeed97d89ec1ebf
4f505c891020dc79d0ddd3

Trojan.PS1.MUDDYPRETER.AA

336237b1ed2c99c0fef4c954490bd8282d6e46941d
2ac2b6c9294a1aa9a254ed

Trojan.Win64.MUDDYROPE.A

28a0131a9fda9fe2f2272c5091c77dc750da93d4a0
70dbd817af38723ea18f02

HackTool.Win32.Shootback.AB

d320286e80d5785bbd14b10c00f5c9d38d9a78107
5d7d6ed4eb27c07d4788dbf

HackTool.Win32.MIMIKATZ.SMGD

24878dbde796c471a9d028f65421017afc087c958f
b54c4b6c3cc7aeabbc1119

BKDR_PSMUD.A

57a9e2e6e715455827faefa982b4312b203189950f
e285f1413174f5e812e408

HackTool.Win64.Shootback.AA

24

92bb4432cc9d2988ee4043e420a4df9c8caec4cd9
3ab258e07546781daa37086

Backdoor.Win64.MUDDYPRETER.B

C&C Servers

103[.]13[.]67[.]4

80[.]80[.]163[.]182

80[.]90[.]87[.]201

91[.]187[.]114[.]210

78[.]129[.]139[.]131

103[.]13[.]67[.]4

80[.]80[.]163[.]182

80[.]90[.]87[.]201

91[.]187[.]114[.]210

78[.]129[.]139[.]131

192[.]168[.]1[.]104:54863

163[.]172[.]147[.]222:4555

hxxp://78[.]129[.]139[.]148

hxxp://31[.]171[.]154[.]67

hxxp://79[.]106[.]224[.]203

hxxp://185[.]34[.]16[.]82

hxxp://104[.]237[.]233[.]17

hxxp://46[.]99[.]148[.]96

hxxp://134[.]19[.]215[.]3:443

hxxp://gladiyator[.]tk

hxxp://51[.]77[.]97[.]65

hxxp://31[.]171[.]154[.]67

hxxp://79[.]106[.]224[.]203

hxxp://185[.]14[.]248[.]26

hxxp://185[.]162[.]235[.]182

hxxp://185[.]117[.]75[.]116/tmp[.]php

hxxp://38[.]132[.]99[.]167/crf[.]txt

hxxp://185[.]244[.]149[.]218/JpeGDownload/*[.]jpeg

hxxp://185[.]185[.]25[.]175/ref45[.]php

25

hxxp://185[.]185[.]25[.]175/sDownloads/*[.]jpeg

hxxp://82[.]102[.]8[.]101/bcerrxy[.]php

amazo0n[.]serveftp[.]com/Data

zstoreshoping[.]ddns[.]net/Data/

hxxp://zstoreshoping[.]ddns[.]net/users[.]php?tname=

shopcloths[.]ddns[.]net

getgooogle[.]hopto[.]org

hxxp://gladiyator[.]tk

googleads[.]hopto[.]org

hxxp://www[.]shareliverpoolfc[.]co[.]uk/js/main.php

hxxp://valis-ti[.]cl/assets/main[.]php

hxxp://www[.]latvia-usa[.]org/wp-includes/customize/main.php

hxxp://www[.]shareliverpoolfc[.]co[.]uk/js/main[.]php

hxxp://valis-ti[.]cl/assets/main[.]php

hxxp://www[.]latvia-usa[.]org/wp-includes/customize/main[.]php

hxxp://googleads[.]hopto[.]org/data/ce28e899a8d3d00a.]dat

hxxp://ciscoupdate2019[.]gotdns[.]ch/users[.]php?

hxxps://www[.]jsonstore[.]io/4de4d6d84d17638b3cd0eaf18857
784aff27501be7d3dd89fad2b7ac2134f52e (abused)

hxxps://www[.]jsonstore[.]io/ddf35a64bd5ad54f9de868a84cdb2
1299a33d126e307ec3a868f65372402816a

(abused)

hxxps://104[.]237[.]233[.]38:8080/YIZDGrM_4mRn_mb8PdhL_
QfL2h49-aAO0w-

faxRxJAdq9pH2JeliMez10IwMk6PCnluziydTlV-/

hxxps://104[.]237[.]255[.]212:443/GfaBcrPI14rArcGvm-
QT2g3sW3ZtmqL6IU0Vg5oy21aOK4gvmvYx_TCP_whhSnyQ

H7/

hxxps://104[.]237[.]233[.]38:1022/aeacrE65xE9SdVN3CJwS9g
btNM84GL_ajl_AD2EoEOHrmbpQ5qC9J7GcSSZQ0JNBDnOul

nMWgNy3FV2kcHRuM0u5NMo5Jv9Ks4zS5-pLkiYs4me/

hxxps://104[.]237[.]233[.]38:8080/nud2WCL9WzTiAOMCuFMb
oA18GWsmrc8k6VqGrXXfqVghYktellhTS7_tg-D64spqdv4sOJ/

hxxps://88[.]99[.]17[.]148:443/3g-
g7DuFHLwC8gPwW3z9rgnS1Is8F83B-95PHYnVp-

k9219KbHn-IChwxSFR35a117i2Jz_OX9mUPAYRJw-
3NhMBxUVDp4iMOkzt/

26

hxxps://104[.]237[.]233[.]40:8443/zi5w0iDM6aLEgcWDnumYyw
aHa33BIPzaylNUPU-

ECcNCmfNNcxzv05flJoB3wvWqH6Uf01vI-1yKF96/

hxxps://78[.]129[.]139[.]134:8864/lZkP68TtH_BpZGhmMwxNP
wy0vjimgwDRfk01pV2Xu2FztbaevB-

6RzBUPRietWtBcuxru7tTsF3rZGFPbepd294BP2MGd/

27

TREND MICROTM RESEARCH

Trend Micro, a global leader in cybersecurity, helps to make the world safe for exchanging digital information.

Trend Micro Research is powered by experts who are passionate about discovering new threats, sharing key insights, and

supporting efforts to stop cybercriminals. Our global team helps identify millions of threats daily, leads the industry in

vulnerability disclosures, and publishes innovative research on new threats techniques. We continually work to anticipate new

threats and deliver thought-provoking research.

www.trendmicro.com

http://www.trendmicro.com/

