
1/13

Analyzing Ursnif’s Behavior Using a Malware Sandbox
vmray.com/cyber-security-blog/analyzing-ursnif-behavior-malware-sandbox/

Ursnif is a group of malware families based on the same leaked source code. When fully
executed Urnsif has the capability to steal banking and online account credentials. In this
blog post, we will analyze the payload of a Ursnif sample and demonstrate how a malware
sandbox can expedite the investigation process.

Access the VMRay Analyzer Report for Ursnif

This blog post will cover a behavioral analysis of a single Ursnif variant. It does not provide
comprehensive insights into web injects, infrastructure or attribution. For additional Ursnif
analysis see Appendix D.

Contents

Ursnif Sample Overview

When Ursnif is downloaded and run (say via a malicious attachment in an email), it first
spawns its own explorer.exe process and injects itself into the rogue process. As few
legitimate applications ever start their own explorer.exe processes, and we cannot think of a
valid reason that the application should inject itself into the process, this technique surfaces
as a good indicator for detection. The newly created explorer.exe then injects into the
legitimate explorer.exe process, as shown below:

https://www.vmray.com/cyber-security-blog/analyzing-ursnif-behavior-malware-sandbox/
https://www.vmray.com/analyses/53f7d917ad9e/report/overview.html

2/13

Figure 1: VMRay process graph showing injections
 The initial explorer.exe process installs its configuration under the registry key

HKCU\Software\AppDataLow\Software\Microsoft\{Machine-specific ID} , as shown
below:

Figure 2 – Configuration being written into registry
The malicious behavior happens inside the injected, and legitimate, explorer.exe process
based on what was written to the config. Examples include various types of credential
stealing, browser injection, and system information collection functions.

C2 Check-Ins

Ursnif communicates over standard HTTP using encrypted HTTP request parameters.
During the execution it performs a number of C2 check-ins, as shown below:

Figure 3: Urnsif’s Network Activity
In the function log we can see the request as cleartext before it is encrypted:

https://www.vmray.com/wp-content/uploads/2021/05/Process-Graph-Injections-Ursnif-Analysis-min.png
https://www.vmray.com/wp-content/uploads/2021/05/Configuration-Written-into-Registry-Ursnif-Analysis-min.png
https://www.vmray.com/analyses/53f7d917ad9e/report/network.html
https://www.vmray.com/wp-content/uploads/2021/05/Network-Activity-Ursnif-Analysis-min.png

3/13

Figure 4: Function log showing the unencrypted HTTP request
Ursnif then prepends a runtime-generated junk parameter to this request, also visible in the
function log:

 Figure 5: Ursnif adding a junk parameter to the HTTP request
After this function completes, the parameters are encrypted and sent over HTTP to one of
the C2 servers.

The request contains various identifiers:

Soft
Version
User
Server
ID
CRC
GUID

During our sandbox execution, the parameters, with the exception of the CRC, remained
constant. The CRC parameters for this sample include:

114f9e9
114f95d
1198d90
11e2176

This sample leveraged POST requests to upload files for data exfiltration, and added an
additional name=X parameter used to indicate the filename.

Stealing Functionality

Besides the Man-in-the-Browser (MitB) attack, various stealer modules were also found to be
active.

Cryptocurrency + Disk Encryption

In each injected process, the stealer checks if the process name belongs to a supported
cryptocurrency wallet, VeraCrypt, or TrueCrypt. The stealer also looks for a process
containing the string “JEdudus.”, which we couldn’t match to a real application but it is
among the cryptocurrency wallet names.

https://www.vmray.com/wp-content/uploads/2021/05/Unencrypted-HTTP-Request-Ursnif-Analysis-min.png
https://www.vmray.com/wp-content/uploads/2021/05/Junk-Parameter-Ursnif-Analysis-min.png

4/13

Figure 6: Checking if the current process name contains one of the strings known by the
module
The stealer module looks for cryptocurrency wallets that contain the following strings:

electrum-
bitcoin
multibit-hd
bither
msigna
Jaxx
armory-

OLSTEALER & IESTEALER

Besides cryptocurrency stealing, the modules named OLSTEALER and IESTEALER were
also visible.

Figure 7: VMRay Threat Identifier (VTI) match for Ursnif’s data stealing
OLSTEALER steals data from Outlook, including login information, and stores it in a local
file. The internal name of the module is visible in Function log:

 Figure 8: OLSTEALER module name visible in the function log
The contents of the created file appear as follows:

Figure 9: File created by the OLSTEALER module to store data

https://www.vmray.com/wp-content/uploads/2021/05/Strings-Known-by-Module-Ursnif-Analysis-min.png
https://www.vmray.com/wp-content/uploads/2021/05/OLSTEALER-Ursnif-Analysis-min.png
https://www.vmray.com/wp-content/uploads/2021/05/File-Created-OLSTEALER-Ursnif-Analysis-min.png

5/13

The IESTEALER module reads Internet Explorer history and passwords.

Figure 10 – IESTEALER module name visible in the function log

Figure 11 – Detection and details for the different password stealing attempts
After stealing from Internet Explorer, the malware also looks for Thunderbird, though the
name of the Thunderbird stealer module (TBSTEALER) did not explicitly appear.

Figure 12: Ursnif looking for Thunderbird data

System Info Gathering

Using built-in Windows system tools Ursnif gathers information about the system. The tools
used are:

systeminfo.exe – various info about the system including OS version, installed
patches, domain, and basic hardware information
net view – show network shares
nslookup 127.0.0.1 – local IP
tasklist.exe /SVC – Services
driverquery.exe – Installed drivers

(Installed software) reg.exe query
"HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Uninstall

 reg.exe query

"HKLM\SOFTWARE\Wow6432Node\Microsoft\Windows\CurrentVersion\Uninstall

Data Exfiltration

Ursnif caches stolen data to the hard drive into temp files, compresses them into CAB files,
and uploads them.

Steps followed to create the CAB:

1. The various stealer modules create files on the hard drive. Some use the %TEMP%
directory, others use the random directory created earlier.

https://www.vmray.com/wp-content/uploads/2021/05/IESTEALER-Function-Log-Ursnif-Analysis-min.png
https://www.vmray.com/wp-content/uploads/2021/05/Password-Stealing-Ursnif-Analysis-min.png
https://www.vmray.com/wp-content/uploads/2021/05/Looking-for-Thunderbird-Data-Ursnif-Analysis-min.png
https://www.vmray.com/analyses/53f7d917ad9e/report/files.html

6/13

Figure 13: VMRay’s Behavior Tab showing temporary file creation

Figure 14: Ursnif module creating file in it own randomly named folder
2. Before sending home the data, Ursnif uses the makecab tool to compress it. Makecab is
able to accept a directive file when being called with the /F parameter, which defines the
source and target. For each CAB file it needs to create, Ursnif drops a directive file.

01D51ED4E3ECF92009 is the output of the OLSTEALER module.

Figure 15: File containing output of the OLSTEALER module
1FB1.bin contains the directives to compress 01D51ED4E3ECF92009 to 2855.bin

Figure 16: File containing directives for makecab
2855.bin is the CAB file created by makecab by calling it with the directive file

Figure 17: VMRay’s Behavior tab showing the command line for calling makecab
3. To send the data home, Ursnif uses the same C2 channel with the same encryption, but
our analyzed variant also adds an additional “ name ” parameter to indicate the filename.

https://www.vmray.com/wp-content/uploads/2021/05/Temporary-File-Creation-Ursnif-Analysis-min.png
https://www.vmray.com/wp-content/uploads/2021/05/Ursnif-Module-Creating-File-Ursnif-Analysis-min.png
https://www.vmray.com/wp-content/uploads/2021/05/File-Containing-Output-OLSTEALER-Ursnif-Analysis-min.png
https://www.vmray.com/wp-content/uploads/2021/05/makecab-Ursnif-Analysis-min.png
https://www.vmray.com/wp-content/uploads/2021/05/makecab-Behavior-Tab-Ursnif-Analysis-min.png

7/13

Figure 18: Function log showing Ursnif adding an additional “name” parameter
4. Just like with normal check-ins, Ursnif adds a junk parameter (e.g. uhrg=gbeicj&), then
encrypts the parameters.

5. Then it includes the uploaded file in the POST contents to send the file.

Man-in-the-Browser

Overview of Man-in-the-Browser Attacks

A lot of valuable user data (banking, shopping, etc.) is not stored on the hard drive or
registry, but accessed through web applications.
HTTPS is now the norm. User data is transmitted over a secure connection so Man-in-
the-Middle (MitM) from outside the browser is more difficult.
To get access to this valuable data, malware goes inside the browser.
On Windows, browsers are not well-protected from applications that are already
running on the same host – for a website it is very challenging to exploit a modern web
browser and escape the browser sandbox. That being said, it’s not difficult to get in
when the attacker already has code execution on the system.
The usual goal is a web inject:

1. A trojan is running on the same host as the browser,
2. Inject into the browser,
3. Install API hooks, and then
4. Modify API calls to include the attacker’s JavaScript, which is specific per

website.

Figure 19: VMRay process graph showing Ursnif injecting code into Internet Explorer, Firefox

https://www.vmray.com/wp-content/uploads/2021/05/C2-Channel-Ursnif-Analysis-min.png
https://www.vmray.com/wp-content/uploads/2021/05/Ursnif-Injecting-Code-Ursnif-Analysis-min.png

8/13

and Chrome

SPDY & HTTP/2

SPDY (pronounced “speedy”) is a network protocol that enables compression of HTTP-
transmitted data, and HTTP/2 is a version of HTTP derived from SPDY with the same goal.
Though neither are security features, they just implement compression, they still cause a bit
of extra work for attackers looking to implement MitB attacks. Attackers must decompress
the HTTP traffic, or they can just turn off SPDY and HTTP/2 altogether – most attackers
prefer to turn them off instead of implementing an extra feature. The fact that a process turns
this feature off is a good indicator for a defender – legitimate processes have no reason to
turn off compression but browser injectors often do it.

Ursnif:

For Internet Explorer: Sets the EnableSPDY3_0 value in the HKCU\
\SOFTWARE\Microsoft\Windows\CurrentVersion\Internet Settings to 0.
For Chrome: Starts a chrome process with the --use-spdy=off command line
argument.
For Firefox: this sample didn’t turn off SPDY for Firefox, though we have observed
other variants edit the prefs.js file in the Firefox Profile folder, adding the following
line:
user_pref("network.http.spdy.enabled", false) ;

A similar approach is possible for HTTP/2. The attacker can edit the registry to disable in
Internet Explorer, use a command line parameter for Chrome, and edit the prefs.js file for
Firefox.

Different Browsers, Different Hooks

The sandbox can report on installed hooks in the “Hook Information” section of each
process. For each installed hook it shows the original API, and the (already overwritten)
address it points to now. The overwritten address is shown as [closest symbol + offset] to
make matching to the overwritten code easier.

Internet Explorer

The observed hooks added to some exported functions of wininet.dll were:

InternetReadFile

InternetWriteFile

InternetReadFileExW

HttpSendRequestW

InternetQueryDataAvailable

HttpOpenRequestW

9/13

InternetCloseHandle

Figure 20: VMRay Analyzer showing information about the hooks added to Internet Explorer

Firefox

This specific sample was not interested in attacking Firefox with web injects. Some other
Ursnif variants add hooks to the nss3.dll loaded by Firefox:

PR_Read

PR_Write

PR_Close

Figure 21: VMRay Analyzer showing the hooks added to Firefox
The hooked functions are exports of nss3.dll

Chrome

Adding hooks is easy with Internet Explorer and Firefox. Since Chrome’s DLL doesn’t export
the necessary functions, however, the attacker needs to manually find them in the binary and
add the changes.

https://www.vmray.com/wp-content/uploads/2021/05/Hooks-Added-IE-Ursnif-Analysis.png
https://www.vmray.com/analyses/1edf07bbaef7/report/overview.htm
https://www.vmray.com/wp-content/uploads/2021/05/Hooks-Added-to-Firefox-Ursnif-Analysis-min.png

10/13

Figure 22: Ursnif’s hooking of Chrome as visible on the sandbox level

Extracting the Modules for Static Analysis

It is common for Ursnif samples to implement the malware functionality in a DLL, compress
the DLL, attach it to the loader, and pack the whole binary together (loader+DLL). To extract
the uncompressed binary, we need to:

1. Unpack the sample: To achieve this, we execute the packed sample in VMRay Analyzer.
The sandbox dumps the memory of the unpacked sample, which contains the compressed
module.

Figure 23: Memory dump of the original executable with a tick in the YARA column indicating
a match
2. Extract the compressed module: We need 2 elements: the memory dump itself which
contains the compressed module and the offset where the module begins. We get this info
with the help of a built-in YARA rule that matches on the memory dump which contains the
apLib -compressed PE header. The analysis archive contains the memory dump and the

offset of the match, we do the extraction based on this.

https://www.vmray.com/wp-content/uploads/2021/05/Ursnifs-Hooking-Chrome-Ursnif-Analysis-min.png
https://www.vmray.com/wp-content/uploads/2021/05/Memory-Dump-Ursnif-Analysis-min.png

11/13

Figure 24: Detection showing that VMRay’s built-in YARA for APLib-compressed PE files has
matched
3. Decompress the module: For this we use an open-source apLib decompressor by
@sandornemes.

The result is the decompressed DLL. According to the headers, the module was compiled on
May 26, 2019, and as usual for Ursnif, it is referred to as client.dll .

Figure 25: PEBear showing information about the decompressed DLL
The DLL doesn’t have any exported functions, everything is only reachable from DLLMain ,
the flow of execution depends on the installed registry entry (described in the very beginning
of the post).

Conclusion

We hope you find value in our analysis of Ursnif. The analysis and understanding of the
various facets of the malware could have been conducted and collected manually but our
investigation was greatly accelerated by using VMRay Analyzer. The publicly-available
VMRay Analyzer report for the Ursnif variant discussed throughout this post can be found
here: https://www.vmray.com/analyses/53f7d917ad9e/report/overview.html

We look forward to bringing you future detailed reports to help expedite your analysis,
understanding, and defensive capabilities. Please view the appendices for the associated
IOCs, MITRE ATT&CK mappings, and

 related work.

We encourage you to sign up for a trial of VMRay Analyzer, upload your own Ursnif samples,
and contact us if you notice evolutions or changes in our findings. Until next time!

Appendix A: Indicators for Host-Based Detection & Identification

User process spawning its own explorer.exe process
Injection into explorer.exe
The configuration is written under registry key
HKEY_CURRENT_USER\Software\AppDataLow\Software\Microsoft\

Usage of makecab for compression of staged data

https://www.vmray.com/wp-content/uploads/2021/05/APLib-Compressed-PE-Files-YARA-Ursnif-Analysis-min.png
https://github.com/snemes/aplib
https://twitter.com/sandornemes
https://www.vmray.com/wp-content/uploads/2021/05/PEBear-Ursnif-Analysis-min.png
https://www.vmray.com/products/malware-sandbox-vmray%20analyzer/
https://www.vmray.com/analyses/53f7d917ad9e/report/overview.html
https://www.vmray.com/analyzer-malware-sandbox-free-trial/

12/13

Injection into browser processes
Turning off SPDY or HTTP/2
Usage of the following tools for data collection: systeminfo, net, nslookup,
tasklist, driverquery, and reg.
Additional VMRay Sandbox IOCs can be found here:
https://www.vmray.com/analyses/53f7d917ad9e/report/ioc.html

Appendix B: Observed MITRE ATT&CK Techniques in this Analysis

The following does not cover all Ursnif techniques, just the
 ones that came up in the analysis of this sample.

T1045 – Software Packing
T1059 – Command-Line Interface
T1106 – Execution through API
T1179 – Hooking
T1055 – Process Injection
T1140 – Deobfuscate/Decode Files or Information
T1112 – Modify Registry
T1003 – Credential Dumping
T1081 – Credentials in Files
T1214 – Credentials in Registry
T1082 – System Information Discovery
T1016 – System Network Configuration Discovery
T1135 – Network Share Discovery
T1007 – System Service Discovery
T1119 – Automated Collection
T1074 – Data Staged
T1185 – Man in the Browser
T1043 – Commonly Used Port
T1071 – Standard Application Layer Protocol
T1132 – Data Encoding
T1002 – Data Compressed
T1041 – Exfiltration Over Command and Control Channel

Appendix C: Hashes

SHA256: 53f7d917ad9ebf5b7d2ccc1a835083bc0c0b92cc69ee584703ea6e4345f5c457

Extracted client.dll:
 f54b56916010c5563634bfcad6b9e3f9855e5fcd48d96c1872510ecd6dadf3a7

Appendix D: Related Work

https://www.vmray.com/analyses/53f7d917ad9e/report/ioc.html

13/13

Peter Kalnai’s and Michal Poslušný’s VirusBulletin 2017 paper on browser attack
points:
James Wyke’s Botconf 2018 talk about web inject tracking
Maciej Kotowicz’s 2016 paper about ISFB
0verfl0w’s blog posts about reversing ISFB loaders (parts 1 and 2)

https://www.virusbulletin.com/blog/2018/07/vb2017-paper-and-update-browser-attack-points-still-abused-banking-trojans/
https://www.botconf.eu/wp-content/uploads/2018/12/2018-J-Wyke-Tracking-actors-through-their-webinjects-.pdf
https://twitter.com/maciekkotowicz
https://lokalhost.pl/txt/isfb_still.live.and.licking.Botconf2016.pdf
https://twitter.com/0verfl0w_
https://0ffset.net/reverse-engineering/malware-analysis/analysing-isfb-loader/
https://0ffset.net/reverse-engineering/malware-analysis/analyzing-isfb-second-loader/

