
1/19

By oR10n

oR10n Labs
or10nlabs.tech/reverse-engineering-the-new-mustang-panda-plugx-downloader/

2020-07-20
HomeReverse EngineeringReverse Engineering the New Mustang Panda PlugX Downloader

Reverse Engineering the New Mustang Panda PlugX Downloader

Hello everyone! Recently, I came across this tweet by a security researcher known as
@Arkbird_SOLG mentioning a targeted campaign using a Vatican themed lures by an APT
group known as Mustang Panda.

Note: For those of you who are not yet familiar with Mustang Panda, security vendors like
Crowdstrike, Avira, and Anomali have released detailed reports about this threat group in the
past. You can also check some of my earlier blog posts about reverse engineering the loader
and parts of the actual RAT.

[TLP:White] The #APT Mustang Panda group targets the Vatican state with lures. This
uses the TTPs already used for pushing the payloads as vulnerable Word version
(office 2007) by side-loading method for execute a dll. pic.twitter.com/48ScU5hfu0

— Arkbird (@Arkbird_SOLG) July 14, 2020

Note: More IOCs related to the campaign are published on this GIthub repo.

The tweet mentioned the use of vulnerable version of Microsoft word and a malicious DLL
that gets executed via DLL side-loading. Based from this ANY.RUN task posted by
@Arkbird_SOLG, it seems like the malicious DLL file has a downloader functionality and
fetches a .dat file from hxxp://103.85.24[.]190/qum.dat, which in turn leads to the delivery of
PlugX on the target system.

So for this post, we will take a look into the inner workings of this new downloader to further
understand how this campaign works.

Sample Details

Filename MD5 Description

QUM, IL VATICANO
DELL’ISLAM.exe

ceaa5817a65e914aa178b28f12359a46 Legitimate MS
Word
executable

https://or10nlabs.tech/reverse-engineering-the-new-mustang-panda-plugx-downloader/
https://or10nlabs.tech/
https://or10nlabs.tech/category/re/
https://www.crowdstrike.com/blog/meet-crowdstrikes-adversary-of-the-month-for-june-mustang-panda/
https://insights.oem.avira.com/new-wave-of-plugx-targets-hong-kong/
https://www.anomali.com/blog/china-based-apt-mustang-panda-targets-minority-groups-public-and-private-sector-organizations
https://or10nlabs.tech/reverse-engineering-the-mustang-panda-plugx-loader/
https://or10nlabs.tech/reverse-engineering-the-mustang-panda-plugx-rat-extracting-the-config/
https://twitter.com/hashtag/APT?src=hash&ref_src=twsrc%5Etfw
https://t.co/48ScU5hfu0
https://twitter.com/Arkbird_SOLG/status/1283000270151208960?ref_src=twsrc%5Etfw
https://github.com/StrangerealIntel/DailyIOC/blob/master/2020-07-14/Mustang%20Panda/IOC-Mustang-Panda-2020-07-14.csvhttp://
https://app.any.run/tasks/6c5cff49-df4e-4edf-86bc-b68ae8cd507b/

2/19

Filename MD5 Description

wwlib.dll c6206b8eacabc1dc3578cec2b91c949a Malicious DLL

Static Analysis

Tossing the DLL file to DiE, we can immediately note down some important details like:
 – Export Names

 – Imports indicating that this sample dynamically resolves addresses of Win32 API functions
at runtime via LoadLibrary and GetProcAddress

 – Presence of PE resources named SCRDLL and SCRDAT
 – No packer signature identified and low file entropy which indicates that this file is likely not

packed

https://github.com/horsicq/Detect-It-Easy

3/19

4/19

5/19

Checking the PE resources and extracing SCRDLL shows us that the DLL file contains a
.docx file as it resource.

6/19

Running FLOSS on the sample shows us some interesting strings that indicates potential
capabilities such as:

 – Communicating via HTTP
 – Utilizing the embedded resource

 – Executing OS commands
 – Loading something in memory for execution

https://github.com/fireeye/flare-floss

7/19

wininet
ConnectA
InternetOpenA
InternetConnectA
InternetSetOptionA
HttpOpenRequestA
HttpQueryInfoA
HttpSendRequestA
InternetCrackUrlA
InternetCloseHandle
Mozilla/5.0 (compatible; MSIE 6.0; Windows NT 10.1);
Microsoft Internet Explorer
FindResourceA
LoadResource
SizeofResource
LocalAlloc
LocaRtlDecompressBuffer
VirtualProtect
SetFileAttributesA
ShellExecuteA
lstrlenA

Additionally, we can see a big blob with repeating pattern of “123456789“.

If you’ve seen my partial analysis of Mustang Panda’s PlugX RAT, you can immediately tell
that this probably contains some malware configuration.

Now, to confirm some of this hypothesis we can use the newly released open-source tool by
FireEye’s FLARE team called capa. As a short overview, capa recognize capabilities of
programs from repetitive patterns of API calls, strings, constants, and other features. In basic
terms, you can simply run it against a sample and it will tell you the capabilities based on
rules crafted by RE experts from the FLARE team. The best thing about this is now that it’s
open-sourced, anyone can contribute on crafting rules and extending the capability of the
capa itself. For a detailed overview of capa, you can check out this blog post released by
FIreEye.

https://or10nlabs.tech/reverse-engineering-the-mustang-panda-plugx-rat-extracting-the-config/
https://github.com/fireeye/capa
https://www.fireeye.com/blog/threat-research/2020/07/capa-automatically-identify-malware-capabilities.html

8/19

Running capa on the sample tells us that it:
– contains obfuscated stackstrings
– encodes data using XOR
– contains a resource section
– link functions at runtime

Tip: You can utilize -v or -vv argument in capa to see specific offsets where a rule matched.
This is extremely helpful when disassembling and labeling functions with IDA.

Dynamic Analysis

Running this sample on a VM with monitoring tools and proper setup will give us a ton of
useful information.

Note: I downloaded hxxp://103.85.24[.]190/qum.dat and placed it on C:\Python27\Lib\site-
packages\fakenet\defaultFiles\ in order to allow Fakenet to serve this file and fully simulate
the infection chain.

https://github.com/fireeye/flare-fakenet-ng

9/19

As you can see from the ProcMon and Fakenet outputs above, the infection chain looks like
this:
– Sample drops a .docx file in the current directory. This is the same .docx file in the resource
section

 – Sample sets the file attributes of the .docx file to HN (Hidden / Not Indexed)
 – Sample opens the .docx file. I took a quick look on this .docx file and it seems that this is

just a decoy file to masquerade the true purpose of the sample
 – Sample connects to hxxp://103.85.24[.]190/qum.dat to fetch a next stage payload. This

doesn’t seem to create a new file on disk so this is probably executed in memory
 – Sample creates qum.exe, hex.dll, and adobeupdate.dat on %temp%. These are PlugX

components
 – Sample executes qum.exe

 – qum.exe creates a copy of the PlugX components (AAM Updates.exe, hex.dll, nad
adobeupdate.dat) to %programdata%\AAM UpdatesmKD\

 – qum.exe obtains persistence for AAM Updates.exe on the system via the registry Run key
 – qum.exe executes AAM Updates.exe

 – AAM Updates.exe periodically connects to www.systeminfor[.]com using various ports for
C2

Now that we have these information, we can use these as a guide while doing in-depth
analysis on the sample.

In-depth Analysis

Since we almost have a full picture of the infection chain, I will breeze through some of the
tedious parts of the disassembly and focus on important ones.

Dropping the decoy .docx file

As we’ve seen on our earlier analysis, we know that the sample has a decoy .docx file on the
resource section and is dropped at the current directory upon execution. We also know that
the file attribute of decoy .docx file is set to hidden and that the file is opened afterwards to
fool the users into thinking that executed file is just a normal .docx file. This is achieved via a
series of calls to LocalAlloc, FindResourceA, LoadResource, SizeofResource,
CreateFile, WriteFile, GetCurrentDirectoryA, SetFileAttribute, and ShellExecuteA. As
expected from Mustang Panda, these Win32 API functions are stored in the sample as
stackstrings and the address of the functions are dynamically resolved at runtime via
LoadLibrary and GetProcAddress.

10/19

This is a recurring technique through out the disassembly and the following snippet is a good
example:

Decrypting the malware config

After dropping and opening the decoy .docx file, the sample proceeds to decrypt the malware
configuration. The function responsible for this is called on offset 10002EAD.

As you can the following values were pushed onto the stack before the function is called – an
offset unk_10005000, 1002h (4098), an address pointing to the string “123456789”, and
result of strlen(“123456789”).These are the adrress for the encrypted config, the length of the
encrypted config, the address for the key, and the length of key respectively.

11/19

If we check unk_10005000, we can see that it points to offset 0 of the .data section.

Taking a closer look on the decryption function (sub_10001450), we can immediately
determine that it implements XOR decryption with multi-byte key.

12/19

13/19

This is very similar to how the configuration for the PlugX RAT is stored.

Here’s how the decrypted configuration looks like:

The URL for the next stage payload is located at offset 0 of the config file. Which allows us to
do a quick-and-dirty python script to decrypt the config and extract the URL for the next
stage payload:

Fetching the next stage payload

After decrypting the config file, the sample proceeds to fetch the next stage payload. This is
achieved through a series of calls to InternetCrackUrlA, InternetOpenA,
InternetOpenUrlA, HttpQueryInfoA, and InternetReadFileA located in the function
sub_100020F0.

The payload is stored directly to a memory buffer initiated through a call to LocalAlloc.

https://or10nlabs.tech/reverse-engineering-the-mustang-panda-plugx-rat-extracting-the-config/

14/19

The following is a sample HTTP request used to fetch the next stage payload:

It’s also worth noting that there is a backup function at sub_10001490 used to fetch the next
stage payload with a slightly different implementation. One of the glaring difference
noticeable in a network packet capture is the use of a different user agent string “Mozilla/5.0
(compatible; MSIE 6.0; Windows NT 10.1);” as opposed to “Microsoft Internet
Explorer”.

15/19

Decrypting and executing the next stage payload

After successfully fetching the payload, the sample proceeds to decrypt and execute the next
stage payload. The call to the responsible function (sub_10001110) can be found at offset
1000269D.

Looking closer at the function, we can see a series of call to LocalAlloc,
RtlDecompressBuffer, the multi-byte XOR function (sub_10001450), and VirtualProtect
prior to a call to the next stage payload.

Looking closer at the call to RtlDecompressBuffer, we can see a PUSH 2 prior to the call
which indicates that the next stage payload is compressed with LZNT1 algorithm aside from
being encrypted with XOR using a multi-byte key.

https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-xca/5655f4a3-6ba4-489b-959f-e1f407c52f15

16/19

Looking closer at the call to the multi-byte XOR function (10001372), we can see that the
XOR key is actually the first string in the decompressed payload itself.

This is something similar to what we observed previously, on how the PlugX loader decrypts
the encrypted payload.

Again, we can create a quick-and-dirty python script to automate the decryption of the next
stage payload.

The next stage payload is actually never created on disk but is directly loaded into a memory
buffer initiated through LocalAlloc.

https://or10nlabs.tech/reverse-engineering-the-mustang-panda-plugx-loader/

17/19

Several lines of disassembly after the call to the multi-byte XOR function, we can see a call
to VirtualProtect to change the access protection of the memory buffer containing the
decrypted next stage payload to 0x40 (PAGE_EXECUTE_READWRITE). Immediately after,
a CALL ESI is made to execute it.

Following the call on a debugger, we can see a small shellcode right after 0x5a4d which will
effectively call an Export function on the next stage payload named Loader.

For the sake of brevity, we won’t go through the next stage payload in detail but it’s
essentially a dropper responsible for dropping and executing the PlugX components on the
system.The components are actually embedded as PE resources.

18/19

To quickly extract the PlugX indicators, we can dump the encrypted payload from the PE
resource of the dropper and use the scripts mentioned on my earlier blog posts about
reverse engineering the loader and extracting the config from the PlugX RAT.

$ plugx_decrypt.py plugx_payload
Identified Key: 454f4961444d71716941
Payload decrypted at plugx_payload-decrypted!

$ plugx_extract_config.py plugx_payload-decrypted
File: plugx_payload-decrypted
XOR key: 313233343536373839
Folder name: AAM UpdatesmKD
Mutex name: KvcpmvXXtltWtOLoYreI
C2 servers:
 www.systeminfor.com:110
 www.systeminfor.com:995
 www.systeminfor.com:25

Config extraction successful!!!

https://or10nlabs.tech/reverse-engineering-the-mustang-panda-plugx-loader/
https://or10nlabs.tech/reverse-engineering-the-mustang-panda-plugx-rat-extracting-the-config/

19/19

There you have it folks! I really hope this blog post helps the community in further
understanding this malware and the associated TTPs of the Mustang Panda group. As
always, thank you for taking the time to read my blog and I hope you can re-share this to the
community for awareness.

Tags:Downloader, Malware, Mustang Panda, PlugX, Reverse Engineering

https://or10nlabs.tech/tag/downloader/
https://or10nlabs.tech/tag/malware/
https://or10nlabs.tech/tag/mustang-panda/
https://or10nlabs.tech/tag/plugx/
https://or10nlabs.tech/tag/reverse-engineering/

