
Payload Trends in Malicious OneNote
Samples

Executive Summary

Next-Generation Firewall with cloud-delivered security services including WildFire.

Prisma Access devices with cloud-delivered security services including WildFire.

Cortex XDR and XSIAM agents help protect against post-exploitation activities using the multi-layer
protection approach.

The Unit 42 Incident Response team can also be engaged to help with a compromise or to provide a
proactive assessment to lower your risk.

In this post, we look at the types of embedded payloads that attackers leverage to abuse

Microsoft OneNote files. Our analysis of roughly 6,000 malicious OneNote samples from

WildFire reveals that these samples have a phishing-like theme where attackers use one or more

images to lure people into clicking or interacting with OneNote files. The interaction then

executes an embedded malicious payload.

Since macros have been disabled by default in Office, attackers have turned to leveraging other

Microsoft products for embedding malicious payloads. As a result, malicious OneNote files have

grown in popularity. The OneNote desktop app is included by default in Windows in Office 2019

and Microsoft 365, which can load malicious OneNote files if someone accidentally opens one.

We find that attackers have the freedom to embed either text-based malicious scripts or binary

files inside OneNote. This offers them more flexibility compared to traditional macros in

documents.

Palo Alto Networks customers are better protected from the threats discussed above through the

following products:

https://docs.paloaltonetworks.com/ngfw
https://docs.paloaltonetworks.com/wildfire
https://www.paloaltonetworks.com/sase/access
https://docs-cortex.paloaltonetworks.com/p/XDR
https://docs-cortex.paloaltonetworks.com/p/XSIAM
https://start.paloaltonetworks.com/contact-unit42.html
https://www.paloaltonetworks.com/network-security/wildfire
https://learn.microsoft.com/en-us/deployoffice/security/internet-macros-blocked


Related Unit 42

Topics
Microsoft, Phishing

Background

Image 1 is a screenshot of a Microsoft OneNote page with the contents blurred. A popup says OneNote. This document is protected. You have to double click “View” button to open this document. View button. A tooltip when hovering over the View button reads File: press to unblock document.vbs. Size: 88.9 KB.Image not found or type unknown

Figure 1. OneNote sample with embedded malicious VBS.

Image 2 is a screenshot of Microsoft OneNote. Blue CLICK TO VIEW DOCUMENT button. A tooltip when hovering over the View button reads File: cc.EXE. Size: 734 KB. Image not found or type unknown

Figure 2. OneNote sample with embedded malicious EXE file.

Microsoft OneNote is a digital note-taking application that is part of the Microsoft Office suite.

A OneNote file is essentially a digital notebook where people can store various types of

information.

Additionally, Microsoft OneNote allows people to embed external files, enabling them to store

files such as videos, images or even scripts and executables. However, Microsoft has started

blocking embedded objects with certain extensions that are considered dangerous within

OneNote files running on Microsoft 365 on Windows.

However, attackers often abuse the ability to embed objects by planting malicious payloads.

Malicious OneNote samples typically disguise themselves as legitimate notes, often including an

image and a button.

Attackers use images to draw people’s attention, and they rely on unsuspecting people clicking

buttons to launch malicious payloads. This technique is popular for payload delivery as it

leverages people’s trust in legitimate note-taking applications.

Figures 1, 2 and 3 show three different varieties of malicious OneNote samples with different

types of embedded images and buttons. By hovering over the fake button, we can see the location

and type of the payload planted in the OneNote file.

In Figure 1, the malicious OneNote sample asks the target to click on the view button to see the

“protected” document. Upon doing so, a malicious VBScript file executes.

Similarly, Figures 2 and 3 show malicious OneNote documents with fake buttons that entice

victims to execute an embedded EXE payload and an Office 97-2003 payload, respectively.

https://unit42.paloaltonetworks.com/tag/microsoft/
https://unit42.paloaltonetworks.com/tag/phishing/
https://learn.microsoft.com/en-us/deployoffice/security/onenote-extension-block#extensions-that-are-considered-dangerous
https://learn.microsoft.com/en-us/deployoffice/security/onenote-extension-block#extensions-that-are-considered-dangerous


Image 3 is a screenshot of a Microsoft OneNote page with the contents blurred. Purple text in all-caps reads SECURED ONENOTE DOCUMENT. Purple Click To View Document button. A tooltip when hovering over the View Document button reads File: Floor_Drawingshta.Doc. Size: 1.39 KB. Image not found or type unknown

Figure 3. OneNote sample with embedded malicious Office 97-2003 file.

Methodology

JavaScript

VBScript

PowerShell

HTML application (HTA)

{BDE316E7-2665-4511-A4C4-8D4D0B7A9EAC}

Box 1 represents the embedded object GUID tag

Box 2 indicates the size of the embedded object

Box 3 represents the actual embedded object

Image 4 is a screenshot of embedded objects in a OneNote file. Three different areas are highlighted in red and labeled 1, 2, 3. Image not found or type unknown

Figure 4. Identification of embedded objects in a OneNote file.

As mentioned above, attackers mostly abuse OneNote files for malicious payload delivery. To do

so, they tend to embed a few specific payload types such as the following:

Despite the different file types, these payloads often show similar behaviors and aim to achieve

the same malicious objectives. However, we won't delve into the entire attack and infection

chain, as we have covered this in a previous article on malicious OneNote attachments.

The telltale sign of a malicious OneNote file is the presence of embedded objects. While benign

OneNote files can also contain embedded objects, malicious OneNote files almost invariably

include them.

According to Microsoft, files embedded in OneNote start with a specific globally unique

identifier (GUID) tag:

This GUID indicates the presence of a FileDataStoreObject object. The GUID is then

followed by the size of the embedded file.

The actual embedded file follows 20 bytes after the aforementioned GUID tag and will be as

long as the defined size. For example, in Figure 4 below:

https://www.paloaltonetworks.com/blog/security-operations/the-adventures-of-malicious-onenote-attachments-in-cortex-xdr-land/
https://learn.microsoft.com/en-us/openspecs/office_file_formats/ms-one/73d22548-a613-4350-8c23-07d15576be50


Payload Types and Average Size Distribution

PowerShell

VBScript

Batch

HTA

Office 97-2003

EXE

JavaScript (this file type is the most commonly used)

Image 5 is a pie chart of the types of payloads in the malicious files. The largest amount is JavaScript at 46.6%, followed by PowerShell at 33.7%. Next is Batch at 8.2%, followed in increasingly smaller amounts by VBScript, Office 97-2003, HTA and EXE. Image not found or type unknown

Figure 5. Distribution of payload types embedded in malicious OneNote files.

Image 6 is a column chart showing the distribution of payload type by size with EXE the largest at over 1,000 KB. The second largest is Office 97-2003. VBScript, Batch, PowerShell, HTA and JavaScript are all much smaller at under 50 KB. Image not found or type unknown

Figure 6. Average sizes of payloads found in malicious OneNote samples grouped by
payload type.

Presence of Images in Malicious OneNote Samples

As illustrated in Figure 5, attackers predominantly use the following seven file types for their

OneNote payloads:

We also extracted and noted the size of each payload type, as shown in Figure 6.

While larger binary embedded payloads such as EXE and Office 97-2003 are more capable,

attackers tend to use them less often (as shown in Figure 5) because they increase the overall size

of the OneNote sample. Attackers tend to prefer a smaller overall file size, as smaller-sized

malware is easier to include in common malware delivery mechanisms such as email

attachments, thus raising less suspicion.

As illustrated in Figure 6 above, embedded malicious EXE and Office 97-2003 file payloads tend

to be larger, and embedded malicious HTA and JavaScript files tend to be smaller.

Attackers creating malicious OneNote lures use images that look like buttons to trick people into

launching harmful payloads. We mapped out the number of images in each malicious OneNote

sample with the payload type, and then calculated the median number of images.

In analyzing the 6,000 samples in our dataset, we found that all but three (99.9%) of the

malicious OneNote samples contained at least one image. Since almost all of the samples contain



Image 7 is a column chart of the median image count for different payload types. JavaScript, PowerShell and Batch are nearly even and the highest amount at 3. VBScript, HTA, EXE and Office 97-2003 are smaller at 2. Image not found or type unknown

Figure 7. Median image count for different payload types embedded in OneNote malware
grouped by payload type.

Analysis of an Embedded EXE Payload

d48bcca19522af9e11d5ce8890fe0b8daa01f93c95e6a338528892e152a4f63c

92d057720eab41e9c6bb684e834da632ff3d79b1d42e027e761d21967291ca50

Image 8 is a diagram of the EXE payload opened in the disassembler IDA Pro. Red rectangles hone in on the different instructions within the architecture. Image not found or type unknown

Figure 8. EXE payload opened in IDA.

at least one image, we can confirm our hypothesis that OneNote samples are primarily used as

phishing vehicles.

Figure 7 shows that the median number of images per payload type is two. For instance, attackers

could use both a fake button and an attention-grabbing image like a fake “secure” document

banner to make their phishing campaign more believable (such as in Figure 3).

The chart above demonstrates that two to three images typically accompany payloads in

malicious OneNote samples, some used to make the document more believable and some serving

as fake buttons.

While our previous research examined OneNote samples that carry the more common and

popular payload types, such as PowerShell or HTA, EXE payloads have gotten less attention. In

this section, we will analyze a OneNote sample with an embedded EXE payload.

The payload below is extracted from a OneNote sample with the following SHA256 hash:

The payload itself has the following SHA256 hash:

Figure 8 shows our analysis of the EXE payload in IDA Pro. We found a handful of code blocks,

which often signal that we might be dealing with shellcode.

Our assumption was confirmed by the existence of GS:60, which points to the Process

Environment Block (PEB) and the rotate right (ROR) instruction. This indicates that the malware

is using dynamic address resolution for functions and hashing for function identification.

To get an understanding of the objective of the shellcode and identify the libraries it was

dynamically loading, we opened it in the x64dbg debugger. We then put a breakpoint at the

https://www.paloaltonetworks.com/blog/security-operations/the-adventures-of-malicious-onenote-attachments-in-cortex-xdr-land/
https://hex-rays.com/ida-pro/
https://www.sentinelone.com/blog/malicious-input-how-hackers-use-shellcode/
https://learn.microsoft.com/en-us/windows/win32/api/winternl/ns-winternl-peb


Image 9 is a screenshot of highlighted functions that were dynamically loaded. A blue arrow points to a row highlighted in grey. Image not found or type unknown

Figure 9. Breakpoint set to identify the functions that are being dynamically loaded.

Image 10 is a screenshot of recorded function WSAStringToAddressA highlighted in the RSI register. It is indicated by two blue arrows as well as a red rectangle. The lower indicated line is highlighted in grey. Image not found or type unknown

Figure 10. Function name WSAStringToAddressA recorded in the RSI register.

Image 11 is a screenshot of recorded function WSASpclertW highlighted in the RSI register. It is indicated in a red rectangle. Lower down, a line is highlighted in grey and indicated by a blue arrow. Image not found or type unknown

Figure 11. Function name WSASpclertW recorded in the RSI register.

Image 12 is a screenshot of the breakpoints for ws2_32.dll. A line in left pane is highlighted in grey. Two addresses in the right pane are highlighted in red. Image not found or type unknown

Figure 12. Breakpoint set at function connect in ws2_32.dll.

Image 13 is a screenshot of the contents of sockaddr_in highlighted in a red rectangle on the lower left of the screenshot. Image not found or type unknown

Figure 13. Content of sockaddr_in struct dump.

Image 14 is a screenshot of Python code unpacking sockaddr_in contents. Image not found or type unknown

Figure 14. Python script unpacking content of sockaddr_in struct.

function that repeatedly calls the loc_140004021 function block in a loop, as shown in Figure

9.

The combination of the WSAStringToAddressA function (shown in Figure 10) and

WSASocketW functions (shown in Figure 11) makes it clear that the shellcode is attempting to

send or receive data by establishing a network socket.

Since reverse TCP shells are the most common type of shellcode used for connecting back to the

attacker's machine, we set up breakpoints in ws2_32.dll (shown in Figure 12) to determine

whether the connect function is called. And if so, we could extract the arguments passed down to

it. These arguments often have the IP address and port number to which the payload attempts to

connect.

As expected, the shellcode stopped at the connect function call. Upon dumping the values of the

RDX register, we were able to identify the contents of the sockaddr_in struct, as shown in

Figure 13.

As shown in Figure 14, we then wrote a Python script to unpack the content of the

sockaddr_in structure identified above.

Executing the above Python script gave us the output shown in Figure 15, indicating the attacker

is connecting to a local machine on port 4444, potentially to an attacker-controlled machine.

https://learn.microsoft.com/en-us/windows/win32/api/ws2def/ns-ws2def-sockaddr_in


Image 15 is a screenshot of Python script that contains the IP address and port, labeled in lines 2 and 3 of the image. Image not found or type unknown

Figure 15. IP address and port the payload is connecting to.

Conclusion

Next-Generation Firewall with cloud-delivered security services including WildFire.

Prisma Access devices with cloud-delivered security services including WildFire.

Cortex XDR and XSIAM agents help protect against post-exploitation activities using the multi-layer
protection approach.

The Unit 42 Incident Response team can also be engaged to help with a compromise or to provide a
proactive assessment to lower your risk.

Indicators of Compromise

11,226 SHA256 hashes for the malicious OneNote files and payloads – GitHub

SHA256 hashes for OneNote files mapped to SHA256 hashes for the payloads – GitHub

Additional Resources

We conclude that OneNote as an attack vector is more versatile than we initially thought. It can

carry executable payloads, in addition to script-based downloaders. Also, like many other file

types, attackers can use it for lateral movement.

When embedding malicious payloads inside OneNote files, attackers mainly leverage JavaScript,

PowerShell, Batch and VBScript. However, attackers occasionally use binary payloads such as

executables or even Office 97-2003 files to achieve their objectives.

Organizations can consider blocking embedded payloads with dangerous extensions within

OneNote files to protect their users against such attacks. More broadly, we recommend people

limit their exposure by checking the embedded payload filenames and extensions in OneNote

files by hovering over any buttons or images before clicking them.

Palo Alto Networks customers are better protected from the threats discussed above through the

following products:

The following are links to our Github repository containing file hashes for the OneNote files and

payloads discovered during our research for this article.

https://docs.paloaltonetworks.com/ngfw
https://docs.paloaltonetworks.com/wildfire
https://www.paloaltonetworks.com/sase/access
https://docs-cortex.paloaltonetworks.com/p/XDR
https://docs-cortex.paloaltonetworks.com/p/XSIAM
https://start.paloaltonetworks.com/contact-unit42.html
https://github.com/PaloAltoNetworks/Unit42-Threat-Intelligence-Article-Information/blob/main/Payload_Trends_in_Malcious_OneNote_Samples-SHA256-hashes.txt
https://github.com/PaloAltoNetworks/Unit42-Threat-Intelligence-Article-Information/blob/main/Payload_Trends_in_Malcious_OneNote_Samples-OneNote_To_Payload_Mapping.csv


The Adventures of Malicious OneNote Attachments in Cortex XDR Land – Unit 42, Palo Alto
Networks

Microsoft OneNote File Format – Microsoft

 

https://www.paloaltonetworks.com/blog/security-operations/the-adventures-of-malicious-onenote-attachments-in-cortex-xdr-land/
https://learn.microsoft.com/en-us/openspecs/office_file_formats/ms-one/73d22548-a613-4350-8c23-07d15576be50

