
1/12

Thinking Outside the Bochs: Code Grafting to Unpack
Malware in Emulation

fireeye.com/blog/threat-research/2020/04/code-grafting-to-unpack-malware-in-emulation.html

Threat Research Blog

April 07, 2020 | by Michael Bailey
This blog post continues the FLARE script series with a discussion of patching IDA Pro
database files (IDBs) to interactively emulate code. While the fastest way to analyze or
unpack malware is often to run it, malware won’t always successfully execute in a VM. I use
IDA Pro’s Bochs integration in IDB mode to sidestep tedious debugging scenarios and get
quick results. Bochs emulates the opcodes directly from your IDB in a Bochs VM with no OS.

Bochs IDB mode eliminates distractions like switching VMs, debugger setup, neutralizing
anti-analysis measures, and navigating the program counter to the logic of interest. Alas,
where there is no OS, there can be no loader or dynamic imports. Execution is constrained
to opcodes found in the IDB. This precludes emulating routines that call imported string
functions or memory allocators. Tom Bennett’s flare-emu ships with emulated versions of
these, but for off-the-cuff analysis (especially when I don’t know if there will be a payoff), I
prefer interactively examining registers and memory to adjust my tactics ad hoc.

https://www.fireeye.com/blog/threat-research/2020/04/code-grafting-to-unpack-malware-in-emulation.html
https://www.fireeye.com/blog/threat-research.html/category/etc/tags/fireeye-blog-authors/michael-bailey
https://www.hex-rays.com/wp-content/uploads/2019/12/debugging_bochs.pdf
https://www.fireeye.com/blog/threat-research/2018/12/automating-objective-c-code-analysis-with-emulation.html

2/12

What if I could bring my own imported functions to Bochs like flare-emu does? I’ve devised
such a technique, and I call it code grafting. In this post I’ll discuss the particulars of statically
linking stand-ins for common functions into an IDB to get more mileage out of Bochs. I’ll
demonstrate using this on an EVILNEST sample to unpack and dump next-stage payloads
from emulated memory. I’ll also show how I copied a tricky call sequence from one IDB to
another IDB so I could keep the unpacking process all in a single Bochs debug session.

EVILNEST Scenario

My sample (MD5 hash 37F7F1F691D42DCAD6AE740E6D9CAB63 which is available on
VirusTotal) was an EVILNEST variant that populates the stack with configuration data before
calling an intermediate payload. Figure 1 shows this unusual call site.

Figure 1: Call site for intermediate payload

The code in Figure 1 executes in a remote thread within a hollowed-out iexplore.exe
process; the malware uses anti-analysis tactics as well. I had the intermediate payload stage
and wanted to unpack next-stage payloads without managing a multi-process debugging
scenario with anti-analysis. I knew I could stub out a few function calls in the malware to run
all of the relevant logic in Bochs. Here’s how I did it.

Code Carving

I needed opcodes for a few common functions to inject into my IDBs and emulate in Bochs. I
built simple C implementations of selected functions and compiled them into one binary.
Figure 2 shows some of these stand-ins.

https://www.virustotal.com/gui/file/dda11fe201d188ea32020cda0eac130651bb0ff1f8991c2f73820d8a0b9e6242/details

3/12

Figure 2: Simple implementations of common functions

I compiled this and then used IDAPython code similar to Figure 3 to extract the function
opcode bytes.

Figure 3: Function extraction

I curated a library of function opcodes in an IDAPython script as shown in Figure 4. The
nonstandard function opcodes at the bottom of the figure were hand-assembled as tersely as
possible to generically return specific values and manipulate the stack (or not) in

4/12

conformance with calling conventions.

Figure 4: Extracted function opcodes

On top of simple functions like memcpy, I implemented a memory allocator. The allocator
referenced global state data, meaning I couldn’t just inject it into an IDB and expect it to
work. I read the disassembly to find references to global operands and templatize them for
use with Python’s format method. Figure 5 shows an example for malloc.

5/12

Figure 5: HeapAlloc template code

I organized the stubs by name as shown in Figure 6 both to call out functions I would need to
patch, and to conveniently add more function stubs as I encounter use cases for them. The
mangled name I specified as an alias for free is operator delete.

Figure 6: Function stubs and associated names

To inject these functions into the binary, I wrote code to find the next available segment of a
given size. I avoided occupying low memory because Bochs places its loader segment below
0x10000. Adjacent to the code in my code segment, I included space for the data used by

6/12

my memory allocator. Figure 7 shows the result of patching these functions and data into the
IDB and naming each location (stub functions are prefixed with stub_).

Figure 7: Data and code injected into IDB

The script then iterates all the relevant calls in the binary and patches them with calls to their
stub implementations in the newly added segment. As shown in Figure 8, IDAPython’s
Assemble function saved the effort of calculating the offset for the call operand manually.
Note that the Assemble function worked well here, but for bigger tasks, Hex-Rays
recommends a dedicated assembler such as Keystone Engine and its Keypatch plugin for
IDA Pro.

Figure 8: Abbreviated routine for assembling a call instruction and patching a call site to an
import

https://twitter.com/mykill/status/1166797442311962626
http://www.keystone-engine.org/
http://www.keystone-engine.org/keypatch/

7/12

The Code Grafting script updated all the relevant call sites to resemble Figure 9, with the
target functions being replaced by calls to the stub_ implementations injected earlier. This
prevented Bochs in IDB mode from getting derailed when hitting these call sites, because the
call operands now pointed to valid code inside the IDB.

Figure 9: Patched operator new() call site

Dealing with EVILNEST

The debug scenario for the dropper was slightly inconvenient, and simultaneously, it was
setting up a very unusual call site for the payload entry point. I used Bochs to execute the
dropper until it placed the configuration data on the stack, and then I used IDAPython’s
idc.get_bytes function to extract the resulting stack data. I wrote IDAPython script code to
iterate the stack data and assemble push instructions into the payload IDB leading up to a
call instruction pointing to the DLL’s export. This allowed me to debug the unpacking process
from Bochs within a single session.

I clicked on the beginning of my synthesized call site and hit F4 to run it in Bochs. I was
greeted with the warning in Figure 10 indicating that the patched IDB would not match the
depictions made by the debugger (which is untrue in the case of Bochs IDB mode). Bochs
faithfully executed my injected opcodes producing exactly the desired result.

8/12

Figure 10: Patch warning

I watched carefully as the instruction pointer approached and passed the IsDebuggerPresent
check. Because of the stub I injected (stub_IsDebuggerPresent), it passed the check
returning zero as shown in Figure 11.

9/12

Figure 11: Passing up IsDebuggerPresent

I allowed the program counter to advance to address 0x1A1538, just beyond the unpacking
routine. Figure 12 shows the register state at this point which reflects a value in EAX that
was handed out by my fake heap allocator and which I was about to visit.

10/12

Figure 12: Running to the end of the unpacker and preparing to view the result

Figure 13 shows that there was indeed an IMAGE_DOS_SIGNATURE (“MZ”) at this location.
I used idc.get_bytes() to dump the unpacked binary from the fake heap location and saved it
for analysis.

11/12

Figure 13: Dumping the unpacked binary

Through Bochs IDB mode, I was also able to use the interactive debugger interface of IDA
Pro to experiment with manipulating execution and traversing a different branch to unpack
another payload for this malware as well.

Conclusion

Although dynamic analysis is sometimes the fastest road, setting it up and navigating minutia
detract from my focus, so I’ve developed an eye for routines that I can likely emulate in
Bochs to dodge those distractions while still getting answers. Injecting code into an IDB
broadens the set of functions that I can do this with, letting me get more out of Bochs. This in
turn lets me do more on-the-fly experimentation, one-off string decodes, or validation of
hypotheses before attacking something at scale. It also allows me to experiment dynamically
with samples that won’t load correctly anyway, such as unpacked code with damaged or
incorrect PE headers.

I’ve shared the Code Grafting tools as part of the flare-ida GitHub repository. To use this for
your own analyses:

1. In IDA Pro’s IDAPython prompt, run code_grafter.py or import it as a module.
2. Instantiate a CodeGrafter object and invoke its graftCodeToIdb() method:

CodeGrafter().graftCodeToIdb()
3. Use Bochs in IDB mode to conveniently execute your modified sample and experiment

away!

https://github.com/fireeye/flare-ida/

12/12

This post makes it clear just how far I’ll go to avoid breaking eye contact with IDA. If you’re a
fan of using Bochs with IDA too, then this is my gift to you. Enjoy!

Previous Post
Next Post

