
1/7

Analyzing Gootkit's persistence mechanism (new ASEP
inside!)

blog.cert.societegenerale.com/2015/04/analyzing-gootkits-persistence-mechanism.html

Malware authors are quite known for their innovation. A couple of years back, we wouldn't
have imagined running into Node.js and JavaScript-based malware, yet that's exactly what
Gootkit does. Gootkit is a piece of banking malware that uses web-injects (just like ZeuS and
its derivatives) to capture credentials and OTPs from infected users. It has other nifty
features such as TLS interception using a local proxy and fake certificates, keylogging,
library hooking, UAC bypass... you name it.

A mandatory step in malware's execution process is ensuring persistence, or survival from
reboots. The most popular persistence mechanisms include adding an entry to the well-
known "Run key" in the user's registry base, or creating a Windows service if the necessary
privileges are available. Malware can also use Scheduled Tasks, Winlogon, AppInit,
ActiveSetup... That was apparently not enough for the people behind Gootkit, since they use
a completely different persistence mechanism.

When running dynamic analysis of recent Gootkit samples (MD5 at the end of the blogpost),
we noticed the creation of lots of .sdb files and just as many instances of sdbinst processes.
A blogpost pointed us towards a paper written in 2014 by Jon Erickson, explaining how
Microsoft's Fix it patches could be abused to ensure persistence. Gootkit is the first malware
we see that uses this persistence mechanism.

http://blog.cert.societegenerale.com/2015/04/analyzing-gootkits-persistence-mechanism.html
http://www.lexsi-leblog.com/cert-en/hey-brian-heya-homer-fancy-meeting-you-here-zeus-gootkit-2014-ad.html
http://blog.trendmicro.com/trendlabs-security-intelligence/fake-judicial-spam-leads-to-backdoor-with-fake-certificate-authority/
https://www.blackhat.com/docs/asia-14/materials/Erickson/WP-Asia-14-Erickson-Persist-It-Using-And-Abusing-Microsofts-Fix-It-Patches.pdf

2/7

Fix-it patches are used by Microsoft to quickly issue patches without having to release entire
binaries. They don't modify the target binary itself but instead provide the Windows loader
with information allowing it to patch it once it has been loaded in memory. Patches range
from performance improvements to security fixes and can be set on individual programs.
The information concerning these patches is contained in .sdb files. The Windows loader
identifies these files through the following registry keys:

HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\AppCompatFlags\Custom
HKLM\SOFTWARE\Microsoft\Windows
NT\CurrentVersion\AppCompatFlags\InstalledSDB

The Custom key designates the corresponding GUID in
the InstalledSDB key. InstalledSDB contains a pointer to the SDB file that will actually define
where and how to apply the patch.

Since creating this kind of patches imply writing to the HKLM registry key, administrator rights
are required.

http://2.bp.blogspot.com/-0Bi1MIt0vn0/VSuWa0otL0I/AAAAAAAAAKY/sISKWzX9la0/s1600/Gootkit-sdb-1.png

3/7

The file located at C:\Windows\AppPatch\Custom\{...}.sdb is a binary file. It can be read with
a tool like sdb-explorer. sdb-explorer can be used to manipulate .sdb files in many ways, but
we'll show how to use it to recover the patch.

sdb-explorer.exe -t file.sdb will generate a tree with the information contained in the SDB file.
Here's the tree for patching myie.exe:

http://3.bp.blogspot.com/-wLD1l5amneM/VSuWbSfI5OI/AAAAAAAAAKc/shqTe05y-z4/s1600/Gootkit-sdb-2.png
https://github.com/evil-e/sdb-explorer

4/7

c TAG 7802 - INDEXES
12 TAG 7803 - INDEX
 18 TAG 3802 - INDEX_TAG: 28679 (0x7007)
 1c TAG 3803 - INDEX_KEY: 24577 (0x6001)
 20 TAG 4016 - INDEX_FLAGS: 1 (0x1)
 26 TAG 9801 - INDEX_BITS
45 58 45 2e 45 49 59 4d 62 1a 00 00
38 TAG 7001 - DATABASE
3e TAG 4023 - OS_PLATFORM: 0 (0x0)
44 TAG 6001 - NAME: myie.exe
4a TAG 9007 - DATABASE_ID: {5FA4B5F6-E2E3-4435-B56B-70A717FCFA61} NON-STANDARD
60 TAG 7002 - LIBRARY
 66 TAG 7009 - SHIM_REF
 6c TAG 7005 - PATCH
 72 TAG 6001 - NAME: patchdata0
 78 TAG 9002 - PATCH_BITS

1a62 TAG 7007 - EXE
 1a68 TAG 6001 - NAME: myie.exe
 1a6e TAG 6006 - APP_NAME: myie.exe
 1a74 TAG 9004 - EXE_ID: {7BFBEB30-D6BB-4CC1-BD6A-E30E8AE75BDA}
 1a8a TAG 7008 - MATCHING_FILE
 1a90 TAG 6001 - NAME: myie.exe
 1a96 TAG 700a - PATCH_REF
 1a9c TAG 6001 - NAME: patchdata0
 1aa2 TAG 4005 - PATCH_TAGID: 108 (0x6c)
1aa8 TAG 7801 - STRINGTABLE
1aae TAG 8801 - STRINGTABLE_ITEM: myie.exe
1ac6 TAG 8801 - STRINGTABLE_ITEM: patchdata0

The interesting part is 1aa2 TAG 4005 - PATCH_TAGID: 108 (0x6c). You can dump the patch
corresponding to PATCH_TAGID: 108 by issuing the command sdb-explorer.exe -p {...}.sdb
1aa2 > file.txt
file.txt will have contents similar to this:

5/7

Trying to process patch by tag type: PATCH_TAGID

00000000: 02 00 00 00 2a 17 00 00 d6 16 00 00 00 80 0c 00
[snip]
000019D0: 00 00 00 00 e8 33 71 07 00 eb f9 00 00 00 00 00
000019E0: 00 00 00

module : kernel32.dll
opcode : 2 REPLACE
actionSize : 5930
patternSize: 5846
RVA : 0x000c8000
Bytes: 55 8b ec 83 e4 f8 [snip] 5f 5e 5b 8b e5 5d c3

Code:
00000000 55 push ebp
00000001 8bec mov ebp, esp
00000003 83e4f8 and esp, 0xfffffff8
 [snip]
000016cf 5f pop edi
000016d0 5e pop esi
000016d1 5b pop ebx
000016d2 8be5 mov esp, ebp
000016d4 5d pop ebp
000016d5 c3 ret

module : kernel32.dll
opcode : 4 MATCH
actionSize : 92
patternSize: 8
RVA : 0x000c5f4b
Bytes: 00 00 00 00 00 00 00 00

Code:
00000000 0000 add [eax], al
00000002 0000 add [eax], al
00000004 0000 add [eax], al
00000006 0000 add [eax], al

module : kernel32.dll
opcode : 2 REPLACE
actionSize : 227
patternSize: 143
RVA : 0x000c5f4b
Bytes: 55 8b ec 51 51 [snip] 5f 5e 8b e5 5d c3

Code:
00000000 55 push ebp
00000001 8bec mov ebp, esp
00000003 51 push ecx
00000004 51 push ecx
 [snip]
00000089 5f pop edi
0000008a 5e pop esi
0000008b 8be5 mov esp, ebp

6/7

0000008d 5d pop ebp
0000008e c3 ret

module : kernel32.dll
opcode : 4 MATCH
actionSize : 92
patternSize: 8
RVA : 0x000c5f3d
Bytes: 00 00 00 00 00 00 00 00

Code:
00000000 0000 add [eax], al
00000002 0000 add [eax], al
00000004 0000 add [eax], al
00000006 0000 add [eax], al

module : kernel32.dll
opcode : 2 REPLACE
actionSize : 98
patternSize: 14
RVA : 0x000c5f3d
Bytes: 83 04 24 02 60 9c e8 03 00 00 00 9d 61 c3

Code:
00000000 83042402 add dword [esp], 0x2
00000004 60 pushad
00000005 9c pushfd
00000006 e803000000 call 0xe
0000000b 9d popfd
0000000c 61 popad
0000000d c3 ret

module : kernel32.dll
opcode : 4 MATCH
actionSize : 89
patternSize: 5
RVA : 0x0004ee05
Bytes: 90 90 90 90 90

Code:
00000000 90 nop
00000001 90 nop
00000002 90 nop
00000003 90 nop
00000004 90 nop

module : kernel32.dll
opcode : 2 REPLACE
actionSize : 91
patternSize: 7
RVA : 0x0004ee05
Bytes: e8 33 71 07 00 eb f9

Code:

7/7

00000000 e833710700 call 0x77138
00000005 ebf9 jmp 0x0

The MATCH instruction will check that the sequence of bytes are present (e.g. it is the
correct version of the PE they are about to patch), and the REPLACE instruction will actually
do the replacement.
The 90 90 90 90 90 snippet allows for code to be inserted right before the entry point (or
other function prologues) without breaking everything. The jmp instruction in our patch
replaces a dummy instruction (mov edi, edi) and jumps to the call defined just before it,
entering our code. It is then up to the code to jump back to the correct location after the
patch.
This process is somewhat similar to "hooking" functions in DLLs, except it is being done
systematically by the Windows loader if the conditions match.

In this case, the inserted snippet is responsible for loading Gootkit's main executable from
the registry and launching it.

The patch will look for a couple of registry keys in HKCU\Software\AppDataLow. They are
named according to the system architecture: on a 32-bit Windows 7 system, the studied
sample generated keys named BinaryImage32_[\d]:

The loader concatenates all the key's values, and proceeds to decrypt the blob using a
rotating XOR algorithm and uncompresses it using RtlDecompressBuffer (LZNT1). The file
itself is Gootkit's bulky ~4,5 MB DLL which contains the Node.js engine to launch the
malware. The loader then loads the PE, resolves imports, and DllMain, ensuring that the
malicious payload is up and running.

Dropper MD5 / SHA-1: a28a620b41f852cf7699a7218fe62c69 /
4095c19435cad4aed7490e2fb59c538b1885407a

