
 FINDING
 BEACONS
 IN THE
 DARK A Guide to

 Cyber Threat Intelligence

BlackBerry Research and Intelligence Team

 FIN
D

IN
G

 B
E

A
C

O
N

S
 IN

 T
H

E DA
R

K

 BlackBerry Research and Intelligence Team

To Sam, the little fighter, and Noah, the unsung hero.
Your strength, courage, and silliness inspires us all.

About the Authors
T.J. O’Leary – Principal Threat Researcher

T.J. is a Principal Threat Researcher with the Threat Hunting & Intelligence team at BlackBerry. He holds
an MSc in Forensic Computing and Cybercrime Investigation and a BEng in Electronic Engineering. He
began his career in the military and has a background in system administration, networking, security op-
erations, malware analysis, and reverse engineering. In his spare time, he enjoys watching motorsport,
training martial arts and spending time with his wife and kids.

Tom Bonner – Distinguished Threat Researcher

Tom has over two decades of experience in the cybersecurity/anti-malware industry. From reverse en-
gineering malware and developing detection technologies, to incident response, DFIR and threat intel-
ligence, he enjoys tackling complex R&D problems across the cybersecurity landscape. Tom resides in
the English countryside with his wife and two children.

Marta Janus – Distinguished Threat Researcher

Marta is a reverse engineering expert and enthusiast with more than 12 years of experience in cyber-
security, currently focused on tracking high profile threat actors and campaigns. Besides hunting for
sophisticated malware and dissecting it, Marta enjoys hiking, philosophy, and holds a master’s degree
in archaeology.

Dean Given – Senior Threat Researcher

Dean is a Senior Threat Researcher within the Threat Hunting & Intelligence team at BlackBerry. He
holds a MSc in Cybersecurity and a BSc (Hons) in Computer Security & Digital Forensics. He has 7+
years of experience across various roles in cybersecurity and has a background in Security Operations,
Network Security, Malware Analysis and Reverse Engineering. In his spare time, he enjoys watching
sports, golfing, and is an avid movie fan.

Eoin Wickens - Threat Researcher

Eoin holds a BSc (Hons) in Computer Systems from Cork Institute of Technology, graduating with
multiple academic awards including the IBM Prize. He finds both enjoyment and purpose in reverse
engineering malware, software engineering for analysis automation and anything to do with triathlon.
Eoin’s work specializes in Threat Hunting & Intelligence, helping to stay one step ahead of the bad guys
through a variety of creative and effective means.

Jim Simpson – Director of Threat Intelligence

Jim is the Director of Threat Intelligence at BlackBerry. He has over 15 years of experience working the
full gamut of security roles before joining Cylance and then BlackBerry, doing what he can to help his
team do what they do best, and snowboarding whenever he gets the chance.

3

About the Editors
Natasha Rohner – Senior Managing Editor

Natasha spent six years at the helm of ThreatVector, BlackBerry’s award-winning cybersecurity blog,
working closely with the Research & Intelligence team to produce threat research deep-dives and white
papers. An avid science fiction fan, she has also published eight novels for large media companies such
as Rebellion and New Line Cinema, including the official book adaptations of Hollywood movie block-
busters such as Blade, Final Destination, and Nightmare on Elm Street. Her original horror trilogy Dante’s
Girl was published by Solaris, a division of UK gaming giant Games Workshop.

Lysa Myers – Principal Threat Researcher

Lysa began her cybersecurity career in a malware research lab in the weeks before the Melissa virus
outbreak in 1999. As the industry has evolved, she’s moved from threat research to security education.
As part of the BlackBerry Research & Intelligence Team, she uses her unique perspective to help make
threat research more accessible. She and her spouse live on a hobby farm in the Pacific Northwest, with
an assortment of miniature farm animals.

Steve Kovsky – Editorial Director

Steve Kovsky is responsible for BlackBerry’s global corporate communications content strategy, in-
cluding thought leadership publications, blogs, social media and customer advocacy. He spent more
than 20 years as a professional journalist, covering all aspects of information technology in print, radio,
television and online. In 2013, he went over to “The Dark Side” (aka marketing) as head of content for
Websense/ForcePoint, then Director of Digital Content and Executive Communications for CrowdStrike.

About the Reviewers
Mark Stevens – Technical Director, Incident Response

Mark has over two decades of industry experience with the last 13 dedicated to cybersecurity. He start-
ed his security career at JP Morgan Chase and has worked for several industry leaders including Mandi-
ant and IBM. Mark now leads the BlackBerry international incident response (IR) team.

Seagen Levites – Senior Director, Data Architecture

Seagen has been working in cybersecurity from the time Y2K was considered a threat. He operated in
the endpoint and endpoint management space before moving to research, automated malware analy-
sis, and then joining Cylance as employee #20.

David Beveridge – Vice President of Research Engineering

David Beveridge began his career in software development 23 years ago, and he switched to a cyber-
security focus in 2004. Armed with the audacious idea that handsets would soon begin to replace
computers, he started down the road of Artificial Intelligence development in the InfoSec world, which
eventually led him to join Cylance and then BlackBerry. He holds 13 patents in Computer Science, in-
cluding 11 in the field of AI.

4

Contents

Foreword 8

Introduction 11

So, You Want to Gather Cyber Threat Intelligence? 13
What will you find in this book? 13
Who is this book for? 13
How can you benefit? 14
Why are we writing about it now? 14
How is this book organized? 15

Chapter 1 – Beyond the Hype 16
Chapter 2 – All Your Beacons Are Belong to Us 16
Chapter 3 – We are Beacon 16
Chapter 4 – We Can’t Stop Here, this is Beacon Country 16
Chapter 5 – Beacon of Hope 16
Chapter 6 – Debrief 16

Disclaimer 16

1. Beyond the Hype 17
Cyber Threat Intelligence 17
Our CTI lifecycle for an XDR world 18

Planning & Direction 19
Collection 20
Processing 21
Analysis 22
Dissemination 22
Evaluation and Feedback 23

Aligning the Stars: The CTI Lifecycle 23

2. All Your Beacons Are Belong to Us 25
Data Collection 25

Defining the Scope 25
Crafting Some Queries 26

Data Validation 32
Pillaging Team Servers 33

Processing 34
Beacon Config Extraction 35

Automating the Hunt for Cobalt Strike 39

3. We are Beacon 40
Stager vs. Stageless 40
Malleable C2 41
Malleable PE 44
Example Extracted Beacon Configuration 47
Detecting the Beacon Configuration with YARA 53

4. We Can’t Stop Here, this is Beacon Country 54
Constellating 54
Networking 55

Netblocks 56

5

Ports 58
Certificates 59

Configuration 61
Watermark 64
SSL Public Keys 65
Beacon Type 67
C2SERVER 68
HTTP 70
Proxy 72
SMB 73
DNS 75
Injection 76
Compilation Timestamps 79
Rich headers 82
Import hashes 83
Export Names 85
PROCINJ_STUB 86
DEPRECATED_SPAWNTO 89
Miscellaneous 91

5. Beacon of Hope 92
Intelligence Correlation 92
APT41 94

APT41 Continued - Gh0st in the Machine 96
APAC Red Teams 98
DarkSide 100
FIN7 102
WizardSpider 103

Ryuk 103
BazarLoader 104
TrickBot 106
Conti 108

MAN1 110
Ursnif - Saigon Fork 111
TA505 113
IcedID 112
Salfram Phishing Campaign 113
TA505 113
TA575 114
An Initial Access Broker - Zebra2104 116

Enter MountLocker 117
Enter StrongPity 118
Enter Phobos 120

Hidden Dragon 121
Recap 122

6. Debrief 123
Planning & Direction 123
Collection 123
Processing 124
Analysis 124

Insights 124
Trends 125
Discoveries 125

6

Dissemination 125
Threat Intelligence 125
Threat Hunting 126
Incident Response 127
Forensics 127
Data Science 127
SOC 128
Red Team 128
Evaluation and Feedback 130

Beyond the Hype and Back Again 131

7

Foreword

There are probably hundreds of thousands of unique malware types. Analysts around the world have
different vernacular and may call malware different things depending on its role, type, or variety. Viewed
abstractly, many pro's like to refer to each unique strain of malware as an ecosystem, framework, or
family of related code.

Every type of malware ecosystem, malware framework, or malware code family could have many inter-
dependent parts. But each family is really its own genetic species, with its own DNA that tells it how to
act, how to communicate, and how to do malicious things at the behest of an adversary. Each malware
species has a population ranging from the single digits to the millions. Some species or families of
malware are designed to co-exist and cooperate in symbiosis with others.

The genetic analogy of malware falls apart when you consider that they do not form on their own in the
wild, but are designed, written, programmed and (mostly) operated by humans. But we are still left to
wonder, what causes turnover in malware? What is the average lifespan of a malware species? What
causes malware to rise and fall in popularity or efficacy? Why do some malware ecosystems fail in
months, and why do others live long, healthy lives? And more interestingly, what selective pressures
force a malware family to evolve, or to go extinct?

When I joined Mandiant in 2013, the threats that we faced at the time were no different from today,
except for the names. We worked interactive intrusion activity all night, every night, and the intelligence
team – like biologists, classifying and identifying new species in the field – could not give names to new
malware families fast enough.

Early in an intrusion operation, attacks often employ simple droppers, downloaders and reverse shells.
These early-stage malware families are light and fast, often with trivial persistence and simple commu-
nications methods, and they require minimal development time from a malware author.

Early-stage malware typically has a half-life of less than six months and is easy to abandon and replace
if it gets “burned” or detected. Simply put, these were cheap, throwaway code families that did not
survive long in the wild. They came and went quickly and many did not even last long enough to merit
a name.

But after initial access, our adversaries often deployed late-stage malware frameworks. Once the ad-
versary had a seemingly undetected foothold, they would switch out early malware for deeper mal-
ware frameworks referred to interchangeably as “post-exploitation tooling,” “command-and-control (C2)
frameworks,” or simply “late-stage” malware “backdoors.”

Late-stage malware frameworks often use stealthy C2 schemas and network protocols. They often
have a “core implant” with a modular plugin architecture and novel persistence mechanisms, and they
are designed to provide comprehensive command-line access to remote operators. Late-stage mal-
ware ecosystems require huge development investments and are expected to provide years of utility.
An example of an early-stage malware family may be a simple HTTP downloader that uses a common
Windows\CurrentVersion\Run registry key for persistence. An example of a late-stage malware could
be something like Cobalt Strike’s immensely versatile Beacon payload.

Early-stage malware gets replaced wholesale when it gets burned, whereas late-stage malware can last
for decades with tweaks, forks, improvements, and plugins. Late-stage malware has a longer lifespan

8

because attackers want to protect their development investments. To get extra life out of core implants
(such as TrickBot or SHADOWPAD/POISONPLUG), malware developers must introduce new plugins,
new functionality, and new obfuscations. And they must create increasingly elaborate packaging and
multi-layered delivery schemes to evade detection and subvert meaningful analysis.

You are likely familiar with some of the titans of late-stage malware, from the days of yore. For example,
Poison Ivy and PlugX, which may have been in use as far back as 2005. Or Gh0st RAT, which goes as far
back as 2008. And HiKit, which goes back to at least 2011, maybe earlier.

Poison Ivy and Gh0st dominated nearly a decade of intrusion operations, and they were for the most
part stomped out by public research and tooling to help improve global detection. These families sur-
vive in a miniscule footprint today, but evolutionary pressure pushed these species close to extinction.

HiKit and PlugX were detected, and while they were not snuffed out, they were both forced to evolve.
Over the years we have seen several modernizations, tweaks, forks, and derivatives. In the face of evolu-
tionary pressure, malware developers are working to get extra mileage out of their investments. Source
code from both of these families have been used to create new malware frameworks altogether. These
families aren’t dead yet, but I think the continued development effort shows that we have levied some
cost on the adversaries who wish to continue using these toolkits.

While watching the ascent and decline of Pirpi, CozyCar, Xagent, Zxshell, Derusbi, and countless oth-
er beloved malware families, I’ve learned that it takes years of community effort, intelligence sharing,
open-source tooling, and public detection research to apply pressure on the dominant late-stage mal-
ware frameworks. Versatile late-stage, post-exploitation malware ecosystems become even more com-
plicated because we need to study not only the malware itself, but also how the malware is configured,
deployed and operated by a variety of threat actors in a multitude of campaigns over a long period of
time. Rather than just deep analysis of single samples, we must approach doing bulk analysis of tens of
thousands of files at a time, all within the context of thousands of intrusion operations. That’s no small
feat, especially when it comes to the topic du jour, Cobalt Strike.

Cobalt Strike is a post-exploitation framework that was developed to emulate the greatest features of
late-stage malware ecosystems and allow its users to simulate adversary actions. The adoption of Co-
balt Strike by global threat actors, and the framework’s use in hundreds of genuine intrusions, ransoms,
and data breaches, shows that Beacon has fought its way to the top. It currently sits on the throne as
the reigning champ of all malware toolkits. If it works, it wins.

While Poison Ivy and Gh0st have gone out to pasture, Cobalt Strike and its core implant Beacon have
stepped into the limelight. This forces analysts and researchers around the world to renew their ap-
proaches to collecting, processing and sharing information about Cobalt Strike and its use in bulk.

Can you detect Cobalt Strike payloads before they execute? Or only after they execute? Can you detect
the network C2 traffic? And when you see Cobalt Strike detections, can you differentiate between a red
team engagement and a bona fide intrusion?

More proactively, can you develop intelligence on a Cobalt Strike wave before the first phishing email
is sent your way? Can you identify a C2 server before the adversary builds their first payload? Can you
extract additional intelligence directly from adversary-controlled infrastructure? These are questions
that each organization must ask itself, and the team at BlackBerry are offering different ways to say yes.

“Finding Beacons in the Dark” is a labor of love by practitioners for practitioners. What began as a
project to detect Cobalt Strike exploded into a full-blown automation platform for broad collection, pro-
cessing, and data harvesting from Cobalt Strike team servers with corresponding Beacon payloads and
their configuration details.

9

Through creating this system and analyzing the data en masse, the BlackBerry Research & Intelligence
Team observed trends and developed a holistic picture of Cobalt Strike across many phases of the
threat intelligence lifecycle. From static payload analysis to configs to server fingerprints to unique
toolmarks, the authors of this book provide a practical and detailed look at the Cobalt Strike framework
itself and then dive into examples that will help you understand how it gets used in the wild. There are
some handy detection rules and scripts, as well.

There’s more than meets the eye in these pages, and through the lens of Cobalt Strike you may gain a
better understanding of how threat actors tend to design, configure and operate malware of all types.
(Spoiler alert: ports 80, 443 and 8080 are malware config favorites for good reason -- they are almost
always “open” on network gear!)

If you’re like me, you’ll probably have fun spelunking through the details and operationalizing what you
learn. I hope that this inspires you to become a part of the evolutionary pressure, and more broadly, I
hope that this work serves as a model for how to build and share bulk intelligence analysis about prolific
malware families.

Steve Miller (@stvemillertime)
Researcher, Stairwell, Inc.
Ithaca, New York
October 1, 2021

about steve miller

Steve Miller is a researcher of adversary tradecraft, obsessed with finding human fingerprints in digital
artifacts. Rather than the “Who, What, or Why” of a breach, he focuses on the “How” – the TTPs or modi
operandi of threat actors. Steve loves to operate at the intersection of incident response, threat intelli-
gence, and detection engineering. When he is not finding evil, smashing malware, or writing creative de-
tection rules, he can probably be heard making loud noises with modular synthesizers, drum machines
and other music gear in his underground beat laboratory. Steve is an alumnus analyst of Champlain
College, Mandiant, the U.S. Department of Homeland Security, U.S. Department of State, U.S. Army In-
telligence and Security Command (INSCOM), and the National Security Agency. He joined cybersecurity
company Stairwell, Inc. in August 2021.

10

INTRODUCTION

Cobalt Strike provides adversary simulation and threat emulation software that is widely used by red teams
and heavily abused by malicious threat actors. It has become a highly prevalent threat, employed by a vast
number of Advanced Persistent Threat (APT) and cybercrime groups across the globe.

It is easy to see why this is the case, as it is fully featured and well-documented. From reconnaissance
and spear-phishing to post-exploitation and covert communications, Cobalt Strike is feature-rich, well
supported, and actively maintained by its developers. Beacon, Cobalt Strike’s primary payload, provides a
wealth of features for attackers, which facilitate:

• Reverse shells and remote command execution
• Keylogging and screenshots
• Data exfiltration
• SOCKS proxying
• Pivoting
• Privilege elevation
• Credential and hash harvesting
• Port scanning and network enumeration

For a lot of legitimate as well as criminal organizations, leveraging Cobalt Strike can be cheaper and faster
than developing their own tooling. At the time of writing, licensing starts at $3,500 per license per year. If you
are an unscrupulous bad actor who is using a cracked or leaked copy, the cost goes down to literally nothing.

From a threat intelligence or law enforcement perspective, Cobalt Strike’s widespread use can often make
the task of attribution more challenging, and the current upward trend in utilization is not showing any
sign of decline.

Proofpoint researchers recently reported a 161% year-over-year uptick in the use of Cobalt Strike by
cybercriminals. It has become a perennial problem for security practitioners, requiring robust solutions
that can aid in providing both defensive capabilities and enhanced threat intelligence.

On the defensive side of things, the best thing we can do to tackle the challenge of combating the rogue
use of Cobalt Strike is to have solid processes in place. These processes need to be not only well thought
out, but also driven by data.

Threat Post
Cobalt Strike Usage Explodes Among Cybercrooks
https://threatpost.com/cobalt-strike-cybercrooks/167368/

Proofpoint
Cobalt Strike: Favorite Tool from APT to Crimeware
https://www.proofpoint.com/us/blog/threat-insight/cobalt-strike-favorite-tool-apt-crimeware

11

the role of cyber threat intelligence in xdr

We have defi ned a robust Cyber Threat Intelligence (CTI) lifecycle that considers stakeholders for all prod-
ucts and services across the extended detection and response (XDR) solution space. Over the course of
this book, we’ll guide you through our lifecycle and use Cobalt Strike as a practical hands-on case study.

You may ask, what is XDR? XDR is a fairly new term and one that a lot of folks are not yet familiar with. This
is how IT consulting fi rm Gartner has defi ned it:

“XDR is a SaaS-based, vendor-specifi c, security threat detection and incident response tool that natively
integrates multiple security products into a cohesive security operations system that unifi es all licensed

components.” - Gartner

At its core, XDR is a data ingestion and enrichment strategy. This means that it ingests telemetry from
cybersecurity products and services, as well as insights from threat intelligence teams and information
from third-party sources. This data is then stored in a data lake, which is essentially a storage solution
for raw data on any scale. The ingested data is then further processed to create additional context, which
then drives intelligence-based threat-detection and correlation of incidents and alerts for all XDR products
and services.

So why does XDR matter in the context of this book? Well, the automated ingestion and correlation of
intelligence data helps to decrease the burden of “alert fatigue” for Security Operations Center (SOC)
analysts and incident responders. By providing more contextual information concerning incidents and
alerts, incident responders are better informed to react swiftly and decisively. In addition, the data can
be used for the automation of Incident Response (IR) Playbooks, to help orchestrate workfl ows and
processes during incidents.

How then, do you produce, correlate, and consume CTI to empower XDR-enabled solutions and ser-
vices?

As prevention is always better than a cure, the ultimate solution needs to be more proactive than reac-
tive. The hunted must become the hunter, and for this pursuit, Cobalt Strike Team Servers, our quarry.

Figure 1 – Topological view of XDR

12

SO, YOU WANT TO GATHER CYBER THREAT INTELLIGENCE?
what will you find in this book?

In this book, the BlackBerry Research & Intelligence Team presents a system for hunting the Internet
for instances of Cobalt Strike Team Server, which is the C2 server for one of the most pervasive threats
deployed by modern threat groups: Cobalt Strike Beacon.

In addition, we present our Cyber Threat Intelligence (CTI) lifecycle, which outlines our multi-phase
approach to building intelligence-led protection for products and services underpinning most XDR prod-
ucts and services. The lifecycle outlines the following phases:

• Project planning and direction
• Data collection, processing, analysis, and dissemination
• Continuous improvements via evaluation and feedback

By following our CTI lifecycle to hunt for Team Servers, and extracting configurations from the Beacon
payloads they serve, we aim to demonstrate how you can leverage the resulting dataset to provide pow-
erful intelligence insights. These insights can help to reveal clusters of servers associated with known
threat groups and campaigns, as well as links between them that were previously unseen, empowering
you to expose correlations between seemingly disparate network infrastructure.

Finally, the resulting intelligence can also be leveraged to provide actionable Indicators of Compromise
(IOCs) to all XDR stakeholders, including defenders, hunters, analysts, and investigators alike. These
will help you to:

• Defend your organization
• Produce in-depth CTI reports
• Better understand the threat landscape
• Give better advice to your C-level executives and security teams so that they can make well

informed security-oriented decisions

who is this book for?

This book is for anyone with an interest in gathering Cyber Threat Intelligence, those who want to further
their understanding of Cobalt Strike, or those who simply enjoy a good technical read.

That said, the people who might derive the most reward from this book may include:

• Threat Intelligence Analysts
• Threat Hunters
• Incident Responders
• Forensic Investigators
• SOC Analysts
• Red Teamers

how can you benefit?

By defining a CTI lifecycle, we present a blueprint to help you with creating one that fits your own needs.
It can also be used to help build your own automation platform for harvesting and disseminating cyber
threat intelligence.

13

Walking you through our lifecycle, we begin the collection phase by hunting for active Cobalt Strike
Team Servers. Once the true cyber adversaries’ Team Server instances are identifi ed, it gives us a
unique opportunity to reveal trends and patterns within the data. These insights can help to perform a
variety of useful things, such as:

• Building profi les of threat actors
• Broadening knowledge of existing threat groups
• Tracking both ongoing and new threat actor campaigns
• Providing actionable intelligence to SOC analysts and IR teams
• Fine tuning security products and services under the XDR umbrella

While we use the example of Cobalt Strike in this book, we hope this exercise sparks your imagination
and inspires you to use this for other threat intelligence quests. This industry thrives because it is popu-
lated by so many individuals who are passionate about the sharing of information, including tools, tips
and techniques. By adding our contribution, we hope to keep this altruistic tradition alive.

All these things aside, we hope that in reading this book you may learn a thing or two, have a laugh along
way, or even gain insight into our processes for the purposes of competitive intelligence!

why are we writing about it now?

The unfortunate reality is that the rate of cyber intrusions has grown exponentially in recent years, with
high-profi le ransomware attacks becoming a staple feature of the daily news cycle. The ease with
which threat actors can arm themselves with advanced adversarial tooling means that what was once
quite a complex affair is now nearly effortless. In some cases, it is as simple as copying and pasting
a few commands and pressing a few buttons, as we saw with the leaked Conti ransomware playbook.

Figure 2 – Truncated list of Conti ransomware playbook fi les – Translated

14

While not the only culprit, Cobalt Strike Beacon has been the common denominator in these attacks
time and again. Lesser-financed and lesser-resourced groups – as well as those just looking to blend in
with the crowd – need look no further than cracked, leaked or trial versions of Cobalt Strike. The low bar-
rier to entry this provides, with the ease of propagation through botnets and other distribution services,
has acted as a catalyst for the ransomware epidemic and expedited its rate of growth.

To improve our own intelligence-led protection and correlation of malicious instances of these compo-
nents, BlackBerry created an automated system to scan for Cobalt Strike Team Servers. It downloads
Beacons then extracts and stores their configurations for further processing, analysis, and dissemina-
tion.

The aim of this book is to aid the security community by sharing this knowledge, presenting the steps
we’ve taken to create this automated system, and most importantly, demonstrating how to derive
meaningful threat intelligence from the resulting dataset. This information can then be used to provide
insights, trends and intelligence on threat groups and campaigns.

how is this book organized?

This book is organized into six chapters. It begins with an introduction to our CTI lifecycle, where we out-
line our processes and methodologies. Next, we’ll delve into the specifics of how to develop a system
to perform automated hunting of Cobalt Strike Team Servers, which can yield useful and meaningful
intelligence data.

We will then introduce Cobalt Strike Beacon and its configuration profiles, as well as a full table of
configuration options and common values for quick reference. We will use the resulting knowledge and
dataset to dig deeper into insights and identify trends, uncovering some unexpected revelations along
the way.

Finally, we will enrich our dataset with open-source intelligence (OSINT) using our Threat Intelligence
Platform (TIP), and look to uncover new correlations and groupings, before circling back to reassess our
CTI objectives and findings in a debrief.

BleepingComputer
Translated Conti ransomware playbook gives insight into attacks
https://www.bleepingcomputer.com/news/security/translated-conti-ransomware-playbook-gives-
insight-into-attacks/

15

chapter 1 – beyond the hype
In the first chapter, we’ll outline our CTI lifecycle. We’ll outline how the lifecycle is leveraged throughout
the following chapters to achieve our intelligence objective, which is an automated hunting system for
Cobalt Strike.

chapter 2 – all your beacons are belong to us
The second chapter focuses on the hunt for Cobalt Strike Team Servers. It guides the reader through
developing an automation system to support the collection and processing phases of the CTI lifecycle.

chapter 3 – we are beacon
The third chapter aims to acquaint the reader with Cobalt Strike Beacon configurations, including Mal-
leable C2 profiles and Portable Executable (PE) stager modifications.
Here we’ll be introducing the various configuration values that we will be exploring further to produce
insights and trends in the following chapter. We also present a handy reference table containing all
possible settings along with common values.

chapter 4 – we can’t stop here, this is beacon country
In the fourth chapter, we perform the analysis phase of the CTI lifecycle. We’ll share insights, trends and
discoveries that can be used to augment XDR products and services.

chapter 5 – beacon of hope
Chapter five focuses on how correlating data with OSINT can enhance CTI. Here we reveal how the
insights we’ve uncovered can be used to correlate intelligence with relative ease, and how you can begin
to track Team Server deployments to broaden your awareness of threat actors and campaigns.

chapter 6 – debrief
In the final chapter, we will recap our CTI lifecycle and review each phase as it pertains to building a sys-
tem for hunting Cobalt Strike. We’ll also explore the intelligence insights uncovered along our journey.

disclaimer

It is worth mentioning that no Team Servers were harmed in the making of this book! All findings throughout
the book originate from Beacon analysis. We have not installed, remotely or locally operated, reverse
engineered nor debugged Team Server to arrive at any of our findings or conclusions.

16

cyber threat intelligence

The most visible aspects that many people associate with CTI are the cool names and awesome logos
given to vulnerabilities and threat actors such as HeartBleed, Shellshock, OceanLotus, and even Squirrel
Waffle. More than that, CTI is a discipline, albeit one in its infancy. And as such, it needs a little formalizing.

Recent advances in cybersecurity technology, such as XDR, certainly necessitate the need for more formal
and mature processes. CTI is now widely used to underpin XDR solutions. This means that intelligence
insights are leveraged to enhance protection and correlation, leading to an increased efficacy for security
products and a reduction in alert fatigue for SOCs. We call this intelligence-led protection and correlation.

The current CTI landscape draws from multiple sources, including the military, intelligence agencies, univer-
sities, and the private sector, to name a few. All these influences have offered significant improvements
to what was once simply termed “threat research”, and have helped to evolve CTI processes, workflows,
and paradigms in a short period of time. The speed of development in this area inevitably leads to some
confusion and a lack of consensus on the right way to approach CTI creation.

We’d love to say we have the silver-bullet solution for how to do it properly. In reality, this book aims to
highlight some of the common phases and most critical areas so that we are all on the same page (no
pun intended). When you get hooked on CTI and want to improve your organization’s program, there are
numerous resources, such as books, papers, talks, blogs, and training programs that can help you.

Understanding CTI as a lifecycle – where people, processes, and technology work in harmony – will lead
to the production of intelligence that can be used to assess risk, identify threats, and make informed deci-
sions. And if you insist, you can even give that intelligence product a cool name and a supervillain-esque
personification.

Now that we’ve introduced the concept of CTI, almost everyone will have a different interpretation of what
that means. To avoid any misunderstandings, here is our working definition of CTI that will help you to
understand what we are all trying to achieve...

“Cyber Threat Intelligence collects information to answer specific questions (such as who, what, where,
when, how, or why) about a person or thing that is likely to cause damage or danger to computers or

networked systems.”

That’s kind of wordy, so feel free to take the sentiment and create your own definition for your organization.
It’s important to have a well-understood definition that works for you.

Having both your team and management coalesce around a well-formed idea is hugely beneficial. It keeps
everyone focused on achieving their goals, while management is clear on the outcomes the team will deliver.

Having defined our deliverables, let’s put some thought into how to do it. While there is a great deal of creative
thinking involved in CTI, it should not be the sole requirement of the team. Without a defined framework,
creative thinking can spark inspiration, but it will have no way of following through on its promise.

BEYOND THE HYPE
chapter one

17

By agreeing on a framework, and then developing the people, processes, and tooling to support its execution,
team members will be able to understand their responsibilities on a tactical and strategic level. The ideal
situation is to have well-trained people follow a repeatable process that is supported by the appropriate
tooling, which aligns with a scientifi c methodology. If you achieve this, it will enhance (rather than rely on)
the intuition of individuals.

our cti lifecycle for an xdr world

There are many versions of the CTI lifecycle. The one we choose to use is adapted from multiple lifecycles
and allows us to build repeatable, iterative processes to support the production of intelligence that works
for all stakeholders in our organization.

This section is not meant to be the defi nitive CTI lifecycle. We hope that it will spawn ideas that you can
assess for your own organization and help inform the lifecycle you choose to follow. It also serves as
scaffolding for further information laid out in this book.

Each of the processes, scripts and analyses discussed in this book can be tied back to a distinct phase
of the lifecycle. Thinking of it in this way can provide order to what might seem to be chaos. (If not chaos,
then maybe Thanos, - chaos’ older, more-chaotic sibling.)

The lifecycle we describe in this section isn’t prescriptive in terms of the processes or technology required.
That’s all up to you to decide. The framework we’re providing allows you to decide the appropriate people,
processes and technology that work best, to accomplish the goals of each phase.

Likewise, there is no set number of processes to include in each of the phases. It all depends on what is
needed to achieve your intelligence requirements.

Speaking of intelligence requirements, this leads us nicely onto the fi rst (seemingly most mundane, certainly
most overlooked, and yet critically important) phase.

Figure 3 – Our CTI lifecycle

18

planning & direction

During the planning and direction phase of the CTI lifecycle, we like to set up two key components:

• The question (or questions) to be answered
• The audience who requires the answer(s)

That sounds easy, right?

That’s why this phase is often overlooked or poorly thought through. But the results of paying mere lip
service to planning and direction will haunt you.

Getting this phase right will lead to greater efficiency and focus for your team, as well as a better intelligence
product for your audience. This is the best chance to rid yourselves of ambiguity and assumptions about
what you are trying to achieve.

Thinking back to the description of CTI, the statement, “collects information to answer specific questions”
stands out. The planning and direction phase is where you define the question you are going to answer
throughout the rest of the lifecycle. Everything you do should be focused on answering the question
defined in this phase.

While we are talking about questions; not all questions are created equal when it comes to intelligence
requests. Questions that are generally narrow in scope and those which form a closed loop work better.
They help us by creating tailored knowledge to support specific decisions the individual or group is looking
to make.

Understanding the difference between broad and closed-loop questions can be a little tricky, so let’s look
at some example questions:

What is the biggest cyber threat today?

This question is too broad. Simply put, there are too many different ways to answer it. People can reasonably
have different interpretations of what is required. For example: How do you define “cyber threat?” How do
you define “biggest?” Who is the target that you’re most concerned with? As there is no focus around what
is required, the resulting product will not be useful in supporting any meaningful decision. This might feel
satisfying to explore, but for practical purposes, it will be wasted effort.

A more closed-loop example might be:

What public-facing vulnerabilities have been most commonly exploited in the last three months?

This question is very specific. It clearly delineates what threat we’re concerned with (public-facing vul-
nerabilities), what aspect of it is most relevant (most commonly exploited), and it gives a limited time-
frame (three months).

While you don’t necessarily need to have this much specificity, the more information you can include in
the question, the better your answer will be. This kind of question will result in the team understanding
what is required of them, which means less chance of researchers going off-track. The answer will lead
to actionable intelligence and may still be quite satisfying to explore.

19

Having this narrow focus when producing the intelligence product is key to keeping your team on track
to produce what is needed. This is where things can get a little nuanced; during the process of answer-
ing the question, the team is going to have to work with a lot of data. Some portion of this data may not
be relevant to the question being set. But if your team has taken the time to collect, process and analyze
this data, don’t waste that work (you might just get a book out of it!).

In the world of XDR, this data has its place and should not be discarded as waste. To illustrate the point;
while refining sugar cane into sugar, one byproduct of the process is molasses. Where sugar is the
sweet and shimmering answer to the question, the mineral-rich molasses is the analyzed data that is
irrelevant to the desired outcome.

Other teams will be able to make use of this gooey goodness, and they can make something truly valu-
able out of it. Spread the love and find the teams in your organization that can make the best use of the
results of your hard work.

In this phase you should also think about exactly who is going to consume the produced intelligence,
and what their requirements are. It is all too easy for a passionate researcher to get caught up in a cool
exploit or innovative obfuscation technique. But if the intended audience is a CISO looking to decide
what tooling to buy based on trends in attacker tactics, techniques, and procedures (TTPs), an intelli-
gence product that goes down a different rabbit hole is worthless for answering this question.

An audience might think differently than you, and they could require things that you would disregard.
One way to help define who needs which information is to describe three different types of intelligence:

• Strategic - Broader trends for a non-technical audience
• Tactical - Outlining TTPs of threat actors for a technical audience
• Operational - Details about malware and attacks for a technical audience

Hopefully, you now understand the importance of this phase and can see how putting a little more time
and thought into it will pay off for the rest of your endeavors.

collection

Now that we know what facts we seek and who will be consuming those facts, we need some data to
work with. Before you get all excited and grab all the data from All-The-Things™, keep in mind the question
that we are trying to answer. We need data to answer that question. Specifically, we need relevant data.

Collection is where we gather that relevant data. This could be both internal and external data, including:

• File hashes
• IP addresses
• Domains
• Political news articles
• Historical information
• Logs
• IR reports
• Blogs
• Dark web
• Social media sources
• Code snippets from online repos
• Data dumps

20

From a very generic perspective, external data sources are usually easier to access and consume because
they come from products that are made to be used that way. External sources typically have a well-defined
interface for extracting data, such as via API, or export functionality within the user interface.

Internal data sources require more time and development effort to introduce because they usually aren’t
coming from products designed with that functionality in mind. Pulling that data out might require extra
processes from teams like IR or the SOC, which are busy with their other daily responsibilities. It might also
require further development of internal tools, diverting development resources away from improvements
to the primary function of the tool is a tricky balancing act

The trade-off to consider is that while internal sources contain information that is way more relevant to
your organization, an over-reliance on external sources might not give you the insight you require.

Regardless of where you get your data from, collection is the perfect place to introduce automation. As
you read through the rest of the book, look at the queries and processes used to automate the harvest of
Cobalt Strike Beacons. You should see that they can all be performed by either a human or in an automated
fashion. Where things can be automated, try to make that a reality. The biggest benefit of having humans
in the mix will become apparent soon.

processing

Now you have data, but it might not be ready yet for human consumption. Processing is where you manip-
ulate the data. You organize it, label it, translate it, deobfuscate it, decrypt it, and filter it. You make it ready
for the analyst to use.

As with the previous phase, automation is pretty much a prerequisite for the processing phase. The number
of manipulations you are likely to have to do, over the sheer volume of data you will inevitably gather, is
a huge waste of your most precious resource – your team. Not to mention, this sort of processing is
soul-destroying drudge work.

The final thing to think about as you’re processing data is how to provide a curated dataset somewhere
that your analysts can interrogate it. You can make this as complicated or simple as you like. Microsoft®
Excel® pivot tables can be a pretty powerful starting point. Maltego® and Jupyter® Notebook offer more
advanced visualizations. And for the truly adventurous, PyQt5 makes custom data visualizations very easy.

Figure 4 – The PyQt5 based visualization tool we developed for viewing our Beacon datasets
21

analysis

So now we have a question, we have an audience, and we have relevant data. This is the point at which
humans cannot be replaced. In a phase shrouded by the psychology of cognitive biases, competing hypoth-
eses, and a myriad of reasoning techniques, we attempt to answer the initial question we were assigned.

When conducting analysis, it is important to keep the two outputs from planning and direction clear in your
mind: What is the question, and who is it for?

If you are in the intelligence-creation space, you are (or at least should be) a curious person. While this is
a terrific quality for analysts, it has a significant downside. You always want to know more, so you might
struggle with where to stop analyzing.

On the surface, understanding more about any given subject is better, right? Creating a masterpiece of a
report that takes four months to write means the data you reference might be out of date and therefore not
actionable. Conversely, if you work quicker and get the data out sooner, you might not have the time you
need to assure the accuracy of the data. This balance between time and accuracy versus completeness
is something everyone in the field battles with.

To help with this balance, let us go back to planning and direction. Who is going to consume the intelligence,
and what do they need from it?

As a very rough, very generic guide, we can look back at the different types of intelligence:

• Strategic - Greater need for accuracy and completeness, less time sensitive.
• Tactical - The middle ground. As complete as it can be, while being delivered as quickly as possible.
• Operational - Needs information as close to real time as possible; some lack of accuracy is

tolerated.

Before we move on to the next phase, it is worth noting that entire careers have gone into understanding
how to analyze data. There is no way we can hope to do the science of research and intelligence analysis
any justice in this book. If you are wanting to understand the way people think and reason, Richard J.
Heuer’s book Psychology of Intelligence Analysis is a great place to start.

dissemination

Once you break away from the fun stuff, it is time to gently place your intelligence baby into the hands of
its new owner(s). Your creation needs to be released for consumption by vested stakeholders. In reality,
this will likely involve many teams and individuals who are involved in providing XDR services.

Referring to the initial phase of planning and development again, the medium for this publication will depend
on the audience and their requirements. As with everything contained in this section, there is no right or
wrong way, but there are factors to consider with the different types of intelligence products available.

SOC analysts and IR teams are going to want an intelligence product they can parse quickly, and perhaps
load into tooling. Executives are going to require something that is easily understood, preferably in report
format, or potentially as a briefing with slides and key findings.

Remember where we said that the planning and direction phase will haunt you, if it’s done sloppily? If you
give your IR team a 40-page PDF file, or your executives a list of contextualized IOCs, people aren’t going
to see the value in the intelligence you have lovingly crafted. Delivery of the information should not be an
afterthought.

22

There it is: we’ve planned, collected, processed, analyzed the data. And now we’ve delivered it to the stake-
holder. We’re done, finished, time for the next… But wait! We’re not quite there yet.

There’s one last, equally important, phase to consider before we can call our lifecycle complete.

evaluation and feedback

We made it to the final phase, and it’s time to evaluate the delivered item against the goal we created in the
planning phase. Did we deliver what we wanted to? Was it accurate? Was it timely?

We can’t possibly attempt to answer those questions without something to compare it to. This once again
highlights the importance of the planning and direction phase.

Aside from evaluating the product, we should highlight any deficits that were discovered in any phase of
the lifecycle so that improvements can be made. Because this is a cyclical process, if this step is missed,
it will mean a degradation of the service over time, and repeated failures in future projects.

Evaluating the lifecycle can help us with automation too. Full automation is not always immediately achiev-
able. It often requires an iterative approach over time, with cyclical analysis and development driven by
insights gleaned from repeated manual processing, as well as feedback from stakeholders.

An approach that we’ve implemented, which we’ve found helps us when analyzing the successes and failures
of each phase, is to look at each one through the lens of the three main components needed to deliver it:

• People
• Process
• Techology

For example, when considering the collection phase, ask the following questions:

• Do we have the skill set we needed within the team to identify the relevant data required?
• Does the process for gathering the data execute in a timely fashion?
• Do we have the right tools in place to ingest the data?

If you look at it from this perspective, you can then make recommendations and secure funding with spec-
ificity. And if you want to go the extra mile, you can quantify the improvements to make a business case.

aligning the stars: the cti lifecycle

OK, now that we’ve gotten all the administrative details out of the way, let the games begin.

Typically, when you use the CTI lifecycle within your organization, the points at which the requestor or
customer will interact with the lifecycle are limited. They will be involved in the planning and direction
phase, helping to define what they need and how they need it. The next point at which they will be involved
is when they receive the product, in the dissemination.

The majority of the work you do will be completed out of the spotlight. For the purposes of this book, we will
walk through those phases, to give inspiration in how you can approach the lifecycle within your organization.

Quick quiz: What is the first phase of the lifecycle? You got it, Planning & Direction!

So, for the purposes of this book – what was our question, and who was our initial audience?

23

Eric Milam, our Vice President of Research, tasked the BlackBerry Research & Intelligence Team with
providing intelligence to all XDR stakeholders to help them proactively protect and defend against Cobalt
Strike.

We then asked ourselves….

“How do we proactively defend against Cobalt Strike?”

There is a lot in that question. If you look at it through the advice above, does it meet the requirements of
a narrow question?

Not really! It is broad, and it isn’t an intelligence question. But it has an intelligence component.

So, we worked on what was actually required from the intelligence side of the team. In order to answer the
bigger question, we have several teams who need to consume our intelligence, including SOC teams, product
engineering, data scientists and analysts, all contributing to products and services under the XDR umbrella.

That one question became several questions, with different audiences across the XDR solution space,
and therefore different deliverables.

Our SOC requires contextualized alert information, and asked:

“How can we improve incident correlation and reduce alert fatigue?”

Product engineering wants a better understanding of the operation of Cobalt Strike Beacon, posing the
question:

“How can we fine-tune EDR to detect Beacon payloads?”

Data scientists want labelled data for training models, wondering:

“What features are helpful for training models to classify
Cobalt Strike Beacon payloads and configurations?”

IR wants intelligence correlation, IOCs and TTPs, asking:

“How can we improve correlation and campaign tracking relating to Cobalt Strike?”

Finally, intelligence analysts asked:

“How can we track Team Servers and campaigns?”

Throughout the remainder of this book, we’ll demonstrate our CTI lifecycle by building an automation
system to collect and process Cobalt Strike Beacon payloads, uncovering over 6,000 Team Servers along
the way. We’ll provide our insights and trends from analyzing over 48,000 Beacons served from those
6,000+ Team Servers, and we also exhibit how intelligence correlation can be performed to enhance our
knowledge of threat groups.

Finally, we will debrief, and assess how our results helped answer the questions posed by the various
stakeholders.

24

To defend against Cobalt Strike, we must first understand how it operates.

Cobalt Strike works in an agent and server configuration. Each Beacon is deployed (usually surrepti-
tiously) as an agent on the endpoint and is configured to communicate with a Team Server that acts
as the C2.

One is rendered useless without the other, which gives us a couple of options in terms of hunting and
detection capabilities. We can choose to detect and respond to either the Beacon or the Team Server,
however, there are reasons why you may choose one over the other.

Detecting and responding to the Beacon likely means that a threat actor is already active on our net-
works, or that there has been a patient zero victim. This approach is therefore largely reactive. Detecting
the Team Server has no such requirement and means we do not have to wait for a device to be targeted
before taking action to defend ourselves.

To be proactive, which is the ideal scenario, we must be actively looking to locate and identify Cobalt
Strike Team Servers in the wild. Ideally this would happen as soon as possible once a new Team Server
is deployed. This would allow us to take preventative actions, thereby cutting the head off the snake
before it ever has a chance to get close enough to bite.

So, where can we look to find a source of Team Servers for our data collection purposes?

DATA COLLECTION
defining the scope

There are several data sources we can use to generate a list of Cobalt Strike servers that we will want
to defend against. These sources can include the following:

• Threat intelligence feeds
• Industry reports
• Incident response data
• EDR alerts
• Threat hunting

While they are still valuable, many of these sources are reactive in nature and place defenders on the back
foot. By the time something ends up in an intelligence report or has triggered alerts in your SIEM, something
bad has potentially already happened.

ALL YOUR BEACONS
ARE BELONG TO US

chapter two

25

There are several public methodologies for identifying Cobalt Strike Team Servers or active Beacons.

These can include, but are not limited to:

• Default security certificates
• Default port (50050/TCP)
• A tell-tale extra null byte in HTTP server responses
• Jitter and sleep interval analysis
• JARM signatures
• DNS redirector response

As already stated, our aim is to stay one step ahead of the bad guys and detect Team Servers in the wild.
To this end, we have three main options:

• Scan the entire Internet using a custom-built scanner with the purpose of detecting and analyzing
Cobalt Strike Team Servers

• Leverage well-known and established scanning services already available on the Internet such
as Shodan, Rapid7, Censys or ZoomEye

• Build a hybrid system that leverages public services in conjunction with a private, more targeted
scanner

All options have their strengths and weaknesses. They require differing levels of investment and have
different barriers to entry for any organization looking to implement such a system.

Building and operating a bespoke Internet-wide scanner and analyzer is the best option in terms of the
potential quantity of results. It also offers the best ability to add customizations. But this is also the most
expensive option in terms of the time and skills required to implement it. It might be beyond many orga-
nizations’ capabilities or budget.

The use of public scanning services can be helpful for organizations that do not have an existing way
of discovering or tracking Cobalt Strike infrastructure. However, without an additional layer of human or
automated analysis for quality assurance, these services might not yield optimal results. You could not
achieve a high level of certainty that a server is indeed hosting a Cobalt Strike instance.

Building a hybrid system is a happy medium between these two approaches. This should provide results
that have a high level of certainty, but in a more cost-effective manner. Granted, you might not have the same
volume of results as from a bespoke system, but it would certainly still offer a good return on investment.

crafting some queries

Trying to build a scanner to scan the entire Internet, to accurately fingerprint the systems found, and then
to store all the resulting data is no mean feat. Don’t forget to add to this the potentially significant effort
required to procure the budget for your AWS (Amazon Web Services) bill if you want to do this continuously
and rapidly, and to store the results for any length of time.

This is where services like Shodan can make life easier, as they have already done the legwork for you.
Other researchers have used similar services like Censys and ZoomEye. Or you can opt to use datasets
from Rapid7 instead for Cobalt Strike hunting.

RecordedFuture
A Multi-Method Approach to Identifying Rogue Cobalt Strike Servers
https://www.recordedfuture.com/cobalt-strike-servers/

26

For this paper we will focus on Shodan, but Rapid7 Open Data was also invaluable in our data collection
phase. You may decide to use one or even all the services mentioned.

The important part of this phase is getting relevant data to feed to the next stage of our analysis. Firstly,
we need to craft search queries to unlock the value in Shodan’s data. To limit false positives, these queries
need to be based on known Cobalt Strike Team Server characteristics. The results of these queries will still
need further scrutiny and processing to increase the level of certainty that a server is hosting Cobalt Strike.

It will take time, experimentation, and regular updates to craft a good set of queries that can account for
the different versions of Team Server. These queries should also include instances where the threat actor
has customized their deployment, causing it to go undetected by an existing query set.

Here, we have crafted a query that can be used to detect the “404 Not Found” HTTP response returned
from the NanoHTTPD server used in the backend of a Cobalt Strike Team Server.

This query searches for a HTTP server returning a “404 Not Found” response that has a content length of
zero, a content type of “text/plain”, and which returns a “Date” header.

The number of results returned via this Shodan query is huge, with more than 322,000 in total. The majority
of these would likely be false positives. This is due to the way Shodan queries operate; they will trigger on
any systems that contain the values specifi ed in our query, including systems that contain other headers
in addition to those specifi ed.

Figure 5 - Shodan query to detect Cobalt Strike ‘404 NOT FOUND’ response

Figure 6 – Default NanoHTTPD HTTP header response

Shodan
https://www.shodan.io/

Rapid7 Open Data
https://opendata.rapid7.com/

Censys
https://censys.io/

ZoomEye
https://www.zoomeye.org/
Identifying Cobalt Strike team servers in the wild by using ZoomEye
https://80vul.medium.com/identifying-cobalt-strike-team-servers-in-the-wild-by-using-zoomeye-
debf995b6798

27

For those familiar with programming logic or string comparisons, it is best to think of Shodan queries as
a “contains” comparison, rather than “equals”. To work around this, we will require a tighter, more specifi c
query to fi lter some of these extraneous results out.

For example, if we wanted to remove results that contain a “Connection” header, we can append “AND
NOT “Connection”” to our existing query. This would signifi cantly reduce the number of results and cut
down on false positives.

The alternative to fi ltering at the query level is to perform some additional processing of the results, using
automation or scripting.

Depending on your level of Shodan API access, you might be forced to refi ne the query quite a bit, or else
you risk exceeding your API keys limitations. You will defi nitely need more than one query to cover the
range of Cobalt Strike server confi gurations or customizations, so make sure you adjust your approach
to suit your API limits.

There needs to be a balance between having a query that is not so tight that it creates false negatives,
but also not so loose that you create false positives (which in effect are wasted API query results). API
limitations aside, in most scenarios a false positive is more favorable than a false negative. False positives
can be whittled down later, but false negatives are missed Team Servers, which are potentially active in
the wild and used to conduct attacks.

Another query that has provided valuable results for detecting Cobalt Strike Team Servers is based on
JARM fi ngerprinting. JARM is a Transport Layer Security (TLS) fi ngerprinting tool developed by Salesforce,
which they have leveraged to detect Cobalt Strike Team Servers and other malicious servers.

Shodan added JARM search functionality in November 2020, and it is proving to be a powerful tool in the
threat hunter’s arsenal. The Cobalt Strike Team Server is written in Java, and each Java TLS stack has a
very specifi c JARM fi ngerprint. As Java 11 is frequently used as the build version for a great number of
Cobalt Strike Team Servers, its JARM fi ngerprint has also become a JARM fi ngerprint for Cobalt Strike.

Figure 7 – Shodan Query results for "404 NOT FOUND" response from Cobalt Strike Team Server

Figure 8 - Shodan Query for Cobalt Strike/Java 11 SSL JARM fi ngerprint

ssl.jarm:"07d14d16d21d2107c42d41d00041d24a458a375eef0c576d23a7bab9a9fb1"

Salesforce
Easily Identify Malicious Servers on the Internet with JARM
https://engineering.salesforce.com/easily-identify-malicious-servers-on-the-internet-with-jarm-
e095edac525a

28

Searching a known Java 11 JARM associated with Cobalt Strike, we received a little over 6,000 results:

These results contain Cobalt Strike Team Servers as well as legitimate servers running the Java 11 TLS
stack, so false positives will be present.

We also need to consider that spoofi ng JARM signatures is a possibility, whereby a server can be confi g-
ured to masquerade as a Cobalt Strike Team Server from a TLS/JARM perspective. These spoofed
servers might be confi gured to act as a honeypot that could be used to detect systems like ours, that are
attempting to discover Cobalt Strike Team Servers in the wild. These servers can then be blocked during
future deployments, potentially thwarting our scanning efforts.

Additionally, threat actors with an awareness of JARM fi ngerprinting could also modify their TLS stack in
a way that alters their JARM fi ngerprint to evade detection. Looking at the top 10 JARM fi ngerprints for
Team Servers we have observed in the wild, we can confi rm that this is the case. The top result by far is
the JARM fi ngerprint for the Java 11 TLS stack, but there are several notable deviations from this.

Figure 9 - Shodan Query Results for SSL JARM fi ngerprint for Cobalt Strike Team Server

Cobalt Strike
A Red Teamer Plays with JARM
https://blog.cobaltstrike.com/2020/12/08/a-red-teamer-plays-with-jarm/

SANS
Threat Hunting with JARM
https://isc.sans.edu/forums/diary/Threat+Hunting+with+JARM/26832/

Stefan Grimminck
Spoofi ng JARM signatures. I am the Cobalt Strike server now!
https://grimminck.medium.com/spoofi ng-jarm-signatures-i-am-the-cobalt-strike-server-now-
a27bd549fc6b

29

Other queries can be based on criteria such as Cobalt Strike’s default, self-signed SSL certifi cate, which
we’ll take a closer look at later in the book.

This SSL certifi cate should ideally be changed from the default prior to a live operation or engagement, but
people often neglect to change it when they deploy a Team Server. This gives us an opportunity to discover
servers that still use this certifi cate, whether intentionally or not.

Figure 12 - Shodan Query Results for SSL certifi cate serial for Cobalt Strike Team Server

Figure 10 – Top 10 JARM fi ngerprints

Figure 11 - Shodan query to check for Default SSL Serial

ssl.cert.serial:146473198

30

Lastly, we can also craft queries based on the numerous Malleable C2 profi les for additional coverage
(we’ll cover these profi les in more detail in Chapter 3).

One such example would be a query to detect Team Servers using the Microsoft Update Malleable C2
profi le. This profi le is confi gured to use a certifi cate common name of www[.]windowsupdate.com, to
masquerade as a legitimate Microsoft certifi cate.

When we query for servers using this certifi cate common name, we get far fewer results when compared
to the other queries. But this time we get a higher likelihood of true positives.

With some time and experimentation, and further knowledge of Malleable C2 profi les, common certifi cates,
and HTTP response headers, we can craft multiple queries that will return an abundance of data, which
we will need to further validate for potential Team Server activity.

Figure 13 – HTTP certifi cate from Microsoft Update malleable C2 profi le

Figure 14 – Shodan query results for “Microsoft Update” HTTP certifi cate

31

data validation

Now that we have crafted some queries and started to gather data, how do we validate the results?

There are a few questions that we can ask of the data, which can increase our confidence of a valid detection:

1. Do any servers appear in multiple result sets? (i.e., are there detection overlaps?)
2. Have any of the collected servers been reported via OSINT channels, threat intelligence feeds,

or been observed attacking other organizations?
3. Can we coerce the Team Server to serve up a Beacon?

At a minimum, we need to interrogate the datasets and intelligence feeds for detection overlaps and
duplications and check if any of the servers have already been observed carrying out malicious activities.
Detection overlaps can be used to our advantage here; if we have two or more differing queries or datasets
that return data containing the same IP address, then it can increase the likelihood that the discovered IP
is in fact an operating Team Server.

The ideal scenario is one where we can force a server from our dataset to serve us a Beacon. If we can
do so, then we will know for certain that we have discovered a Team Server and can mark it for the next
stages of our CTI lifecycle.

This will not always be possible, as Team Servers can be protected behind redirectors that can limit
connections to the Team Server itself, thereby preventing us from retrieving a Beacon. In this instance,
there are further ways of detecting Cobalt Strike redirectors that can be added into our validation process
to further increase our detection confidence.

Sticking with the objective of retrieving a Beacon from a Team Server, we need to know how we can emulate
a valid stager check-in so that we are served a Beacon.

There is a bit of behavior that was implemented purposefully to allow interoperability between Cobalt Strike
and Metasploit Framework generated stagers that can help us here. Both Metasploit and Cobalt Strike
stage their payloads in such a way that a specially crafted HTTP request – where the Uniform Resource
Identifier (URI) matches a specific checksum8 value – will cause the Team Server to serve a Beacon.

Depending on the mode of operation and the architecture of the payload being staged, the URI may need to
be of a specific length and have a specific checksum8 value. The breakdown of how this works for Cobalt
Strike can be seen in the table below.

Architecture Mode Checksum8 URI Length Example URI

x86 Normal 92 ANY /aaaaaw

x64 Normal 93 4 /dVbA

x84 Strict 92 5 /aa910

x64 Strict 93 5 /ab820

Table 1 - Stager URI breakdown

32

Armed with this knowledge, we can develop a simple Python script that can generate a URI string to satisfy
any checksum8 validation and URI length checks. This script ultimately could be used to spoof a stager
check-in.

This approach does have its limitations. If the adversary is using a stageless payload in their deployment,
or if they have disabled staging altogether, we would not be able to retrieve a payload. A stageless payload
is one that contains both the payload stage and its confi guration in a self-contained package, so there
is no requirement for a check-in to the C2 to complete the infection process (for more details see Stager
vs. Stageless).

pillaging team servers

At this point, we have one or even several data sources that are providing us with targets for scanning.
We also have a means of generating the correct stager URI required for us to try and download a Beacon
from each of the suspected Team Servers. Combining these two pieces of information, we can begin to
automate the process of emulating a stager check-in to each of the potential targets, and thus save any
returned payloads to disk for subsequent processing and analysis.

Figure 15 – Python script to generate a URI of a specifi ed length and Checksum8 value

33

processing

At this point, we should have some payloads ready for processing, although not all of them will be Cobalt
Strike Beacons. We may have inadvertently hit on legitimate content or have been served spoofed content
to mask the presence of an actual Team Server.

A valid Beacon payload stage is normally a Portable Executable (PE) fi le, most commonly a dynamic-link
library (DLL), or position-independent shellcode that will decode a PE. We can fi lter out false positives by
removing fi les that are not PE fi les or that are smaller data fi les (less than 200KB), as Cobalt Strike payloads
are generally larger than this size. What remains should be Cobalt Strike Beacons ready for confi guration
extraction.

Figure 16 - Python function to attempt to download a Cobalt Strike Beacon

34

beacon config extraction

As already mentioned, the payload served by a Team Server takes one of two possible forms:

1. PE DLL (32 or 64 bit)
2. Shellcode (32 or 64-bit) that subsequently decodes and refl ectively loads a PE DLL fi le in-memory

If we have been served the latter, then we will need to decode the encoded PE before we can attempt to
extract the confi guration data. This can be achieved in several ways, but two of the most common and
easiest to scale are:

1. Statically, by locating the encrypted PE payload and then decrypting it
2. Dynamically, by emulating the shellcode so it self-decrypts, and then writing the decrypted PE

payload to disk

Using either option requires an understanding of how the shellcode decodes the payload within.

The fi rst block of the served payload is the decoder routine, which is responsible for XOR decoding the
embedded PE. Immediately following the shellcode is a 32-bit XOR key that is used to decode both the
payload size and the payload. Immediately after the XOR key is a 32-bit XOR encoded payload size, which
is in turn followed by the variable-length, XOR encoded payload.

When observed in IDA Pro (a popular disassembler), we can see a call to the decoder function immediately
prior to the XOR key, with the encoded size and payload immediately following.

This knowledge will prove useful later when we attempt to decode the payload.
Inspection of the decoder function reveals that it uses an output differential XOR routine to decode the
Beacon payload. The XOR key is initially used to decode the fi rst DWORD of the payload, and then updated
to the value of the fi rst decoded DWORD, which is then used to decode the second DWORD. This process
is repeated until the entire payload is fully decoded, which is determined by the decoded size DWORD.

Figure 18 – IDA view of shellcode and other key components of the shellcode stager

Figure 17 - Breakdown of a shellcode stager

35

Now we are aware of the structure of the shellcode payload served-up by the Team Server and how it
performs its decoding. We can develop some code to perform this statically, so that we can retrieve the
Beacon payload for further processing.

Figure 19 - Output Differential XOR decode routine

Figure 20 - Python function to decode a shellcode wrapped Beacon
36

This code first checks the shellcode’s target architecture (32/64-bit) based on the opcode of the first
instruction of the shellcode. The architecture will determine the pattern of the “call” instruction that should
be located at the end of the decode function.

If a specified “call” pattern can be found, then we will have located the offset for the end of the decoder
routine. Once we know this offset, we can then determine the values for the XOR key and payload size
using their location relative to this offset. With the XOR key and payload size in hand, we can then perform
the output differential XOR decode process, thereby retrieving the encoded Beacon payload.

The final stage in processing is the extraction of the config from the Beacon itself. Locating the config
within a decoded Beacon can be performed quickly using known binary patterns commonly found in the
config. Cobalt Strike Beacon configs have a particular structure and are single-byte XOR encoded, which
causes the encoded config to have tell-tale patterns in its encoded form. The structure looks like this
(using Kaitai Struct):

Index is a WORD (2-byte) value starting at offset 0x0 and is effectively the Setting ID number. The fieldtype
is also a WORD, with three possible values:

• 0x1 for short
• 0x2 for integer (2 or 4 bytes)
• 0x3 for data or string

The value of fieldtype informs us of how to parse the fieldvalue. The fieldlength is also a 2-byte value
indicating the length of the following data in the fieldvalue.

XOR encoding such a rigid collection of structures is highly susceptible to cryptanalysis, causing patterns
to emerge in the encoded data. This is especially clear when those structures are XOR encoded using a
non-null preserving XOR encoding scheme.

Figure 21 - Cobalt Strike Config Entry Structure
(https://gist.github.com/sixdub/a5361168ba7acecf7a7a214bf7e5d3d3)

37

Depending on the version of Cobalt Strike Team Server that generated and served the Beacon in question,
this will determine the pattern we need to search for. The default XOR key value is 0x69 for versions prior
to version 4, and 0x2e from version 4 onwards.

It is rare to see Beacons that have strayed from these default XOR values, but it can and does happen. In
such cases, it would be necessary to brute force the XOR key value.

The first record in a Beacon’s config is the “Beacon Type” setting. The “Beacon Type” entry in the config has
an index of 0x1, fieldtype of 0x1, fieldlength of 0x2 and the fieldvalue varies depending on the Beacon Type.
This means that the first six bytes of the Beacon config remain static and have a hex value of \x00\x01\
x00\x01\x00\x02. When this is encoded using XOR with a key of 0x69 or 0x2e, we end up with two possible
output patterns to search for in order to locate the start of a config block. These are \x2e\x2f\x2e\x2f\
x2e\x2c and \x69\x68\x69\x68\x69\x6b.

If we find such a pattern, we will simultaneously know where the config starts as well as the value of the
XOR key used in its encoding. Incidentally, this is also a useful “quick ‘n dirty” means of distinguishing
between versions 3.x and 4.x of Cobalt Strike.

If neither pattern is discovered, then we might be looking at one of the rare Beacons using a non-default
XOR key. But we can still apply the same methodology in order to locate the encoded config by rotating
through all possible single-byte XOR key values until a matching pattern is found.

Now that we can find the config within a decoded Beacon and have awareness of the XOR key as well as
an understanding of the structure of each setting in the config, we can automate the final step of extracting
the configuration. Once the configuration is parsed and dumped, we can store the results in a database
for further analysis. SQLite is more than adequate for this purpose, but an ELK (Elasticsearch, Logstash,
and Kibana) stack works well, too. It all depends on what best serves your needs and fits with existing
services and solutions.

Several Beacon config parsers are available and in common use by the security community. Here’s a helpful
and informative blog post about building a parser using Kaitai Struct.

Justin Warner
Using Kaitai Struct to Parse Cobalt Strike Beacon Configs
https://sixdub.medium.com/using-kaitai-to-parse-cobalt-strike-beacon-configs-f5f0552d5a6e

38

automating the hunt for cobalt strike

Now that we have defi ned our data sources, pillaged some Team Servers for shellcode and Beacons, and
extracted their confi gs, we need to consolidate everything into an automated workfl ow.

This automation can serve the needs of key stakeholders across all XDR products and services.

Data collected from multiple sources will be passed through a validation process to provide a confi dence
rating based on several criteria, such as:

1. Source of data i.e., threat intelligence feed, Shodan, IR etc.
2. Confi dence of search query (if any)
3. Overlap in detections i.e., same data from multiple sources
4. Beacon retrieved and processed

Once evaluated and scored, the data can be stored, disseminated, and acted upon as required. If necessary,
this data could also be made accessible using an API so that it can be easily leveraged in future automa-
tion endeavors. When performed at scale, and over a long period of time, the resulting dataset can offer a
wealth of information that can be used to bolster defenses, prevent breaches, and enhance intelligence.

But before we delve into the dataset closely, it’s worth spending a moment familiarizing ourselves with
Beacon’s confi guration and “Malleable C2 profi les”, so we can take stock of some of the data we have to
play with.

Figure 22 - Cobalt Strike hunting automation

39

WE ARE BEACON
chapter three

As you’re gathering data, it’s important to understand one aspect of Cobalt Strike functionality, as it
makes a big difference in our ability to create clusters. Cobalt Strike Beacons are highly configurable
through their use of Malleable profiles, which offer an unusual opportunity for both defenders and threat
actors.

Malleable profiles specify how a Beacon acts and looks in the target environment. These profiles also
specify what parameters are to be used within their communication protocol, and even the method that
Beacon uses to inject into other processes.

Malleable profiles use their own “profile language” that allows the attacker to state individual Beacon
parameters. It also enables attackers to craft a bespoke binary so that they can remain undetected by
security solutions and blend in with existing activity on the endpoint.

Cobalt Strike uses the phrase “Malleable C2” as an umbrella term, but it describes more than just com-
munications settings. The highly configurable and malleable nature of Cobalt Strike can be broken down
into several sections:

• Malleable C2:
• General settings
• HTTP stager options
• HTTP GET/POST request metadata
• HTTPS certificates

• Malleable PE:
• Process injection
• Post exploitation

Before we delve into the nuts and bolts of Malleable profiles, it’s probably best to introduce some termi-
nology around “stagers” first.

stager vs. stageless

A Cobalt Strike Beacon can be either served by a payload stager or deployed directly in the form of a
so-called “stageless package”.

A stager is a small executable that will download the Beacon payload DLL from a remote Team Server.
The executable consists of a simple routine that uses Windows® APIs to pull down the payload and run
it directly from memory.

The downloaded Beacon binary starts with a small shellcode stub that is placed at the beginning of its
DOS header. The shellcode executes the ReflectiveLoader (or renamed) export, which in turn loads the
Beacon DLL into memory and executes it.

40

There are several types of Cobalt Strike stagers working over different protocols, the most common
being:

• HTTP/HTTPS stagers that simply download a Beacon payload using the InternetReadFile API
• DNS stagers that use the DNSQuery_A API to read a Beacon payload from DNS TXT record

responses
• CP/Bind stagers that connect to the specifi ed IP address using raw sockets and read a

Beacon payload directly over the socket
• SMB stagers that read a Beacon payload locally through a Windows named pipe

Conversely, stageless payloads do not rely on any network/inter-process communication to pull down a
Beacon payload. Instead, the Beacon DLL is obfuscated and embedded inside the initial shellcode. The
shellcode then decrypts the DLL and executes the code in its header, which in turn refl ectively injects
the DLL into memory.

malleable c2

The Malleable C2 section of the profi le refers specifi cally to the defi nition of the communication pro-
tocol used between the Beacon and the Team Server. In the Malleable C2 language, each section is
referred to as a “block,” which delineates the grouping of parameters to be set within each section.

The following examples of these blocks have been taken from the “jquery-c2.3.14.profi le” Malleable C2
profi le.

General

These are general options that defi ne operational settings for the Beacon’s C2 communication such as
useragent, tcp_port, pipename etc.

Figure 23 – Example Malleable C2 profi le

Cobalt Strike
Malleable Command and Control
https://www.cobaltstrike.com/help-malleable-c2

Threat Express
malleable-c2/jquery-c2.3.14.profi le
https://github.com/threatexpress/malleable-c2/blob/master/jquery-c2.3.14.profi le

41

HTTP-Confi g

The http-confi g block is a server-side block that defi nes the served HTTP response headers, as well as
which user-agents are allowed or blocked when specifi ed by clients in their HTTP request headers. If the
user-agent is blocked, the requestor will receive a 404 error.

If the server is behind an HTTP redirector, the trust_x_forwarder_for parameter can be set. However, both
this option and the user-agent permission modifi er are not used within the following example.

HTTP-Stager

The http-stager block defi nes the parameters used within the HTTP staging process for the Beacon
binary itself. These are used to retrieve the Beacon binary from the Team Server. The http-get and http-
post blocks aren’t used until the Beacon has been loaded into memory on the victim machine. While not
shown here, a nested server block can also be specifi ed for server-side confi guration. We have chosen
to omit the server block from the subsequent examples, as they are not as relevant to the confi guration
extraction as the client block.

HTTP-GET

The http-get block defi nes both server-side and client-side parameters such as the URI to be used in
facilitating GET requests. In the following example a nested client block then holds client-specifi c GET
request modifi ers, such as header fi elds and encoding. This block and the subsequent http-post block in
the next example also have client/server agnostic parameters, as well as the nested blocks.

Figure 24 – Example HTTP confi guration options

Figure 25 – Example HTTP stager options

42

HTTP-POST

Like the http-get block, the http-post block defi nes the parameters to be used in sending POST requests.
The id block specifi es the parameter to be appended to the POST request URI and the output block
determines how the data is encoded.

Figure 26 – Example HTTP GET options

Figure 27 – Example HTTP POST options

43

HTTPS-Certifi cate

The https-certifi cate block enables the operator to fully customize the certifi cate that they use for Cobalt
Strike C2 communications. Three scenarios are possible when encrypting the communication:

• Use a trusted and signed certifi cate stored within a Java Keystore fi le
• Create your own self-signed certifi cate
• Specify values to be used with the default Cobalt Strike self-signed certifi cate

malleable pe

While the section on Malleable C2 deals with the communication between Team Server and Beacon, the
Malleable PE section defi nes the in-memory characteristics and non-network-related behaviors of the
Beacon payload on a victim’s machine.

Stage

The stage block is largely responsible for the physical attributes of a Beacon binary. Various parameters
can be toggled to enable different methods of detection evasion, such as the stomppe, obfuscate and
sleep_mask boolean operators.

Other values such as compile_time, and rich_header can help in further obfuscating the binary by alter-
ing attributes that researchers might use to identify or track the actor.

Of special note are the transform-x86 and transform-x64 blocks, which allow for further modifi cation of
the Beacon’s injection stage using three operators: prepend, append and strrep, depending on the target
architecture of the Beacon.

As the name suggests, prepend is used to prepend bytes to this stage, append to append, and strrep to
replace or remove default strings (for example, null out the beacon.dll module name).

In the example below we can see several bytes being prepended. This is in fact a NOP sled.

Figure 28 – Example HTTPS certifi cate options

44

Process Injection

The process-inject block is responsible for the parameters used to facilitate process injection. This in-
cludes the technique to be used to allocate memory and the allocation size, among others. Like the
stage block, the transform-* blocks are used to pad and transform the injected data.

Lastly, an execute block is used to specify the methods by which the Beacon will inject into a process.
You can specify multiple values here and they will be tried if previous values fail. As the documentation
says, the execute options must cover all “corner-cases” such as self-injection, or cross-session remote
process injection. With this said, we will see these parameters when extracting the confi guration from
the binary.

Figure 29 – Example Beacon stager options

Cobalt Strike
PE and Memory Indicators
https://www.cobaltstrike.com/help-malleable-postex#memory

45

Post Exploitation

The spawnto options are used by Beacon to control which process it will spawn and inject certain pay-
loads into. Several payloads, such as screenshots, keyloggers, and hash dumping are implemented as
Windows DLLs. Because of this, they require a target process to be injected into in order to execute.

The spawnto paths must be the full path to the target process, although environment variables are
accepted, and special keywords, syswow64 (x86) and sysnative (x64) are resolved by Beacon to their
respective paths, depending on architecture.

Figure 30 – Example Process injection options

Figure 31 – Post exploitation options

Cobalt Strike
Process Injection
https://www.cobaltstrike.com/help-malleable-postex#processinject

46

In addition, it is also possible to supply settings to configure output pipe names, perform “smart” injec-
tion, enable/disable AMSI (the Windows Antimalware Scan Interface), and obfuscate post-exploitation
payload DLLs.

Example Extracted Beacon Configuration

You can see an example of some of the settings that can be extracted from a Beacon below. Depending
on the configuration and version of Cobalt Strike, not all settings will be present or populated. We’ve
included the most popular values observed across our dataset for reference purposes:

ID Name Type Setting
Description

Common
Values

1 BEACONTYPE SHORT Type of Cobalt Strike
Beacon

0x0 (HTTP – windows/beacon_http/
reverse_http)
0x1 (Hybrid HTTP and DNS – win-
dows/beacon_dns/reverse_http)
0x2 (SMB – windows/beacon_smb)
0x4 (TCP – windows/beacon_tcp)
0x8 (HTTPS – windows/beacon_https/
reverse_https)
0x10 (Bind TCP – windows/beacon_
tcp/bind_tcp)

2 PORT SHORT Port to use for C2
communication

80, 443, 8080, …

3 SLEEPTIME INT Time between C2
check-ins (in millisec-
onds).

60000, 5000, …

4 MAXGETSIZE INT Maximum size of GET
transaction.

1048616, 1398104, …

5 JITTER SHORT Percentage variation
above and below the
value of SLEEPTIME,
which creates a sleep
range from which a
random sleep value is
chosen.

0, 20, 37, …

6 MAX_DNS SHORT Maximum length
of hostname when
uploading data over
DNS.

255

Cobalt Strike
Post Exploitation Jobs
https://www.cobaltstrike.com/help-malleable-postex#postex

47

7 PUBKEY_MD5 STRING MD5 hash of SSL
public key used for
metadata encryption
whenever a Beacon
checks-in.

e9ae865f5ce035176457188409f6020a,
…

8 C2SERVER STRING List of C2 Team Server
IPs/domains and
URIs.
May be indicative of
domain fronting.

192.168.0.1,/cx
tencentcs.com,/cx
amazonaws.com,/cx
cloudfront.net,/cx
…

9 USERAGENT STRING User-Agent for HTTP
communications.
Default is random
IE11.

Mozilla/5.0 (Windows NT 6.1; WOW64;
Trident/7.0; yie11; rv:11.0) like Gecko

10 SUBMITURI STRING URI used in HTTP GET
transactions.

/submit.php

11 C2_MAL-
LEABLE_IN-
STRUCTIONS

STRING Operations to carry
out on C2 response
data buffer – see blog
post: https://usualsus-
pect.re/article/cobalt-
strikes-malleable-c2-
under-the-hood

Base64 decode, NetBIOS decode “a”, …

12 C2_GETREQ_
META

STRING Metadata fields
passed in HTTP GET
request.

Cookie

13 C2_POST-
REQ_META

STRING Metadata passed in
HTTP POST request.

Content-Type: application/oc-
tet-stream, id

14 DEPRECAT-
ED_SPAWNTO

STRING Formerly a hex encod-
ed process name.
Currently an MD5 hash
of a file (sometimes
releasenotes.txt) on
the Team Server.

72756e646c6c33322e657865 (run-
dll32.exe)
fbf34aa48d6080bf8ef3eaff8ecf9a31

15 PIPENAME STRING Name of the pipe to
use for SMB Beacon’s
peer-to-peer commu-
nication.

\\%s\pipe\msagent_%x

16 DEPRECAT-
ED_KILLDATE_
YEAR

INT Date after which Bea-
con will refuse to run
– Year component.

0

48

17 DEPRECAT-
ED_KILLDATE_
MONTH

INT Date after which Bea-
con will refuse to run
– Month component.

0

18 DEPRECAT-
ED_KILLDATE_
DAY

INT Date after which Bea-
con will refuse to run
– Day component.

0

19 DNS_IDLE INT IP address used to
indicate no tasks are
available for DNS
Beacon.

0.0.0.0

20 DNS_SLEEP INT Force a sleep prior to
each DNS request.

0, 1

21 SSH_HOST STRING SSH hostname ssh.example.com

22 SSH_PORT SHORT SSH port 22

23 SSH_USER-
NAME

STRING SSH username username

24 SSH_PASS-
WORD

STRING SSH password password

25 SSH_PUBKEY STRING Base 64 encoded SSL
public key used for
metadata encryption
whenever a Beacon
checks in.

MIGfMA0GCSqGSIb3DQEB-
AQUAA4GNADCBiQKBgQC-
D+Oczoukk74PeZXRGOM2yY3qhD-
D26eZpDSzwrw78VelF8lpJ8pNZ-
rrkgrSaeN60KUCaWoyxRCL1AA7/
zwXEpg1lzpDcP1iVdFxyFD-
40Dg1EMn4Cw4t3GkwtAnD6HqTK-
wvGm2ThqVZH2hH3tu5HIt7u/xIerzsY-
JReoVoR3dsqmQIDAQABAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAA==

26 C2_VERB_GET STRING Verb to use for GET
transaction.

GET, POST

27 C2_VERB_
POST

STRING Verb to use for POST
transaction.

POST, GET

28 C2_CHUNK_
POST

INT Chunk Beacon re-
sponses.

0, 1

29 SPAWNTO_
X86

STRING The 32-bit program
that the Beacon will
inject DLL payloads
into.

%windir%\syswow64\rundll32.exe

49

30 SPAWNTO_
X64

STRING The 64-bit program
that the Beacon will
inject DLL payloads
into.

%windir%\sysnative\rundll32.exe

31 CRYPTO_
SCHEME

SHORT Encrypt Beacon C2
communications.

0, 1

32 PROXY_CON-
FIG

STRING Address of SOCKS
proxy server.

http://127.0.0.1:8080

33 PROXY_USER STRING SOCKS proxy user-
name.

test

34 PROXY_BE-
HAVIOR

STRING SOCKS proxy Pass-
word.

test

35 PROXY_BE-
HAVIOR

SHORT Proxy behavior setting. Use IE settings, Use direct connection,
Use Proxy Server

36 DEPRECATED
_INJECT_OP-
TIONS

SHORT Replaced by PRO-
CINJ_ALLOWED.

1, 3

37 WATERMARK INT Cobalt Strike custom-
er ID.

305419896, 0, 1873433027,
1359593325, …

38 CLEANUP SHORT Determines if Beacon
will attempt to free
memory associated
with the Reflective
DLL package that
initialized it.

0, 1

39 CFG_CAU-
TION

SHORT Perform CreateThread
before injecting code
into memory.

0, 1

40 KILLDATE INT Date after which Bea-
con will refuse to run
(YYYYMMDD).

0, 20211231, 20990101, …

41 GARGLE_
NOOK

INT Obfuscate .text sec-
tion size.

0, 152826, …

42 GARGLE_SEC-
TIONS

STRING Obfuscate section
information.

00600200b1fb-
020000000300c0a0030000b003008c-
cd03

43 PROCINJ_
PERMS_I

SHORT Initial permissions for
injected content.

PAGE_EXECUTE_READWRITE

50

44 PROCINJ_
PERMS

SHORT Final permissions for
injected content.

PAGE_EXECUTE_READWRITE

45 PROCINJ_MI-
NALLOC

INT Minimum amount of
memory to request for
injected content.

17500

46 PROCINJ_
TRANSFORM_
X86

STRING Transform x86 inject-
ed content.

Prepend: b’\x90\x90’

47 PROCINJ_
TRANSFORM_
X64

STRING Transform x64 inject-
ed content.

Prepend: b’\x90\x90’

48 DEPRECAT-
ED_PROCINJ_
ALLOWED

SHORT Replaced by PRO-
CINJ_EXECUTE.

5, 7

49 BIND_HOST SHORT Bind to 0.0.0.0 or local-
host (applies to Bind
Beacon only).

0, 1

50 USES_COOK-
IES

SHORT Store transformed
metadata into HTTP
header Cookie.

0, 1

51 PROCINJ_EX-
ECUTE

STRING Windows APIs used in
process injection to a
remote process.

CreateThread
SetThreadContext
CreateRemoteThread
RtlCreateUserThread
NtQueueApcThread-s
NtQueueApcThread

52 PROCINJ_AL-
LOCMETHOD

SHORT Allocation method/
API used by Reflective-
Loader.

VirtualAllocEx, NtMapViewOfSection

53 PROCINJ_
STUB

STRING MD5 hash of the
cobaltstrike.jar Team
Server JAR archive.

b2736f1cbba90d42286fc42bfba74f4d

54 HOST_HEAD-
ER

STRING Host header value in
HTTP communica-
tions.

Host: 8.8.8.8

55 EXIT_FUNK SHORT If set, sleep indefinite-
ly instead of calling
ExitThread.
Only used if CFG_CAU-
TION is also set.

0, 1

56 SSH_BANNER STRING SSH Banner. -

51

57 SMB_FRAME_
HEADER

STRING Header to prepend to
SMB messages.

Prepend: b’\x04’
Prepend: b’\x05\x80’
Prepend: b’\x07\x80\x80\x80’

58 TCP_FRAME_
HEADER

STRING Header to prepend to
TCP messages.

Prepend: b’\x04’
Prepend: b’\x05\x80’

59 HEADERS_TO_
REMOVE

STRING List of HTTP client
headers to remove
from Beacon C2.

-

60 DNS_BEA-
CONING

STRING DNS subhost prefix for
beaconing requests.

-

61 DNS_GET_A_
RECORD

STRING DNS subhost prefix for
A record requests.

cdn., …

62 DNS_GET_
AAAA_RE-
CORD

STRING DNS subhost prefix for
AAAA record requests.

www6., …

63 DNS_GET_
TXT_RECORD

STRING DNS subhost prefix for
TXT record requests.

api., …

64 DNS_PUT_
METADATA

STRING DNS subhost prefix
for metadata record
requests.

www[.], …

65 DNS_PUT_
OUTPUT

STRING DNS subhost prefix for
PUT record requests.

post., …

66 DNS_RESOLV-
ER

STRING List of IP addresses
for the DNS resolver to
use for egress.

1.1.1.1
8.8.8.8
…

67 DNS_STRAT-
EGY

SHORT Behavior for choosing
which host to use for
egress.

round-robin
random
failover
duration

68 DNS_STRATE-
GY_ROTATE_
SECONDS

INIT Duration to use each
host before using the
next host.

-1

69 DNS_STRATE-
GY_FAIL_X

INT Failover retry count. -1

70 DNS_STRATE-
GY_FAIL_SEC-
ONDS

INT Failover retry timeout. -1

Table 2 – Cobalt Strike Beacon configuration structure showing common default values

52

detecting the beacon configuration with yara

The following YARA rule can be used to detect the XOR encoded configuration used by Cobalt Strike
Beacon stagers based on commonly observed values. The rule is optimized to first check for one of the
common XOR encoded configuration headers in the .data section, before checking the .data section for
various XOR encoded strings commonly found in Beacon profiles.

The rule will detect more than 99.9% of the Beacons DLL payloads we’ve encountered. It typically only
fails on payloads that have been manually reconfigured to use non-standard XOR keys or those that use
a very sparse configuration.

Figure 32 – YARA rule for detecting Cobalt Strike Beacon XOR encoded configurations in PE files

53

Armed with a dataset comprising information from over 6,000 Team Servers, as well as the configuration and
PE stager data from nearly 48,000 Beacons, we can begin to perform the analysis phase of the CTI lifecycle.
The initial analysis we performed on the dataset focused on clustering information based on several unique
indicators. This clustering can help us spot patterns regarding a variety of different features such as:

• Common configuration settings
• Compilation timestamps
• Popular Team Server IP addresses
• ASNs used for hosting
• Ports used for serving Beacons
• Domains used for fronting
• Watermark values
• Process injection and memory allocation techniques

These insights can prove invaluable for fine-tuning the alerting capabilities of XDR products and services.
They can also help you to build profiles on new threat actors and correlate intelligence about known groups
and campaigns.

During the manual analysis phase, we also made several previously undocumented discoveries concerning
Beacon configuration settings that can be particularly useful for tracking and monitoring threat groups.
Let’s delve more closely into the Malleable C2, post exploitation, and stager settings to see what insights
we can glean from such a comprehensive dataset of Beacons.

constellating

Analyzing Beacon configuration data can give great insight into the various Cobalt Strike configuration
possibilities and the frequency with which each configuration value occurs. As mentioned, this data is
excellent for the tuning of security products. It can also be hugely beneficial in a SOC environment to
augment and improve upon existing incident alerting and detection mechanisms.

To further enhance our clustering capabilities, we can perform some deep visual analysis of the config-
uration data. This can help us see patterns that are only visible when we have access to a lot of data. For
example, simply by extracting and correlating the C2SERVER setting, we can see clusters of Cobalt Strike
networks emerge that would not ordinarily be apparent. We colloquially refer to these as “constellations”
due to their resemblance to stars in the night sky.

WE CAN’T STOP HERE,
THIS IS BEACON COUNTRY

chapter four

54

In the visualization above, each luminous speck (or star in a constellation!) is an IP or domain that has
either served a Beacon or is acting as a C2 server for a Beacon. To create the connections between
nodes, we track the IP or domain that has served a particular Beacon and then link it to the infrastruc-
ture dictated by the C2SERVER setting.

When we create connections within a larger dataset, we can start to see clear patterns emerge. Infra-
structure that seemed disparate begins to form relationships, or it will overlap with known infrastructure
from threat groups and active campaigns. This also aids attribution, as we only need to identify “a single
star in the night sky” (via an IP address or confi guration setting) to map the entire constellation (that is
to say, a threat group).

Finally, it is worth noting that some of the largest clusters are likely due to custom Network Address
Translation (NAT) or routing confi gurations, rather than being a cluster of individual Cobalt Strike Team
Servers, making some of the constellations appear larger than they might be in reality.

networking

The information gained through scraping the Internet for Beacons helps to paint a clearer picture of the
Cobalt Strike topography. This includes a variety of features, from popular hosting netblocks and Auton-
omous System Numbers (ASNs), to common ports, domain fronting and default certifi cates.

Let’s dive in and take a look at some of the most common networking trends.

Figure 33 – Clustering Infrastructure based on the extracted C2SERVER setting

55

netblocks

Looking at the ASNs for the 6,000+ Team Server IP addresses in our dataset, we can easily determine
which netblocks are primarily responsible for Team Server deployments:

This reveals an interesting trend: Threat actors are increasingly likely to use legitimate cloud providers
for hosting. This allows the malware operators to conceal their traffi c from monitoring systems, which
makes the task of automated blocking trickier. This is especially problematic because several large and
reputable companies are fi rmly in the top 20 list of providers:

Figure 34 – Top 10 Team Server ASNs since March 2021

ASN Country

CNNIC-ALIBABA-CN-NET-AP Hangzhou Alibaba Advertising Co., Ltd. CN

CNNIC-TENCENT-NET-AP Shenzhen Tencent Computer Systems Company
Limited

CN

AS-CHOOPA US

CLAYERLIMITED-AS-AP Clayer Limited HK

POWERLINE-AS-AP POWER LINE DATACENTER HK

AMAZON-02 US

DIGITALOCEAN-ASN US

CNNIC-ALIBABA-US-NET-AP Alibaba US Technology Co., Ltd. CN

IT7NET CA

HOSTKEY-AS NL

ASSEFLOW Amsterdam Internet Exchange AMS-IX IT

56

The popularity of individual netblocks hosting Cobalt Strike Team Server is perhaps most helpful for
alerting and monitoring purposes. Often, Team Server is hosted on an IP range used solely for nefarious
purposes, and these ranges can be blocked directly by security software and appliances, as well as used
to conduct further hunting, monitoring and alert correlation:

BCPL-SG BGPNET Global ASN SG

GOOGLE US

PINDC-AS RU

ASN-QUADRANET-GLOBAL US

ITLDC-NL UA

AS-COLOCROSSING US

SELECTEL-MSK RU

XIAOZHIYUN1-AS-AP ICIDC NETWORK US

UCLOUD-HK-AS-AP UCLOUD INFORMATION TECHNOLOGY HK LIMITED HK

Table 3 – Popular ASNs

Figure 35 – Top 10 netblocks hosting Team Sever since January 2021

57

We can see which countries have been responsible for hosting most of the Cobalt Strike servers over
the past eight months by performing an IP geolocation lookup for each of the Team Server IP addresses
in our dataset and correlating them with last seen date:

ports:

Cobalt Strike Beacons are typically served on standard HTTP/S ports. Over two-thirds of Team Servers
are confi gured to serve Beacons using ports 80, 443, and 8080:

Figure 36 – Top 10 countries hosting Team Severs since January 2021

Figure 37 – Top 25 Team Server ports serving Beacon payloads

58

This information can prove useful in the automation phase, especially when presented with a suspected
Team Server IP address with no port information (this is a fairly common occurrence when scraping
blogs and OSINT sources). In this instance, it is at least possible to try knocking on the top 25 common
ports to see if the Team Server can be pillaged for Beacons. Nearly 90% of the time this results in suc-
cess.

certificates

As mentioned, for Beacons served over HTTPS, the attackers will confi gure an SSL certifi cate that the
Team Server uses to perform encryption. SSL certifi cates are often reused across network infrastruc-
ture, and this can provide a reliable means of grouping Beacons for hunting, alerting, and investigative
purposes.

Although not frequently supplied, common certifi cate names from across our dataset include:

Figure 38 – Top 10 SSL certifi cate names

59

Delving deeper, one particular SSL certifi cate, with a serial number of 146473198, is especially wide-
spread and used to serve 11% of all Beacons in our dataset. Searching for the certifi cate serial number
on Shodan uncovers a further 677 IP addresses (not all active) using this “default”, Cobalt Strike-affi li-
ated HTTPS certifi cate:

Based on historical IP analysis, this SSL certifi cate has been associated with at least 9,000 Cobalt Strike
Team Server deployments over time. Why anyone deploying Team Server – whether they’re a red-team-
er or threat actor – would use the default certifi cate is somewhat of a mystery. It is easy to detect and,
as we’ve already demonstrated, this can be a very powerful mechanism for discovering active Team
Servers on the Internet.

Finally, the top 10 certifi cates from our dataset were used to serve over 12% of all Beacons, but the
default is by far the most widespread:

Figure 39 – Default Cobalt Strike SSL certifi cate

60

configuration

The following sections will focus on the confi guration data contained within Beacon payloads. We will
be honing in on many of the options that are specifi ed by the attackers via Malleable C2 profi les, as
well as some of the lesser-known options (such as SSL public keys and stager options) that have been
recovered from Beacon PE fi les.

By performing further analysis of our Beacon dataset, it was possible to fi nd the various profi les used
to confi gure Beacons. To do this, we fi rst obtained as many Malleable C2 profi les as we could get our
hands on. Then we built an add-on for our automation system that checks for similarities with various
confi guration values within Beacon payloads.

By using an algorithm called “hamming distance,” it is possible to compare two strings and determine
how many times someone would need to edit them (or make substitutions) to make the strings identi-
cal. The resulting number of edits or substitutions is called the “edit distance.”

Based on that computed edit distance, we can then decide how similar to known profi les the HTTP and
GET request metadata is, and whether the metadata has been modifi ed from the base profi le. This can
be yet another helpful approach for tracking threat actors.

In addition, values from the “stage” section of the Malleable C2 profi le (such as the compile time and rich
header) are compared to those in the Beacon PE fi les we’ve obtained, to determine if a known stager
profi le was used. This is worth checking closely, as it is entirely possible for threat actors to mix and
match confi g blocks. And again, this can be a useful indicator for campaign tracking purposes.

Across our dataset, we’ve observed the following profi les, based on HTTP GET/POST metadata and
stager compile times and rich headers:

Figure 40 - Top 10 certifi cate serials

61

Figure 41 - Profi les by HTTP GET request metadata:

Common Malleable Profi le Confi guration Values

Figure 42 - Profi les by stager compile time:

62

Figure 43 - Profi les by HTTP POST request meta:

Figure 44 - Profi les by stager rich header:

63

watermark

Each Cobalt Strike build is shipped with a watermark value that is unique per customer/license. In the-
ory, this should offer the perfect mechanism for tracking threat actors who deploy Cobalt Strike Team
Servers in the wild.

Unfortunately, the watermark value is easily spoofed, and there are many trial, cracked, and leaked cop-
ies of Cobalt Strike that are easy to acquire. This means that the watermark value can often be a poor
choice for performing attribution or classification of major threat groups.

On the other hand, this watermark can be useful for tracking red teams. Legitimate penetration testers
have less incentive to go to extra lengths to obfuscate their Beacon payloads or to perform advanced
network operational security (OPSEC) for their Team Server deployments. Therefore, watermark values
with a lower frequency tend to be more indicative of red team activity.

Below is the breakdown of the most common watermark values observed in our dataset:

We have tried our best, given the opportunities for spoofing and reuse, to map watermark values to
known threat actor groups. However, because so many of these groups use the same build (either
accidentally or on purpose), it highlights how ineffective it can be to cluster around watermarks alone:

Figure 45 – Common watermarks

Decimal Hex Status Threat Actor

0 0 Trial/Leaked/Spoofed Many

305419896 12345678 Leaked Ryuk
TrickBot
Maze
EvilCorp
Pyxie
APT41

452436291 1AF7A143 Custom REvil/Sodin/Sodinokibi

64

ssl public keys

Aside from SSL certificates deployed on the Team Server itself, Beacons are also bundled with an addi-
tional SSL public key. This is part of a public/private key pair that is generated on the server whenever
someone installs Cobalt Strike. The public key is subsequently embedded in all Beacons generated on
the same server and used for C2 check-ins. It is important to note that this key pair is entirely different
from the SSL key pair used for the HTTPS certificate on the Team Sever.

Unlike watermarks, the SSL public key stored within a Beacon’s configuration offers a fantastic means
of clustering Beacons. We can virtually guarantee that the key is unique per Team Server installation,
but they often do get reused, for example via virtual machine redeployments. In other instances, threat
actors will use a single Team Server to configure payloads for deployment from other servers within
their control. This allows us to easily spot, then subsequently track and monitor their infrastructure.
Overall, 37% of Beacons are supplied with the top five SSL public keys. Several of the most popular keys
belong to notorious threat groups.

3 3 Spoofed Cobalt Group

1580103814 5E2E7886 Leaked APT27
Qbot
IcedID
DarkSide
Conti
Hancitor
WizardSpider

1359593325 5109BF6D Leaked TrickBot/SmokeLoader
Nobelium/APT29

1873433027 6FAA51C3 Leaked TA511/Hancitor

849087011 329C0A23 Custom SolarStorm

1 1 Spoofed Finspy

892810033 35373331 Custom Teardrop/SolarStorm

16777216 1000000 Spoofed Ryuk

Table 4 – Known Cobalt Strike watermarks

65

When you’re presented with a Beacon IP that is gathered from an IR engagement, or harvested from
OSINT feeds, it is usually possible to locate several more Beacons sharing the same SSL public key. This
can yield further IP addresses and intelligence pertaining to infrastructure that might otherwise seem
to be unrelated.

We have found that leveraging this clustering technique has been very helpful for us in expanding our
intelligence of C2 infrastructure. It helped us fi nd the connections between a wide range of actors and
campaigns, both active and historical. It can also help you to build a high level of confi dence in your own
intelligence assessments.

Several popular SSL public keys used by known threat groups include:

Figure 46 –Top 10 SSL public key MD5s since January 2021

MD5 Count of
Beacons

Group

1186914578623be126e5f3e8c058d719 1412 MAN1

8ac540617dddcdf575f6dc207abb7344 1318 DoppelPaymer

f61884abc8f4ba7a0caa288b326a70ee 621 Kegtap

0ce7b6482c1f24e42f2935f5026d338d 257 TA575/Dridex

b3e6b9dd84dae6be68cb40cda4366b77 23 APT41

Table 5 – Popular SSL public keys from Beacon confi gs

66

The vast majority of SSL public keys extracted from confi gurations cluster with one or more Beacons
from our dataset. Again, this further highlights the great potential for clustering and tracking.

beacon type

If you look at the most common communications protocols employed by the Beacons we’ve seen host-
ed on the Internet – plus some others we’ve obtained through other channels such as IRs and hunting
– you’ll see no huge surprises:

Figure 47 –Top 10 SSL public key MD5s

Figure 48 – Common Beacon types

67

As expected, HTTP is by far the most common protocol (93%). The next most common are HTTPS
(3.9%), and a hybrid mixture of HTTP and DNS (2.2%). This leaves SMB, TCP, and Bind TCP Beacons,
which combined account for less than 0.1% of all payloads.

SMB Beacons are almost certainly underrepresented in our dataset, as they tend to be more commonly
staged within local networks for further lateral movement, and not publicly hosted on the Internet.
As a result, the bulk of the SMB stagers in our dataset came from incident response investigations and
online malware repositories.

The full list of beacon types supported by Team Server is as follows:

C2SERVER

A closer inspection of the C2SERVER configuration values is quite revealing. It shows us that attackers
increasingly prefer to use domain fronting. This is a technique that allows an attacker to route Beacon
C2 traffic via reputable third-party redirectors, in a way that typically makes use of highly trusted Con-
tent Delivery Networks (CDNs). The traffic is encrypted over HTTPS, and it is often indiscernible from
legitimate communications.

Type Description

windows/beacon_http/reverse_http HTTP

windows/beacon_https/reverse_https HTTPS

windows/beacon_dns/reverse_dns_txt DNS

windows/beacon_bind_pipe SMB

windows/beacon_bind_tcp TCP

windows/beacon_reverse_tcp Winsock 2 Pivot

windows/beacon_extc2 External C2

windows/foreign/reverse_http Foreign HTTP

windows/foreign/reverse_https Foreign HTTPS

Table 6 - Types of Cobalt Strike Beacon

68

Approximately 3.5% of all Beacons in our dataset were confi gured to use domain fronting. The bulk of
Beacons are confi gured to use either Softline or Tencent. AWS, CloudFront® and Microsoft® Azure®
are also popular reputable redirectors favored by threat actors, with Google services previously being
targeted, as reported by Domain Tools.

Beacons confi gured to operate using domain fronting may be considerably harder for SOC analysts and
incident responders to identify. Because the network traffi c appears to be legitimate, these Beacons
tend to lack obvious network-based IOCs, making detection of Beacon traffi c at the network perimeter
more challenging for defenders.

Figure 49 – Popular fronting domains since January 2021

DomainTools
COVID-19 Phishing With a Side of Cobalt Strike
https://www.domaintools.com/resources/blog/covid-19-phishing-with-a-side-of-cobalt-strike

Cobalt Strike
High-reputation Redirectors and Domain Fronting
https://blog.cobaltstrike.com/2017/02/06/high-reputation-redirectors-and-domain-fronting/

69

http

For HTTP-based communications, each Beacon is confi gured with a user-agent string that is used to
form part of the HTTP request headers sent to the Team Server. The user-agent strings are nearly
always “spoofed,” with the default option used to specify a randomly selected Internet Explorer 11 us-
er-agent. It is important to note that it’s possible to specify alternatives via Malleable C2 profi les.

In many cases, the user-agent strings are not especially common. When combined with other indicators,
they can occasionally be useful in spotting suspicious activity via network monitoring tools. For exam-
ple, a macOS® X user-agent string originating from a Windows-based host, or Firefox® in a Chrome™
environment.

Looking at our dataset, we observed slightly more than 300 unique user-agent strings, with just over half
of them being used 10 or more times:

The SUBMITURI confi guration option specifi es the URI path to use when sending HTTP requests. De-
spite over 300 URIs being specifi ed across our Beacon confi g dataset, the default path (/submit.php)
was by far the most popular.

Figure 50 – Frequency of the top 10 user-agent strings

Figure 51 – Most common submit URIs70

GET and POST request metadata can also be specifi ed. This is where attackers can really get creative in
supplying additional HTTP headers as part of Cobalt Strike’s Malleable C2 confi guration. The vast major-
ity of the headers are taken from public profi le repositories. However, there are several bespoke profi les
in use as well. These can often be used to attribute Beacons to particular threat actors or campaigns
with a high degree of confi dence.

Unsurprisingly, the default profi le is the most prominent, with just shy of 80% of Beacons specifying
nothing more than “Cookie” in the HTTP GET request metadata. A further 3.2% of Beacons use an
unmodifi ed amazon.profi le. The remaining profi les each account for less than 1% of the total set of
Beacons.

The host header used in HTTP GET and POST requests is also confi gurable as part of the Malleable C2
profi le. As with many settings, the values are often spoofed, and they differ from the actual hostname
that the Team Server IP will resolve to. This can be a semi-reliable method for detecting Beacon net-
work traffi c, as well as for detecting domain fronting, where the host header is different from that of the
C2SERVER setting.

Figure 52 – Prevalence of open-source Malleable C2 profi les

GitHub
rsmudge - Malleable C2 Profi les
https://github.com/rsmudge/Malleable-C2-Profi les

71

proxy

Cobalt Strike Beacon can be manually confi gured to operate via a proxy server, although it doesn’t seem
to be a particularly popular option. Less than 0.05% of the samples from our dataset were confi gured
to do so using a username/password. A further 0.3% of samples were confi gured to use a direct con-
nection to the Internet (without a proxy), while the remainder of the samples will use the default IE proxy
settings.

The following proxy URIs were uncovered from our dataset:

Figure 53 – “Common” HTTP hostnames

Figure 54 – Common proxy IP addresses

72

It seems likely that most Beacons confi gured to use a proxy server are deployed by red teams. Threat
groups tend to use other proxying and tunnelling mechanisms for routing their C2 traffi c, such as
SOCKS5 proxies and SSL port forwarding.

smb

SMB Beacons (windows/beacon_smb) use an SMB pipe name embedded within the Beacon confi gura-
tion in order to enable C2 communication with a named pipe server using the Windows SMB protocol.

Figure 55 – Proxy behavior

Cobalt Strike
SMB Beacon
https://www.cobaltstrike.com/help-smb-beacon

73

The following list of SMB pipe names should be viewed with a soupçon of distrust, as most of them
have been harvested from Beacons that were served by Team Servers that were hosted on the Internet.
This is not typically how SMB Beacons are deployed. They are typically distributed via shellcode stagers
instead and are used to perform further lateral movement within a compromised network. Therefore,
the results from our dataset certainly do not convey the full picture, with only 2.7% of Beacons contain-
ing pipe names:

Other common pipe names frequently employed by Beacons that we’ve encountered elsewhere include
(where # represents a random base 10 digit):

Figure 56 – Common SMB pipe names

Pipe name Profi le

\\.\pipe\MSSE-###-server Default

\\.\pipe\msagent_## Default (SMB)

\\.\pipe\status_## Default

\\.\pipe\postex_#### Default

\\.\pipe\mypipe-h## havex.profi le

\\.\pipe\mypipe-f## havex.profi le

\\.\pipe\interprocess_## gmail.profi le

\\.\pipe\ntsvcs Many

\\.\pipe\scerpc Many

\\.\pipe\DserNamePipe## Many

\\.\pipe\PGMessagePipe## Many

\\.\pipe\MsFteWds## Many

74

These pipe names can be useful for alerting and blocking in EDR solutions. They can also be helpful in
digital forensic investigations involving in-memory Cobalt Strike payloads.

dns

In April 2021, F-Secure published research into Cobalt Strike DNS redirectors, where they presented
methods for fingerprinting Team Servers based on DNS responses.

We can see from the configuration dataset that 68% of Beacons are configured to use 0.0.0.0 as the
DNS idle IP. As mentioned by F-Secure’s researchers, the 0.0.0.0 DNS idle value is the default, and should
not be used in production environments. As a result, we can probe DNS servers for 0.0.0.0 responses
in A records, which can be used as another reliable mechanism for identifying Team Severs in the wild.

With approximately 25% of Beacons specifying no DNS idle value at all, the remaining 7% of Beacons
are often configured to use DNS from major providers, including:

• 8.8.4.4 (Google)
• 8.8.8.8 (Google)
• 114.114.114.114 (China Telecom)
• 1.1.1.1 (CloudFlare)

\\.\pipe\f4c3## zillow.profile

\\.\pipe\f53f## zillow.profile

\\.\pipe\mojo.5688.8052.183894939787088877## jQuery profiles

\\.\pipe\Common jQuery profiles

\\.\pipe\named jQuery profiles

\\.\pipe\pipe jQuery profiles

\\.\pipe\windows.update.manager## windows-updates.profile

\\.\pipe\windows.update.manager### windows-updates.profile

\\.\pipe\Winsock2\CatalogChangeListener-###-0, jquery-c2.4.2.profile

\\.\pipe\browser_## malleable-c2-randomizer.py

\\.\pipe\comnode_## malleable-c2-randomizer.py

\\.\pipe\spoolss_## malleable-c2-randomizer.py

\\.\pipe\llsrpc_## malleable-c2-randomizer.py

\\.\pipe\comnap_## malleable-c2-randomizer.py

Table 7 – SMB pipe names from profiles

F-Secure
Detecting Exposed Cobalt Strike DNS Redirectors
https://labs.f-secure.com/blog/detecting-exposed-cobalt-strike-dns-redirectors/

75

This information can be helpful for monitoring DNS requests at network egress points for signs of
Beacon DNS activity, as well as during forensic investigations involving DNS C2 traffi c from in-memory
payloads.

injection

The SPAWNTO option is used to confi gure the target process that Cobalt Strike will spawn and inject
post-exploitation DLL payloads into (in response to certain commands, such as screenshot, keylogger
and hashdump). Different target processes are specifi ed depending on processor architecture (x86/
x64), although the default process, rundll32.exe, is by far the most popular:

Figure 57 – DNS idle IP addresses

Figure 58 – Popular x86 SPAWNTO processes

76

The list of target injection processes for x64 is largely identical to x86, apart from the differences in the
fully qualifi ed fi le paths:

Combining the fi le names used for both the x86 and x64 SPAWNTO values provides a full overview of the
processes most frequently targeted for injection. This helps us to narrow the focus for tuning security
software and forensic analysis:

Figure 59 – Popular x64 SPAWNTO processes

Process Name Percentage

rundll32.exe 94.53%

gpupdate.exe 2.11%

dllhost.exe 0.80%

svchost.exe -k netsvcs 0.36%

wusa.exe 0.32%

mstsc.exe 0.28%

WerFault.exe 0.25%

mavinject.exe 0.13%

openfi les.exe 0.11%

explorer.exe 0.09%

iexplore.exe 0.09%

Table 8– Combined x86/x64 injection target processes 77

As explored earlier, Cobalt Strike’s method of process injection is highly confi gurable via the Malleable
post exploitation settings, with the most popular methods/APIs used to execute shellcode being:

When allocating memory for the shellcode payload, the Windows API VirtualAllocEx is most commonly
used, although around 3% of Beacons will use NtMapViewOfSection with a fi le mapping instead.

However, roughly 5% of Beacons are confi gured to use transformations. These will append/prepend
additional code (typically a simple NOP sled, although sometimes it will be something more

Figure 60 – Injection execution techniques

Figure 61 – Frequency of allocation techniques

78

adventurous) to the injection shellcode stub to prevent detection. It is also possible to remove the write
fl ag from the page protections, so it is important to note that in the end not all Beacon payloads will
necessarily reside in RWX memory (4%).

compilation timestamps

There is some advantage in knowing the compilation date/timestamps of Cobalt Strike Beacons, even
though they are often spoofed via the stager confi guration, or simply zeroed out (which accounts for
nearly 3.5% of Beacons). When the value is left unmodifi ed, it can provide a quick and simple way for
researchers to determine the version of Beacon/Team Server in operation:

Figure 62 – Common process injection transformations (x86)

Figure 63 – Frequency of memory protection fl ags

79

As we can see from our dataset, of the beacons that have their timestamps unmodified, over 40% of
Beacons are version 4.0. Version 4.2 is gaining in popularity at 14%, which is just slightly above version
4.1 at 13%. Version 4.3 is slowly gaining traction at around 6% usage. The use of version 3.x Beacons
has tailed off quite dramatically in recent months.

Release Date Version Timestamps

8 December 2016 3.6 2016-12-07T21:14:47
2016-12-07T21:25:22

23 May 2017 3.8 2017-05-22T21:21:18
2017-05-22T21:21:47

26 September 2017 3.9 2017-10-26T04:32:19

9 April 2018 3.11 2018-03-22T20:35:00
2018-03-22T20:35:11
2018-03-22T20:35:14

6 September 2018 3.12 2018-09-05T21:53:17
2018-09-05T21:54:00

4 May 2019 3.14 2019-04-18T23:51:29
2019-04-18T23:53:25

5 December 2019 4.0 2019-12-05T12:00:49
2019-12-05T12:01:49

22 February 2020 4.0 2020-02-21T04:55:08

25 June 2020 4.1 2020-06-23T19:17:48
2020-06-23T19:18:44
2020-06-23T19:21:26

6 November 2020 4.2 2020-11-03T01:27:30
2020-11-03T01:31:35

3 March 2021 4.3 2021-03-02T08:03:15
2021-03-09T16:42:17

17 March 2021 4.3 2021-03-16T17:37:35
2021-03-16T06:10:34

Table 9 – Cobalt Strike Beacon compilation timestamps

80

When specifi ed via the stager confi guration, the compilation timestamp can be most revealing due to a
time zone conversion bug in Team Server.

The server appears to interpret the compile_time confi guration value as a local time before converting
it to UTC for storing in the Beacon PE header. The result is that any Beacon built using a compile_time
value specifi ed in the stager confi guration will leak the time zone offset of the server. This gives us yet
more forensically sound evidence that we can use to correlate with incident events and IP geolocations
to try and pinpoint the location of attackers.

Figure 64 – Top 10 compilation timestamps

81

rich headers

The rich header, or signature, is embedded within the DOS stub of a PE fi le. It contains information
pertaining to the executable linker, including the count of various sources and the version of the tools
used to compile them. For example, here is a typical rich header from a Beacon DLL viewed in PE Tree.
The header indicates that Visual Studio® 2012 was used to compile and link 53 object fi les and a single
exported function:

Figure 65 –Stager time zone offsets and their respective frequencies

Figure 66 – DOS stub and rich header from a Beacon PE fi le

82

The top 12 rich headers observed in our set of Beacon PE files account for nearly 90% of all payloads:

The rich headers can be specified via the stager profile settings, or simply left unaltered in the original
Beacon PE files. For this reason, they can provide malware researchers with a semi-reliable mechanism
for hunting, clustering and classifying Beacon payloads within malware datasets. They can also provide
forensic investigators with helpful signatures for finding in-memory payloads.

import hashes

An import hash, commonly known as an “imphash,” is a checksum that is calculated from the DLL
and function names that are present in a PE file’s import descriptor. Often unique per malware family/
variant, imphashing can be an excellent technique for clustering malicious PE files based on similarity.

Figure 67 – Top 12 rich header MD5s

GitHub
PE Tree
https://github.com/blackberry/pe_tree

83

From our Beacon dataset, we can see that the top 12 import hashes calculated from Beacon DLL files
belong to just over 90% of all payloads:

Again, much like the rich header, knowing Cobalt Strike’s associated imphashes can be a useful tool for
malware analysts and researchers with respect to hunting, clustering and classifying Beacons.

Figure 68 – Import descriptor showing wininet.dll imports from a Beacon PE file

Figure 69 – Top 12 import hashes

84

export names

The exported module and function name within a Beacon PE file are referenced by the export descriptor.
This contains either the default Beacon DLL name (beacon.dll or beacon_x64.dll) and exported function
name (ReflectiveLoader@1), or values specified by the attacker via a transform block in the “stage”
section of the Malleable profile.

Containing just a solitary exported function, the export descriptor for an x86 Beacon DLL typically looks
like this:

Note time TimeDateStamp in the IMAGE_EXPORT_DESCRIPTOR. This is often overlooked when adver-
saries perform time-stomping of the TimeDateStamp in the PE file header, especially in Beacon DLLs.
The net result is that the original compilation time is often still in the export descriptor, even if it has
been overwritten in the PE headers. In this instance the TimeDateStamp is known to belong to Cobalt
Strike version 4.0

In total, the top 13 exported module names from across our dataset account for nearly 97% of all Bea-
con PE files we’ve obtained:

Figure 70 – Export descriptor from a Beacon PE file

85

Further default module names observed in the wild include:

• pivot.dll
• pivot.x64.dll
• dnsb.dll
• dnsb.x64.dll

This knowledge can aid in the tuning of security solutions as well as assisting forensic investigators
when inspecting in-memory Beacon payloads.

procinj_stub

Surprisingly, it just so happens that the configuration setting PROCINJ_STUB is somewhat of a mis-
nomer. This setting has absolutely nothing to do with process injection or shellcode stubs. In fact, this
unintuitively named configuration value actually contains an MD5 hash of the Cobalt Strike Java archive
(cobaltstrike.jar). This archive contains the server-side component that provides the Team Server oper-
ators with a GUI to generate, operate, deploy, and control Beacon payloads.

When correlated with its corresponding Java archive commonly found in online malware repositories,
such as VirusTotal, the MD5 hash of the cobaltstrike.jar package allows us to determine not only the
exact version of the Team Server in use, but also whether the Team Server in operation is a leaked,
cracked, trial or even a private version. Even if the Java archive is unavailable to assist with version
identification, it is still an extremely valuable clustering mechanism, especially in the case of private and
customized builds.

As a comparison, the SSL public key allows us to cluster Beacons generated by a single Team Server
installation, while conversely, the “process injection stub” hash allows us to cluster Beacons generated
on any server running the same cobaltstrike.jar Java application. Even if the threat actor is aware of this
hash, they are extremely unlikely to modify the cobaltstrike.jar Team Server archive between generating
Beacons. This means that the hash is highly likely to remain constant.

Given that each cobaltstrike.jar is theoretically unique per version, per “customer” (accepting leaked
versions), this gives us the confidence to cluster Beacons not only from seemingly unrelated attacks
but also from seemingly disparate Team Servers. That is assuming that the operators reuse the same
cobaltstrike.jar application, which is a strong possibility within threat groups.

Figure 71 – Top 10 exported module names

86

A point to note is that if a threat actor is aware of this secret hashing mechanism, then the value can be
spoofed without impairing the functionality of the Beacon. This is unlike SSL public keys, where it would
break C2 functionality if someone were to tamper with them.

In theory, these MD5s are not an entirely infallible pivot for performing clustering and attribution. How-
ever, in practice they are rarely tampered with, and they routinely yield invaluable information and intel-
ligence.

Eight out of the top 10 most popular Cobalt Strike hashes belong to leaked builds and can be found on
VirusTotal. The remaining two hash values are nulled out, with one known to convey a 0-byte string/file,
which suggests that there is either a bug in Team Server, or perhaps certain operators might have some
awareness of this secret hashing mechanism.

Currently, threat actors running leaked copies of Cobalt Strike appear to be favoring versions 4.0 to 4.3,
although a recent build of 4.4 from August 2021 seems to be gaining popularity among several distinct
groups.

The clandestine nature of this feature raises several questions:

1. Why add the hash of the Cobalt Strike Java package archive to the config of a Beacon at all?
2. Was this a purposeful choice by the developers?
3. What other Easter eggs, either accidental or deliberate, have the developers left lurking in

Team Server?

Figure 72 - Top 10 PROCINJ_STUB hashes of cobaltstrike.jar

87

If this was done on purpose, then it might have been to track or differentiate between licensed custom-
ers and those using unlicensed or cracked copies of Cobalt Strike. But this is pure speculation. We’ll
leave you, dear reader, to draw your own conclusions.

The top PROCINJ_STUB hashes reveal just how prevalent leaked, cracked, and trial builds of Cobalt
Strike have become:

PROCINJ_STUB SHA256 Version

a56c813864af878a4c10083ca-
1578e0a

8ba9ba1ca1ad484ea3dd9bdc-
d419515006149e41f0b1edd12698ac1ecd5351b9

4.0

187ab8f-
98098de95714613f8544c9613

d8a8ec922dd8863da80be182faa97b901cd75fc-
9d600e94a291d14384597571b

4.1

0ce2f55444e4793516b5afe-
967be9255

9b49f169aa607e70562a15f161c-
d00a4a173e598d3faa1cd7bf4bfe3027c5078

4.2

0ce2f55444e4793516b5afe-
967be9255

9b49f169aa607e70562a15f161c-
d00a4a173e598d3faa1cd7bf4bfe3027c5078

4.2

b54afe01ec6a75ed-
f35e1a44f8bd3929

56a53682084c46813a5157d73d7917100c-
9979b67e94b05c1b3244469e7ee07a

4.2
(20201106)

303ae5ba3c016e-
498624505880fad314

558f61bfab60ef5e6bec15c8a6434e94249621f-
53e7838868cdb3206168a0937

4.0

32cd41edf0810c5b5f498edf-
4731cc6d

02fa5afe9e58cb633328314b279762a03894df6b-
54c0129e8a979afcfca83d51

4.3

da7489d9f303b6a5db-
c484fdf78721d1

ef4c688e6c499332d63dd1fccf1f7c-
388502c6836014f24ef52b4c01ab6b8c86

3.14

d41d8cd98f-
00b204e9800998ecf8427e

e3b0c44298fc1c149afbf4c8996fb92427ae41e-
4649b934ca495991b7852b855

Empty file

a49f5445f01a9f3240ee-
a9e46ee66c81

1f472f1ad1d5aea0cb51200f07f2fcdb24c-
8b0646ef1ebe2d72e3cf7b2c54662

4.3

b2736f1cbba90d42286fc42b-
fba74f4d

c3c243e6218f7fbaaefb916943f500722644ec-
396cf91f31a30c777c2d559465

4.3

367635691cdd-
70722ef5706a8f0ca7e6

1f2c29099ba7de0f7f05e0ca0efb58b56ec422b-
65d1c64e66633fa9d8f469d4f

4.1

60e790d9492bbbc2da-
556be9edd5ceee

fb27c7c014c4df8f0820d940b01b8a1f5d27c-
c7c018ab4f489df1b950992cb83

4.1

d10ba2f46586cefb-
16817150c6c1168e

981c124ac263a6e0bdd68ec8faa22a44c80536b-
382203f3a2f79f45c37e1d5cc

4.0

cd89fa488ffa5c795876d04f-
95b3733c

eef76cda6ea8c0b46613cf2f20f48d2c-
2fa067b9f2291599fb4ad0cf96961f46

4.0

67bfc989d7549f873ae09c4fd-
48f2a66

272eeaaefd6d2489e434c7c73e7de7a3941c-
c77865697c3955df518e62e4e641

4.1

88

deprecated_spawnto

Much like the PROCINJ_STUB setting, one could be forgiven for thinking that this setting contains the
target process name to inject to, and that it is now deprecated. After even a cursory glance at our data-
set, it appears as if this value contained a hex encoded executable name for the SPAWNTO setting at
some point in time. This is indicated by the value 72756e646c6c33322e657865, which is present in 76
of our Beacons:

30aa21b939d29f3a2cf6a5c-
3038c328b

17a2ccec7b41b-
585d5a1239b12818d74d454b577db10b-
2607d482311944e10e9

3.14
(20190504)
Licensed

46a0fae303e4d26d61ff-
c6a347adef56

86991bed942cc39c0796091243ea58844b-
ce577f7cb8172b3f737fa0ecad0e38

4.1

446714587d79d27df098dd-
3e82f27ff3

7de98cb0bd3e8f3804ea7eaca400a955aee-
59a23684428bd17b2c7c89c5f1efa

4.1
(20200625)

4300e055262500719f12645a
0bc536b8

810095d5fc630f6de2d24f34e94b8a5652d7269c-
31c78668b4078a63d16712fe

4.0
(20191205)

95de7e032f607fb7b32b7d-
387ca18645

41976f79674855bb092598257c896b2de5e-
ce3e3d5509d57c37d7c161850caf6

4.4
(20210801)

45606e73f3a76c2834a3ca-
e67306a611

b6cd3b4ea7d1d4dd00afe7e894b7c-
7ca0f82f8b809494d92ba48ed35a6531bf6

3.14
(20190502)

799b1726911eb1fc6073f-
5c96821f299

1cdfa75b103f4b3218a9f6ddec137a5438c5e-
6571151d0979c60d96dfbbf9231

4.3

Table 10 – PROCINJ_STUB hashes by popularity

Figure 73 – CyberChef decoded DEPRECATED _SPAWNTO value for rundll32.exe

89

In reality, this setting presents another mystery. Most of the values appear to be MD5s hashes, and not
the expected hex-encoded process names:

The plot thickens further, as two of the hashes appear on VirusTotal. They belong to a pair of text files
containing release notes for Cobalt Strike 3.12 and 3.13:

Figure 74 – Top DEPRECATED _SPAWNTO values

Figure 75 – DEPRECATED _SPAWNTO release notes

90

The DEPRECATED_SPAWNTO configuration value seems to have been misappropriated at some point
in time, much like the PROCINJ_STUB setting that we mentioned before, which was used to covertly
embed the hash of the Team Server Java archive into all Beacon configurations.

The DEPRECATED_SPAWNTO setting instead seems to surreptitiously embed the hash value of a file
located on the Team Server into the Beacon payload configuration. And like PROCINJ_STUB, the devel-
opers may well have intended it to be a crude tracking mechanism for monitoring Beacons deployed in
the wild. But, again, this is speculation.

miscellaneous

Finally, there are several Boolean options that can be specified to control the behavior of Cobalt Strike
Beacons. Although none of them are frequently set, it seems worth mentioning them for the sake of
completeness:

Now that we’ve looked at the various configuration values, cluster points and statistics, let’s take a look
at the data in practice.

Time to get hunting!

Option Percentage Description

CRYPTO_SCHEME 5% Enable data encryption

C2_CHUNK_POST 4% Chunk HTTP post requests

USE_COOKIES 4% Enable the use of cookies

CLEANUP 5% Free memory associated with
the Beacon stager

Table 11 – Miscellaneous Boolean configuration options

91

BEACON OF HOPE
chapter five

intelligence correlation

We took a largely automated approach to performing intelligence correlation with OSINT, hunting for
many indicators from our Cobalt Strike dataset in our TIP. This was successful in linking clusters with
publicly documented threat actor infrastructure and uncovering further clusters for closer manual in-
spection.

We also spent (and continue to spend) many hours manually correlating OSINT with our dataset (e.g.,
searching IOCs on Twitter!) and pivoting on those findings to yield further indicators and intelligence.
In the end, we found correlations with dozens of major threat actors and campaigns, including some
familiar faces:

• DarkSide
• REvil/Sodin
• APT41
• CostaRicto/SombRAT
• KEGTAP & SINGLEMALT
• IcedID
• Ursnif
• WizardSpider
• Ryuk
• Conti
• TrickBot
• Nempty/Netfilim/Nephilim
• FIN7
• Maze
• DoppelPaymer
• MAN1/Moskal/TA505
• Nobelium/APT29
• Pyxie
• StrongPity
• MountLocker
• Phobos

92

Based on OSINT correlation, the following threat groups have been particularly prevalent in our dataset
over the past year or so:

Each Beacon tagged above is related to existing intelligence (whether private or OSINT) and offers us
the potential to perform further clustering on our dataset to uncover more intelligence insights and
correlations.

Given a wealth of superb OSINT, a vast dataset of Beacons, and strong clustering capabilities around all
the information harvested thus far, we aim to show the ease with which you can now unravel campaigns
from known threat actors.

The intelligence presented is by no means exhaustive. Several follow-up blogs and papers have been
published, or are already planned, based around some of the more intricate and elaborate discoveries.
It is worth mentioning how important an altruistic approach is, taken by many companies and individu-
als, in openly and freely sharing intelligence with the cybersecurity community. It would not have been
possible to compile such a comprehensive chapter on intelligence correlation without that, let alone
with so little effort.

Kudos to all the vendors and individuals mentioned herein. Your research has been invaluable and great-
ly appreciated!

Figure 76 – Correlation with known threat groups and research

93

apt41

APT41 (aka WINNTI, aka Barium) is a prolifi c Chinese state-sponsored cybercrime group. Active since
2012, and initially performing espionage and fi nancially motivated attacks against prominent targets in
the computer game industry, they now reportedly focus on more state-aligned targets.

Where once the infamous PlugX malware was the remote access Trojan (RAT) of choice for APT41
operatives, Cobalt Strike is starting to gain in popularity in several recent campaigns, and we’ll explore
manual correlation techniques that you can use to elaborate on APT41’s Team Server infrastructure.

A blog post published by FireEye in March of 2020 explored APT41’s tactics, including their use of mali-
cious documents, exploits, and Cobalt Strike. The report indicated that the group was using a bespoke
Malleable C2 profi le with at least one of its Cobalt Strike Beacons.

We uncovered a Malleable C2 profi le on GitHub that is very similar to that of the one mentioned in the
FireEye blog. This one seems to have been authored by a Chinese security researcher with the pseud-
onym “1135.”

These profi les had several similarities: both used jQuery Malleable C2 profi les, and portions of the HTTP
GET profi le block are almost identical. HTTP header fi elds such as accept, user-agent, host, and referrer,
as well as the set-uri fi eld, were all exact matches to the profi le data listed in the FireEye blog.

Figure 77 - jQuery Malleable C2 from the “1135” GitHub

FireEye
This Is Not a Test: APT41 Initiates Global Intrusion Campaign Using Multiple Exploits
https://www.mandiant.com/resources/apt41-initiates-global-intrusion-campaign-using-multiple-
exploits

GitHub
Bootcss Malleable C2 Profi le
https://github.com/1135/1135-CobaltStrike-ToolKit/blob/master/Malleable%20C2%20Files/jquery.
xxx.js_CN_cdn.bootcss.com_for_cs3.14_.txt

94

By extracting and correlating the HTTP headers used in the GET and POST requests defi ned in the
Beacon confi gs, we can generate revealing connections between previously disparate Cobalt Strike
infrastructure.

While we identifi ed a relatively small number of Beacons using the bootcss[.]com domain as part of their
Malleable C2 confi guration, there were also a few clusters with a unique SSL public key (b3e6b9dd84dae-
6be68cb40cda4366b77) that enabled us to identify additional beacons related to APT41.

Figure 78 – Clustering on cdn.bootcss.com POST Request Meta

Figure 79 - Pivoting to a new cluster based on SSL public key

95

The Beacons served by these new nodes are using different domain names to those from the original
cluster that attempt to make the Beacon traffic look like legitimate Microsoft traffic.

The domains we found share similarities in their naming convention, which masquerade as a legitimate
Microsoft phishing domain www[.]mlcrosoft[.]site, both appear within a blog from Positive Technol-
ogies. Further hunting for the IP address 149.28.78[.]89 reveals links to a campaign referenced in a
Prevailion blog, “The Gh0st Remains the Same.”

apt41 continued - gh0st in the machine

In the Prevailion blog, we can find two IOCs that appear in the cluster above; the IP 149.28.78[.]89, and
the domain mlcrosoft[.]site. That blog associated those IOCs with the Higaisa APT group, which oper-
ates out of North Korea.

The domain mlcrosoft[.]site also appears in a blog from Positive Technologies. That article has addition-
al overlapping IOCs and talks about the same campaign as mentioned in the Prevailion blog. However,
it makes a strong argument that the activity is from APT41, rather than Higaisa APT.

IP Domain

144.202.98[.]198 zalofilescdn[.]com

107.182.24[.]70 isbigfish[.]xyz

185.14.29[.]72 www[.]microsoftbooks.dns-dns[.]com

193.42.114[.]73 www[.]microsoftbooks.dns-dns[.]com

149.28.78[.]89 www[.]mlcrosoft[.]site

23.67.95[.]153 ns.mircosoftdoc[.]com

104.27.132[.]211 cdn.microsoftdocs.workers[.]dev
ccdn.microsoftdocs.workers[.]dev

Table 12 - APT41 phishing domains

Prevalion
The Gh0st Remains the Same
https://www.prevailion.com/the-gh0st-remains-the-same-2/

Positive Technologies
Higaisa or Winnti? APT41 backdoors, old and new
https://www.ptsecurity.com/ww-en/analytics/pt-esc-threat-intelligence/higaisa-or-winnti-apt-41-
backdoors-old-and-new/

96

When we do a side-by-side comparison of the domains from the Positive Technologies blog and our
datasets, there is a strong similarity between naming conventions used:

We also discovered that mlcrosoft[.]site and mircosoftdoc[.]com both appear in the Azure-Sentinel de-
tection rule for known Barium phishing domains. The IP 144.202.98[.]198 has also been previously
associated with APT41/Barium by a Microsoft researcher.

Another IP from this cluster, 185.14.29[.]72, was recently providing virtual hosting for several domain
names such as:

• chaindefend[.]bid
• defendchain[.]xyz
• assistcustody[.]xyz
• www[.]microsoftonlineupdate.dynamic-dns[.]net

Previously, this IP has been associated with DNS resolutions for schememicrosoft[.]com and www[.]
microsoftbooks.dns-dns[.]com. Several of the domains also have links to 209.99.40[.]222, an IP known
to perform malicious DNS/bulletproof hosting. As of Sept. 14, 2021, this IP resolved to a new domain
very briefly: Microsoftonlineupdate.dynamic-dns[.]net. This domain also conforms to a similar naming
convention to those we have seen previously in Table 13.

BlackBerry IOCs Positive Technologies IOCs

www[.]microsoftbooks.dns-dns[.]com microsoftbooks.dynamic-dns[.]net

cdn.microsoftdocs.workers[.]dev microsoftdocs.dns05[.]com

ccdn.microsoftdocs.workers[.]dev ns.microsoftdocs.dns05[.]com

ns.mircosoftdoc[.]com ns1.microsoftsonline[.]net

Table 13 – Domain similarities

GitHub
Azure-Sentinel – Detections – MultipleDataSources
https://github.com/Azure/Azure-Sentinel/blob/master/Detections/MultipleDataSources/
BariumDomainIOC112020.yaml

Ajeet Prakash
Hunting for Barium using Azure Sentinel
https://techcommunity.microsoft.com/t5/microsoft-sentinel-blog/hunting-for-barium-using-azure-
sentinel/ba-p/1875913

BlackBerry ThreatVector Blog
For more a more in-depth look at this threat actor and our subsequent findings - make sure to check
out our blog:
https://blogs.blackberry.com/en/2021/10/drawing-a-dragon-connecting-the-dots-to-find-apt41

97

apac red teams

Aside from APT41, a handful of other threat groups and red teams from the APAC region are also using
the bootcss[.]com Malleable C2 profile, yielding further notable clusters.

The most popular SSL public key is shared by four IP addresses that are serving up 10 Beacons between
them:

Another cluster of two IPs and six Beacons is also significant; here the profile was subtly modified to
replace bootcss[.]com for the GET request metadata, but not for the POST request. For the GET request
metadata, the Beacon was instead configured to use static.aliyun[.]com (Alibaba Cloud Computing)
rather than bootcss[.]com as the domain, while the C2 server URI was changed from /jquery-3.3.1.min.
js to /require-jquery-v1.js.

Further pivoting on the C2 server configuration revealed four additional beacons from two new IPs
sharing the same domain.

These beacons all appear to have been deployed against Chinese targets, possibly by red teams in
China.

Overall, 35 Beacons share a remarkably similar config (for one that is not widely in the public domain),
and they use 74.125.196[.]113 for the DNS_IDLE value, but without the default mojo.5688.8052.1838949
39787088877## named pipe. Watermark values vary between 305419896, 0 and 1873433027:

IP Country

119.28.93[.]67 HK

119.28.42[.]138 HK

39.96.0[.]85 CN

172.93.43[.]32 US

Table 14 – IPs based on SSL public key hash (defb5d95ce99e1ebbf421a1a38d9cb64)

IP Domain

40.73.6[.]221 www[.]aliyun.com[.]co

139.217.99[.]29 www[.]microport.com[.]cn

47.92.121[.]151 www[.]microport.com[.]cn

39.98.84[.]58 www[.]microport.com[.]cn

Table 15 – APT41 IPs/domains from POST request metadata clustering

98

Several of the above IPs have previously been associated with campaigns from Kinsing/SysupdataMin-
er, as well as being loosely affiliated with red teams based in China.

One of the Team Servers, 45.77.13[.]213, was unique in that it served up five different Beacons, all con-
figured with a user-agent string that is subtly modified from the base profile:

Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_1) AppleWebKit/537.36 (KHTML, like Gecko)
Chrome/83.0.4103.106 Safari/537.36

Compared to:

Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko)
Chrome/88.0.4324.192 Safari/537.36

Finally, four of the Beacons specify null or 8.8.4.4 for the DNS_IDLE option, all of which are hosted on
39.101.199[.]31 (Alibaba).

Across all the Beacons using the bootcss jQuery profile, only four unique user-agent strings were ob-
served. Several of these should not be particularly common in recently updated Windows-based envi-
ronments, seeing as they normally originate from Mac® based browsers. These types of oddities can
be good indicators for defenders when crafting rules for hunting and alerting.

IP Count Country

45.77.13[.]213 7 JP

119.28.42[.]138 4 HK

93.115.21[.]242 4 NL

45.137.151[.]106 3 GB

119.28.93[.]67 2 HK

39.96.0[.]85 2 CN

47.101.177[.]45 2 CN

121.196.59[.]237 2 CN

96.45.182[.]23 2 US

157.245.169[.]236 2 US

118.25.108[.]240 2 CN

172.93.43[.]32 2 US

139.180.218[.]213 2 SG

Table 16 – Further IPs using the Chinese jQuery profile

99

darkside

DarkSide is a ransomware-as-a-service (RaaS) that fi rst appeared in the wild in August 2020. With fre-
quent updates, version 2 surfaced around March 2021. The DarkSide threat group offers their malware
for download on the dark web, and like many other RaaS vendors, they allow their customers to down-
load malware and target victims to extort money, exfi ltrate fi les, and then share in the proceeds with the
malware creators.

When correlating intelligence against our TIP, we uncovered a report by Cybersecurity and Infrastructure
Security Agency (CISA) from July 2021 that attributes the IP 99.83.154[.]118 to DarkSide.

One of the most recent domains associated with that IP, tgbyhnedc[.]com, has historical resolutions for
103.140.186[.]35. This IP is present in our dataset, and is used by a pair of Beacons that are confi gured
to perform domain fronting via Google videos™:

User-agent Browser/OS

Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_1)
AppleWebKit/537.36 (KHTML, like Gecko)
Chrome/83.0.4103.106 Safari/537.36

Chrome/MacOS 10

Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7)
AppleWebKit/537.36 (KHTML, like Gecko)
Chrome/88.0.4324.192 Safari/537.36

Chrome/MacOS 10

Mozilla/5.0 (Windows NT 6.3; Trident/7.0; rv:11.0) like
Gecko

IE11/Windows 6.3

Mozilla/5.0 (Windows NT 6.1; rv:24.0) Gecko/20100101
Firefox/24.0

Mozilla Firefox 24.0/Windows 7 6.1

Table 17 – User-agents employed by Chinese jQuery Beacons

Figure 80 - DarkSide domain fronting via Google videos™

BlackBerry
BlackBerry Prevents DarkSide Ransomware — Years Before It Ever Existed
https://blogs.blackberry.com/en/2021/05/blackberry-prevents-darkside-ransomware-years-before-it-
ever-existed

CISA
10337802.r1.v1
https://us-cert.cisa.gov/sites/default/fi les/publications/MAR-10337802-1.v1.WHITE.pdf

100

Furthermore, fi ve other Beacons also share the same PROCINJ_STUB hash, and all but one of these are
loosely based on the youtube_video.profi le.

Overall, these overlaps reveal three new IPs and two new domains likely associated with attacks deploy-
ing DarkSide ransomware.

The IP 195.123.221[.]182 is hosted in the Netherlands, and it appears to be providing DNS for several
Russian top-level domains.

Interestingly, several DarkSide-related Beacons contain a unique PROCINJ_STUB value (the hash of the
Team Server JAR archive), which can be used to monitor for new Team Servers and Beacons deployed
by this particular DarkSide affi liate.

Figure 81 - Darkside infrastructure clustered on PROCINJ_STUB hash

IP C2SERVER First Seen Last Seen

99.83.154[.]118 N/A N/A N/A

103.140.186[.]35 abc.tgbyhnedc[.]com 2021-04-12 2021-04-12

195.123.221[.]182 login.eyetomsky[.]com 2021-03-29 2021-08-11

91.235.128[.]97 cafebizup[.]com 2021-04-02 2021-07-06

Table 18 – Darkside IPs

101

fin7

FIN7 is a Russian, fi nancially motivated cybercrime group, notorious for deploying point-of-sale (PoS)
malware against U.S. retail and hospitality targets in the since 2015.

In late March of 2021, the ThreatConnect Research Team published a threat intelligence update that
identifi ed possible FIN7 infrastructure. The hosting ISP, registrar, SSL certifi cate and naming convention
had strong consistencies with infrastructure that was previously attributed to FIN7. IPs and domains as-
sociated with their fi ndings were correlated with our dataset and found to be serving Beacons between
July 2020 and July 2021.

The correlations revealed fi ve IP addresses associated with FIN7 that were doubling as Cobalt Strike
infrastructure, using three unique SSL certifi cates, and serving up over 20 Beacons between them. Four
out of those fi ve IP addresses were using a modifi ed version of the Gmail™ Malleable C2 profi le.

The original, unmodifi ed POST request metadata is as follows:

ui=d3244c4707, hop=6928632, start=0, Content-Type: application/x-www-form-ur-
lencoded;charset=utf-8, OSID=, Cookie`

FIN7, however, appear to be using a subtle modifi cation to the ui and hop parameters:

ui=d3221c1438, hop=3938730, start=0, Content-Type: application/x-www-form-ur-
lencoded;charset=utf-8, OSID=, Cookie

Using this modifi ed POST request as a clustering point reveals some additional infrastructure with links
to FIN7.

Figure 82 - Clustering FIN7 infrastructure using POST Request Meta setting

ThreatConnect
ThreatConnect Research Roundup: Threat Intel Update 3/25/21
https://threatconnect.com/blog/threatconnect-research-roundup-threat-intel-update-3-25-21/

102

A total of four additional IPs and two additional domains were uncovered and are listed below as a
supplement to ThreatConnect’s original findings.

Occasionally, the FIN7 operators have been observed nulling out the PROCINJ_STUB hash in the Beacon
config. This is almost certainly good OPSEC, but about half of the Beacon configurations allude to a
leaked copy of Cobalt Strike 4.2 (20201106) being deployed.

wizardspider

WizardSpider (aka UNC1878) is a Russian cybercrime group. Since 2018, they have deployed a variety
of malware, including TrickBot, Ryuk and Conti, primarily attacking targets for financial gain.

Intelligence correlation has revealed several overlaps with WizardSpider campaigns in our dataset, al-
lowing us to shine a light on some of this group’s activities, and better monitor their future operations.

ryuk

In the latter half of October 2020, the ThreatConnect Research Team detected some newly registered
infrastructure that is potentially linked to the Threat Group WizardSpider and their Ryuk ransomware
family.

IP C2SERVER First Seen Last Seen

85.217.171[.]12 85.217.171[.]12 2021-02-05 2021-04-29

195.2.93[.]160 195.2.93[.]160 2020-07-14 2020-09-05

185.206.145[.]227 coincidencious[.]com 2021-03-19 2021-07-22

92.63.105[.]58 wisecrackism[.]com 2021-02-17 2021-03-13

89.163.214[.]57 89.163.214[.]57 2021-02-01 2021-02-04

185.203.116[.]7 cdnoid[.]com 2021-02-11 2021-03-02

95.142.40[.]121 techniquesaholic[.]com 2020-07-20 2020-09-04

213.202.211[.]246 213.202.211[.]246 2021-01-01 2021-05-18

188.120.248[.]114 188.120.248[.]114 2020-09-07 2020-11-20

Table 19 – FIN7 C2

GitHub
ThreatConnect - IOCs
https://github.com/ThreatConnect-Inc/research-team/blob/master/IOCs/WizardSpider-UNC1878-
Ryuk.csv

103

The C2 domains from their report were registered via Openprovider. The domains use SSL certifi cates
containing similar string criteria compared to prior Ryuk infrastructure. Several IPs and domains asso-
ciated with their fi ndings were also present in our dataset. These IPs and domains served Cobalt Strike
Beacons between July 2020 and July of 2021. One additional IP address, 108.62.141[.]5, was discov-
ered in our dataset, which shared C2 domains with an IP reported by ThreatConnect.

Again, using the PROCINJ_STUB hash, it is possible to ascertain the version of Team Server deployed
on the server. In this instance, the hash belongs to the fourth most leaked build, 4.2 (from 2020-11-06).

bazarloader

An AlienVault Pulse from January 26, 2021 lists 88.119.171[.]105 as a possible IP associated with Wiz-
ardSpider/UNC1878:

IP C2SERVER First Seen Last Seen

74.118.138[.]139 touchroof[.]com
focuslex[.]com

2021-02-07 2021-07-15

108.62.141[.]5 touchroof[.]com
focuslex[.]com

2021-05-19 2021-05-19

45.153.241[.]16 45.153.241[.]16 2020-07-10 2021-02-18

172.106.86[.]22 45.176.188[.]137 2021-03-11 2021-03-15

162.252.172[.]41 172.106.86[.]22
51.81.142[.]72

2021-03-03 2021-03-16

Table 20 – WizardSpider/Ryuk C2

Figure 83 – AlientVault Pulse for 88.119.171[.]105

AlienVault
Possible UNC1878 / Wizard Spider Domain servicessilverroomhotspot[.]com
https://otx.alienvault.io/pulse/600fe8f0617db5e51ad89f5b

104

A tweet from Joe Slowik a couple of days later hints at a further link to BazarLoader based on the servi-
cessilverroomhotspot[.]com domain:

Delving into our dataset, the IP address from the AlienVault Pulse is present, but specifi ed as the
C2SERVER setting in the Beacon confi g. The actual Team Server hosting the Beacon is on another IP
entirely:

A Beacon payload (SHA256 of 5351…) was observed communicating with the above IP since 2021-01-
28. The Beacon is signed using a possibly stolen code signing certifi cate issued to “JJ ELECTRICAL
SERVICES LIMITED,” with a serial of bbd4dc3768a51aa2b3059c1bad569276. This certifi cate was used
to sign a further Cobalt Strike Beacon with a timestamp of 2021-02-02 17:25:31 (SHA256 of d67ba…),
which is attributed to TrickBot in a report from Intel 471 published in May 2021.

Figure 84 – Joe Slowik tweet with BazarLoader details

IP C2SERVER First Seen Last Seen

217.12.202[.]115 88.119.171[.]105 2021-01-25 2021-02-08

Table 21 – WizardSpider/BazarLoader C2

Intel 471
Look how many cybercriminals love Cobalt Strike
https://intel471.com/blog/Cobalt-strike-cybercriminals-trickbot-qbot-hancitor

105

The full hashes for both of the above samples are:

• 5351984d7eaf9464f27c202f94b6475ffb73904191c973d7c737a0f3cdfbde0e
• d67baca49193bd23451cca76ff7a08f79262bf17fb1d8eb7adaf7296dca77ad6

The Malleable C2 profi le used by the WizardSpider/BazarLoader Beacons in our dataset differs from the
jQuery profi le observed by Intel 471. The latest samples appear to be based on an Amazon® Malleable
C2 profi le (using 0.0.0.0 for DNS idle), while another sample, signed with the stolen certifi cate, was using
a DNS idle value of 114.114.114.114 (China Telecom).

Beacons served from both IPs share the same PROCINJ_STUB hash, indicating they are both running a
leaked copy of Cobalt Strike 4.0.

trickbot

TrickBot was initially a banking Trojan, uncovered in 2016 and leveraged by its operators to facilitate
fi nancial gain. Since its inception, TrickBot has grown in complexity. It is now a modular, multi-stage,
jack-of-all-trades, offering credential harvesting, crypto mining, exfi ltration, reconnaissance and more.

A blog published by The DFIR report in May 2021 identifi es a TrickBot campaign that was used to fi rst
deploy Cobalt Strike Beacon and then a credential-stealing tool called LaZagne.

Figure 85 – LaZagne GitHub repository (https://github.com/AlessandroZ/LaZagne)

BlackBerry
Threat Spotlight: TrickBot Infostealer Malware
https://blogs.blackberry.com/en/2019/09/blackberry-cylance-vs-trickbot-infostealer-malware

106

The blog provides the following network IOCs for Cobalt Strike:

• 147.135.78[.]200:80
• 23.108.57[.]39:443
• wideri[.]com
• http[:]//172.82.179[.]170/w.dll

Further intelligence from RiskIQ published during September 2021 provides some additional context,
linking the IP 23.108.57[.]39 with a further ~650 IPs and attributing the overall campaign to WizardSpi-
der. RiskIQ also disclosed details of a new zero-day vulnerability in Microsoft® Word (CVE-2021-40444)
that was likely being exploited to deliver the Beacon payloads through malicious documents.

In this instance, clustering on SSL public keys associated with Team Server IPs revealed little further in
the way of additional infrastructure. This indicated that the operators of this particular botnet are em-
ploying some good OPSEC, installing Team Server afresh for each deployment. However, despite being
cautious, WizardSpider left a breadcrumb trail we could follow to correlate intelligence and uncover
further infrastructure.

The first part of the trail related to module names. Most of the module names employed by this threat
actor were manually specified and non-default:

• internsystem.dll
• commnicationsdebug.dll
• debugcomm.dll
• networkinternals.dll
• encryptfull.dll
• systemintern.dll
• networkcomm.dll
• cableplatform.dll
• debugcommunications.dll

In addition, many of the Beacons also used non-default process names for injection (SPAWNTO), such
as:

• %windir%\sysnative\wusa.exe
• %windir%\sysnative\mstsc.exe
• %windir%\system32\calc.exe

The final interesting portion of the breadcrumb trail concerns the use of a domain generation algorithm
(DGA), which is used to generate domains names for the beacon C2SERVER setting. In this instance,
the generated domain names tend to follow a simple nomenclature (6-12 characters, no prefix and a
.com suffix). For example:

The DFIR Report
Trickbot Brief: Creds and Beacons
https://thedfirreport.com/2021/05/02/trickbot-brief-creds-and-beacons/

107

• cloudstomes[.]com
• touchroof[.]com
• newiro[.]com
• derotin[.]com
• pipipub[.]com
• wideri[.]com
• hireja[.]com
• slicemia[.]com
• mebonux[.]com
• tucosu[.]com
• wuluxo[.]com
• dimuyum[.]com
• buremih[.]com
• nokuje[.]com

Armed with this knowledge, we can now produce a simple tool to label these samples in our dataset, as
well as to label incoming samples. This makes it easy to correlate emerging intelligence with Wizard-
Spider’s activities.

conti

In May 2021, WizardSpider deployed the Conti ransomware in an attack against the Health Service
Executive (HSE), the public health service of Ireland. As a result of the attack, the HSE was forced to
shut down its IT systems to regain control of the situation, resulting in appointment cancellations and
loss of services.

Security researcher Michael Koczwara revealed a further Conti ransomware campaign from July 2021
that employed a Beacon to deliver further payloads and stagers.

As noted by Koczwara in his report, the threat actors devoted little time and attention to protecting their
servers. Further clustering against our dataset using the user-agent string, submit URI, and the exis-
tence of azureedge[.]net in the HTTP host headers, reveals a further web of Conti-related Team Server
IPs, and over 65 Beacon payloads.

Michael Koczwara
Conti Ransomware Group Cobalt Strike C2 Analysis & Persistence (Anydesk, Atera, Splash)
https://michaelkoczwara.medium.com/conti-ransomware-group-cobalt-strike-c2-analysis-rdp-
persistence-cc535d35eaba

108

All the Beacon’s payloads are confi gured using the jquery-c2.4.3.profi le. And 16 of the samples are set
to perform domain fronting via Microsoft Azure, using either azureedge[.]net or workhub.microsoft[.]
com for the C2 server.

Figure 86 - Clustering of Conti infrastructure on user-agent, submit URI and Malleable C2 profi le

Figure 87 – Location of TrickBot Team Servers

109

Most of the Beacons contain a PROCINJ_STUB value that corresponds to the MD5 hash value of Cobalt
Strike Team Server 4.3.

man1

MAN1 (aka Moskal, aka TA511) is another financially motivated cybercrime group, active since 2018.
They are renowned for deploying malware called Hancitor via malspam campaigns. Since late 2019,
Hancitor has been used to deploy Beacon, amongst other malware, such as Ursnif and EvilPony.

We found evidence of MAN1 in our dataset in the form of two IPs, 31.44.184[.]47 and 192.99.250[.]2.
Both IPs were mentioned in a Unit 42 blog post from April 2021 examining traffic from Hancitor infec-
tions.

The second IP, 192.99.250[.]2, was helpful for pivot searches. It resulted in the discovery of several fur-
ther Beacons in our dataset that were configured to use the IP as part of the C2SERVER configuration
value:

The 192.99.250[.]2 address tends to be the preferred IP/host in the C2SERVER setting when serving up
Beacons over port 8080, whereas the Team Server IP will be used in the C2SERVER value for Beacons
served over port 80. Aside from these distinctions, the Beacons all appear to employ a default configu-
ration with a watermark value of 0, leaving limited opportunity for further clustering. Nevertheless, we
now have more intelligence on MAN1’s Beacons, and the first/last seen datetimes help to broaden our
understanding of campaign timelines.

IP C2SERVER First Seen Last Seen

173.199.115[.]116 173.199.115[.]116
173.234.25[.]78
192.99.250[.]2

2021-02-10 2021-02-10

173.234.25[.]78 173.199.115[.]116
173.234.25[.]78
192.99.250[.]2

2020-11-12 2021-02-20

192.99.250[.]2 173.234.25[.]78
192.99.250[.]2

2021-02-11 2021-02-11

31.44.184[.]47 31.44.184[.]4 2020-09-06 2020-11-19

Table 22 – Hancitor C2

BlackBerry
Threat Spotlight: Dissecting the MAN1 Group’s Macro
https://blogs.blackberry.com/en/2017/03/threat-spotlight-dissecting-the-man1-groups-macro

Threat Spotlight - MAN1 Malware: Temple of Doom
https://blogs.blackberry.com/en/2017/08/threat-spotlight-man1-malware-group-resurfaces

Unit 42
Wireshark Tutorial: Examining Traffic from Hancitor Infections
https://unit42.paloaltonetworks.com/wireshark-tutorial-hancitor-followup-malware/

110

ursnif - saigon fork

Ursnif (aka Gozi) is a multifaceted malware family with an emphasis on information stealing that has
been leveraged to exfi ltrate sensitive data from targets. It has been particularly pervasive from 2016
onwards. Since 2007, variants of the malware have been detected in Europe, Japan, and Australia, with
more recent outbreaks in the U.S. and U.K.

Since 2020, Ursnif has often been distributed via malspam and used to facilitate deployment of multiple
malware payloads, including Cobalt Strike Beacon.

In January 2020 researchers at FireEye published a report on a malware dubbed Saigon, in which they
indicated what appeared to be a fork of the Ursnif aka Gozi banking malware.

During that period, an IP (146.0.72[.]76) that was part of the Saigon C2 infrastructure was also present in
our dataset. The IP was seen to be serving a pair of Cobalt Strike Beacons based on the Stack Overfl ow
Malleable C2 profi le between November 2020 and January of 2021.

The SSL certifi cate used by the server listed in the FireEye report has also been linked to a second IP
on the same CIDR, 146.0.72[.]76/24. This IP was also historically associated with Team Server deploy-
ments on an array of ports.

IP C2SERVER First Seen Last Seen

146.0.72[.]76 146.0.72[.]76 2020-11-06 2021-01-17

146.0.72[.]84 146.0.72[.]84 2019-03-27 2021-02-05

Table 23 – Ursnif C2

Figure 88 - SSL certifi cate used across Ursnif related IPs

BlackBerry
Threat Spotlight: URSNIF Infostealer Malware
https://blogs.blackberry.com/en/2018/02/threat-spotlight-ursnif-infostealer-malware

FireEye
SAIGON, the Mysterious Ursnif Fork
https://www.mandiant.com/resources/saigon-mysterious-ursnif-fork

111

icedid

The IcedID malware family first appeared in the wild in September of 2017 and began life as a banking
Trojan. Since then, it has evolved through numerous functionality upgrades to have the means to carry
out wide array of malicious capabilities. After one recent campaign from early 2021, documented by
researchers at Checkpoint, it was discovered that some of their findings regarding the IcedID C2 in-
frastructure were also present in our dataset. Their infrastructure was seen to be serving Cobalt Strike
Beacons between September 2020 until as recently as May of 2021.

Further research from FireEye into IcedID reveals additional infrastructure and overlapping IOCs with
our dataset in the form of several C2 server IPs. FireEye specified that these were involved in an Ice-
dID-related infection chain that was part of a campaign from the threat actor UNC2198 in the latter half
of 2020.

When correlated with our dataset, we can start to unveil further IcedID connections, helping us further
map and monitor their infrastructure.

IP C2SERVER First Seen Last Seen

139.60.161[.]50 149.28.45[.]70
74.121.191[.]2

2021-03-31 2021-04-03

74.121.191[.]2 139.60.161[.]50
149.28.45[.]70
159.65.36[.]16
162.247.154[.]106
185.172.129[.]132
192.95.16[.]245
45.176.188[.]137
45.63.69[.]93
51.81.142[.]72
74.121.191[.]2

2021-02-26 2021-05-04

74.50.60[.]96 139.60.161[.]50
149.28.45[.]70
74.121.191[.]2

2021-03-26 2021-04-03

193.34.167[.]34 193.34.167[.]34 2020-09-23 2020-10-12

195.123.240[.]219 195.123.240[.]219 2020-09-23 2020-09-23

5.149.253[.]199 5.149.253[.]199 2020-06-29 2021-01-01

Table 24 – IcedID C2

Check Point Research
Melting Ice – Tracking IcedID Servers with a few simple steps
https://research.checkpoint.com/2021/melting-ice-tracking-icedid-servers-with-a-few-simple-steps/

FireEye
So Unchill: Melting UNC2198 ICEDID to Ransomware Operations
https://www.fireeye.com/blog/threat-research/2021/02/melting-unc2198-icedid-to-ransomware-
operations.html

112

salfram phishing campaign

Salfram is a malware packer/crypter that has primarily been used in the obfuscation and delivery of fi rst
stage payloads during malspam campaigns. Such payloads include the ZLoader, AveMaria, Smoke-
Loader and Gozi malware families, as described in research published by Cisco Talos in September of
2020.

It is notable that several of the IPs that were being used at that time for those campaigns are also pres-
ent in our dataset. They served Cobalt Strike Beacons between October and November of 2020.

While this information is not recent, it may be of benefi t in historical investigations, and may yet help to
yield further intelligence correlations.

dridex

TA505

TA505 is a long-running, fi nancially motivated threat actor that has been active since at least 2014.
TA505, named by Proofpoint, is best known for deploying banking Trojans such as Dridex and TrickBot
as well as ransomware such as Locky and Clop. Based on prior research from Intel471, a solitary IP
address mentioned in their report (176.121.14[.]175) was found to have shared a self-signed certifi cate
with two more IP addresses in our dataset.

IP C2SERVER First Seen Last Seen Version

185.153.196[.]209 185.153.196[.]209 2020-07-25 2020-10-01 4.0

31.44.184[.]125 31.44.184[.]125 2020-08-22 2020-11-19 3.14

31.44.184[.]50 31.44.184[.]50 2020-07-19 2020-11-15 4.1

Table 25 – C2s associated with Salfram delivery and post-compromise

Figure 89 - Excerpt from Intel471 blog on TA505

Cisco Talos
Salfram: Robbing the place without removing your name tag
https://blog.talosintelligence.com/2020/09/salfram-robbing-place-without-removing.html

Intel471
Flowspec – TA505’s bulletproof hoster of choice
https://intel471.com/blog/bulletproof-hoster-of-choice

113

These overlaps potentially reveal further historic TA505 related infrastructure:

The 91.214.124[.]54 was loosely attributed to TA505 in a report by the French CERT published in Feb-
ruary 2021. The new IP, 45.67.229[.]188, is running a leaked copy of Cobalt Strike 4.0, according to the
PROCINJ_STUB hash.

ta575

TA575, another group identifi ed by Proofpoint, is a notorious Russian cybercrime actor that is also re-
sponsible for deploying and operating the infamous Dridex banking Trojan.

Since February 2021, TA575 has deployed over 50 Cobalt Strike Team Servers, after shunning the
now-defunct PowerShell Empire post-exploitation framework.

IP C2SERVER First Seen Last Seen

176.121.14[.]175 176.121.14[.]175 2020-08-24 2021-02-14

91.214.124[.]54 91.214.124[.]54 2019-12-25 2020-02-10

45.67.229[.]188 45.67.229[.]188 2020-07-28 2020-09-02

Table 26 - TA505 C2

Figure 90 - Excerpt from the French CERT report

French CERT
INFRASTRUCTURE D'ATTAQUE DU GROUPE CYBERCRIMINEL TA505
https://www.cert.ssi.gouv.fr/uploads/CERTFR-2021-CTI-002.pdf

BlackBerry
Threat Thursday: TA575/Dridex
https://blogs.blackberry.com/en/2021/08/threat-thursday-ta575-dridex

114

We’ve been tracking TA575’s Team Server deployments using the SSL public keys in their Beacon’s
confi gurations.

Despite being hosted on over 50 servers, the SSL public key in question (0ce7b-
6482c1f24e42f2935f5026d338d) remains constant across all payloads. This means that the operators
of this Cobalt Strike infrastructure have clearly used a single server to build all Beacons, before deploy-
ing them from multiple Team Servers. The Team Servers are all using a leaked build of version 4.3,
according to the PROCINJ_STUB value.

Further tracking of the SSL public key across Beacon confi gurations has allowed us to collate infrastruc-
ture belonging to the TA575 threat actor that had previously been disparate and unattributed.

Largely fl ying under the radar, portions of the infrastructure have been used by thousands of Beacons
and malicious document stagers across several distinct malspam campaigns. In more recent offen-
sives, such as the Fake Kaseya VSA phishing campaign fi rst reported by Trustwave in early July, the
Team Server infrastructure was used for staging further Dridex payloads.

Figure 91 - Clustering TA575/Dridex infrastructure using SSL public key Hash

115

an initial access broker - zebra2104

When looking for domains relating to another campaign, we stumbled upon an interesting domain. It
had a similar naming convention, but it proved to be unrelated to the previous hunt.

A single domain led us down a path where we would uncover multiple ransomware attacks plus an
APT C2, and subsequently revealed what we believe to be the infrastructure of an Initial Access Broker
(IAB) that we have dubbed Zebra2104. IABs typically gain entry into a high-value victim network, then
sell access to the highest bidder on underground forums. Later, the winning bidders will typically deploy
ransomware and other fi nancially motivated malware within the victim’s organization.

This presents a great opportunity to examine how performing attribution of IABs can often be a complex
undertaking, and how further intelligence correlation can help us to better observe constellations on a
cloudy night, so to speak.

Let’s explore what we found!

Figure 92 - TA575 Cobalt Strike Team Server deployments by country since February 2021

GitHub
BlackBerry IOCs
https://github.com/blackberry/threat-research-and-intelligence

116

enter mountlocker

We identified Cobalt Strike beacons being served from the domain trashborting[.]com in April of 2021.
We had identified multiple beacons with different configuration data that were reaching out to the do-
main during April and August of the same year.

A Beacon served from the IP 87.120.37[.]120 had trashborting[.]com as the specified C2SERVER in its
configuration:

The trashborting[.]com domain was registered with a ProtonMail email address (ivan.odencov1985[@]
protonmail[.]com) and contained Russian WHOIS registrant information:

IP Country ASN ASN Number

87.120.37[.]120 Bulgaria Neterra Ltd AS34224

Table 27 – Details for 87.120.37[.]120

Type ROC

Registrar PDR Ltd. d/b/a PublicDomainRegistry.com

Domain Status client delete prohibited
client update prohibited
client delete prohibited
client hold

Email ivan.odencov1985[@]protonmail[.]com (regis-
trant, admin, tech)

Name Ivan (registrant, admin, tech)

Organization -

Street -

City Moscow (registrant, admin, tech)

State Moscow (registrant, admin, tech)

Postal Code 123066 (registrant, admin, tech)

Country RU (registrant, admin, tech)

Phone +7.993216690 (registrant, admin, tech)

Name Servers ns1.entrydns.net
ns2.entrydns.net
ns3.entrydns.net
ns4.entrydns.net

Table 28 – WHOIS registrant information for trashborting[.]com

117

This email address was used to register two other sister domains on the same date - 2020-07-17:

• supercombinating[.]com
• ideanotsure[.]com

At this point, we performed some further OSINT correlation and discovered that Sophos had attribut-
ed the domain supercombinating[.]com to a MountLocker intrusion, based on IOCs they published on
GitHub:

We then discovered that all three of these domains had been observed serving Beacons.

enter strongpity

After investigating the supercombinating[.]com domain further, we noticed something peculiar; it had
previously resolved to the IP 91.92.109[.]174. This IP had another resolution within a similar timeframe:
mentiononecommon[.]com

The name mentiononecommon[.]com is of particular interest to us, as Cisco Talos intelligence reported
that the APT group “StrongPity,” also known as “Promethium,” used this domain to serve its namesake
malware.

Three fi les attributed to StrongPity were served from this domain in 2020, according to VirusTotal.

Figure 93 – Sophos GitHub IOCs for supercombinating[.]com
(https://github.com/sophoslabs/IoCs/blob/master/Ransomware-MountLocker.csv)

Cisco Talos
PROMETHIUM extends global reach with StrongPity3 APT
https://blog.talosintelligence.com/2020/06/promethium-extends-with-strongpity3.html

118

Both supercombinating[.]com and mentiononecommon[.]com resolved to the following IP, which alter-
nated resolutions between the two domains at different overlapping time periods.

This is more evident when we look at VirusTotal’s display of Passive DNS Replication, where the resolu-
tion of 91.92.109[.]174 alternates between the two domains of interest.

Not only this, but the domain mentiononecommon was registered to a ProtonMail address with a similar
naming convention, which also has WHOIS registrant information pointing to Russia. The domain regis-
trant email address associated with the WHOIS record is timofei66[@]protonmail[.]com.

SHA256 Filename

c936e01333e3260547a8c319d9cfc1811ba5793e182d0688db679ec2b30644c5 Installer.exe

e843af007ac3f58e26d5427e537cdbddf33d118c79dfed831eee1ffcce474569 SecurityHost.exe

8844d234d9e18e29f01ff8f64db70274c02953276a2cd1a1a05d07e7e1feb55c SecurityHost.exe

Table 29 – mentiononecommon[.]com StrongPity samples

Domain First Seen Last Seen

mentiononecommon[.]com 2020-03-14 2021-03-05

supercombinating[.]com 2020-07-20 2020-09-27

Table 30 - First/last seen timestamps for mentiononecommon[.]com and supercombinating[.]com

Figure 94 - Alternating Resolutions of 91.92.109[.]174 according to VirusTotal

119

enter phobos

Initially we thought we had found a link between StrongPity and MountLocker through the entanglement
of supercombinating and mentiononecommon. Our working theory changed when we saw Phobos ran-
somware being deployed from the same C2 server as MountLocker, as shown in the following fi gure
and confi rmed by the Any.Run sandbox report mentioned by The DFIR Report.

This presented a bit of a conundrum. Are these ransomware operators actually in cahoots?

If MountLocker owned the infrastructure, then the chance would be slim that another ransomware op-
erator was also working from it. Additionally, in several instances a delay was observed between initial
compromise using Cobalt Strike and further ransomware being deployed. Based on these factors, we
can infer that the infrastructure is not that of StrongPity, MountLocker, or Phobos, but of a fourth group;
one we believe is an IAB that we named and continue to track as Zebra2104.

This further demonstrates the power of intelligence correlation. From just one lead derived from the
Cobalt Strike scanner, combined with OSINT, we now have valuable intelligence on the actions of four
different threat actors. Not only this, but we can also provide a level of context into their operations to
SOC analysis and incident responders during related incidents.

Figure 95 – The Phobos link

BlackBerry ThreatVector Blog
For more a more in-depth look at this threat actor and our subsequent fi ndings - make sure to check
out our blog:
https://blogs.blackberry.com/en/2021/11/zebra2104

120

hidden dragon

For clusters where there are no existing intelligence overlaps with available OSINT, there can be many
benefi ts in taking the time to dig more closely into IOC relationships. This can lead to the uncovering of
additional intelligence, even if it doesn’t always immediately lead to attribution.

Let’s explore one such cluster that we shall dub “Hidden Dragon” (awesome logo to follow!).

Delving into one of the larger C2SERVER clusters in our dataset, we can clearly spot several dubious
correlations after exploring the history behind the network operator.

The central node in this cluster is the 168.206.191[.]222 IP address. This IP appears to be connected to
240 unique Team Servers based on the C2SERVER values correlated from recovered Beacons.

The IP block 168.206.0[.]0/16, within which 99% of this Cobalt Strike network resides, is operated by
the Internet Service Provider (ISP) Clayer Limited (ASN 137951). It is based out of Hong Kong and is
currently assigned to the organization The Atomic Energy Board. The only other ISP owning infrastruc-
ture that forms a part of this network, IP 45.88.6[.]84, is ASLINE Limited (ASN 18013), also based out
of Hong Kong.

Figure 96 - Large cluster of Cobalt Strike Team Servers

121

As reported by the South African news outlet, mybroadband.co.za, the IP block 168.206.0[.]0/16 – con-
taining a total of 65,536 individual addresses – was part of a large chunk of IP address space that
was stolen from AFRINIC, the regional Internet Registry for Africa. This theft was carried out by a ma-
licious insider, who subsequently sold the netblock on the grey market for somewhere in the region of
R20,512,768 (African Rands), which equates to approximately $1.4 million USD. The confirmed owner
of this IP block is “NECSA,” Nuclear Energy Corporation of South Africa, a name that is similar to the IP
block’s currently assigned organization: The Atomic Energy Board.

At the time of publishing (November 2020), the MyBroadband blog reports that the very same IP block
was under active route squatting. Route squatting is where an unauthorized operator “squats” on a
block of IP addresses that do not belong to it. The ISPs Clayer and ASLINE are the reported route squat-
ters for this IP block. The latest report from AFRINIC still marks this IP block as “under dispute” as of
January 2021.

All the servers within this cluster are running the most popular leaked version of Cobalt Strike 4.0 and
they are configured to serve Beacon payloads on ports 9999 and 9998 (the WebSphere Application
Server Liberty Profile port).

All Beacons pillaged from the Team Servers are reverse HTTP payloads, each employing the default
Malleable C2 profile. They leave very little in the way of unique configuration values to distinguish them
from most other payloads. However, the SSL public key (81a3eeb8ceb74cf508f6bcfc408e0305) relates
to 2053 Beacon payloads across 240 Team Servers in our dataset, allowing us to group these IPs to-
gether with a high degree of confidence.

While we may not currently be able to attribute the “Hidden Dragon” infrastructure to a known threat
group, it will be only a matter of time before at least one IP is attributed by threat intelligence analysts.
At that point, the dominos will tumble. But in the meantime, we can at least provide limited intelligence
if these IPs are observed during incidents.

recap

Let's quickly recap all we’ve done so far. We've followed our CTI lifecycle, built an automation system
for hunting Team Servers, pillaged Beacons, and parsed configuration data. We've explored the config-
uration settings in-depth to uncover insights and trends, and we’ve discovered further clustering tech-
niques. Leveraging OSINT and the new clustering capabilities, we’ve correlated intelligence. This allows
us to differentiate the many APT groups, campaigns, access brokers and other nefarious cybercrimi-
nals, from the intended customer for Cobalt Strike, which is red teams and pentesters.

Now it's time to disseminate our findings and revaluate key stages of the lifecycle in a debrief.

mybroadband.co.za
The Great African IP Address Heist – South African Internet resources worth R558 million usurped with
shady domains
https://mybroadband.co.za/news/security/367188-the-great-african-ip-address-heist-south-african-
internet-resources-worth-r558-million-usurped-with-shady-domains.html

African Network Information Centre
AFRINIC WHOIS DATABASE ACCURACY REPORT
https://afrinic.net/ast/pdf/afrinic-whois-audit-report-full-20210121.pdf

122

DEBRIEF
chapter six

In this final chapter, we’ll reassess the CTI questions defined in the planning and direction phase, and the
steps undertaken during each subsequent phase to arrive at our solution. We’ll then recap the insights,
trends, observations, and discoveries uncovered throughout the CTI lifecycle as they pertain to each of
our key stakeholders, and how the data can be leveraged to enhance detection and correlation capabil-
ities across the XDR solution space.

planning & direction

“How do we proactively defend against Cobalt Strike?”

We discussed how this question was too broad to allow for adequate concentration on the desired
outcome. So, it had to be broken into more focused, direct, closed-loop questions for various XDR stake-
holders:

“How can we improve incident correlation and reduce alert fatigue?” – SOC Team

“How can we fine-tune EDR to detect Beacon payloads?” – Product Engineering

“What features are helpful for training models to classify Cobalt Strike
Beacon payloads and configurations?” – Data Science

“How can we improve correlation and campaign tracking relating to Cobalt Strike?” – Incident Response

“How can we track Team Servers and campaigns?” – Threat Intelligence

We also highlighted that the by-product of directed intelligence efforts still has a use, and that feeding
contextualized information into an XDR-capable platform has benefits to teams beyond the stakeholder
who requested the intelligence.

collection

Collection is the first phase of an intelligence-led, proactive defense posture.

In the collection phase, the aim was to generate a list of potential Cobalt Strike Team Servers while
keeping false positives to a minimum. This ensures that the data collected is relevant, accurate and
(most importantly) timely: That is to say, it’s collected before anyone is targeted.

While several options were possible, we opted to demonstrate how to build a system that leverages data
collected by public Internet scanning services in order to lower the barrier to entry for organizations.

123

In this regard, we demonstrated how to craft several queries based on some of Cobalt Strike’s known
characteristics that can be used to discover active Team Server Infrastructure, such as:

• Cobalt related HTTP response headers
• SSL JARM fingerprints
• SSL certificate serial numbers
• Malleable C2 profile settings

With queries crafted and data gathered, we discussed how a Team Server stages its Beacons and how
we might use this knowledge to our advantage to obtain said Beacons for further analysis.

As part of this, we provided some Python scripts that can be leveraged in your own systems, so you may
start to pillage and plunder Team Servers before they can do the same to you.

processing

With a bounty of Beacons in hand, we started the process of extracting the “configgy goodness” that will
provide the information from which we will extract our Intelligence.

The first step was to separate the wheat from the chaff, so to speak. We removed any invalid payloads
from our dataset based on size and data type.

Next, we discussed how to decode the shellcode-based payloads to make it possible for us to access
the embedded PE and its config. This involved extracting the XOR key and payload size from the shell-
code and performing the differential XOR decode process.

Once the PE was decoded, we discussed the Beacons’ config formatting, its structure and its XOR en-
coding. These are details which are essential for the config extraction process.

With our newfound understanding of the structure of each setting in the config, we touched on how
automation of this final step (config extraction) would be possible.

From here, the analysis and intelligence dissemination phases can take place.

analysis

The insights, trends and discoveries uncovered during the analysis phase have been leveraged to en-
hance detection and correlation capabilities for various products and services within our XDR solution
space, including anti-malware, EDR and SOC services.

Let’s review how some of this information was of benefit.

insights

The insights uncovered during the analysis phase included a raft of host and network-based indicators.
From IPs, netblocks and certificates, to process names, injection techniques and pipe names, this infor-
mation is fed to blocklists to enhance detection. It is also correlated to provide intelligence insights for
various products and services.

For BlackBerry, these insights are used to inform and enhance our various commercial cybersecurity
products and service offerings. For you, the information can be similarly distributed across your internal
XDR framework to provide an additional layer of protection against Cobalt Strike vector attacks.

124

trends

The frequency of configuration settings, deployment of Team Servers and prevalence of Beacons helps
us to fine-tune EDR rules for alerting purposes. Knowing the most popular configuration values, such as
named pipes or target processes for injections, can help analysts and investigators to swiftly craft rules
to grab most low-hanging fruit with a high degree of confidence.

discoveries

Perhaps the biggest revelation during the analysis phase was the discovery of what can best be de-
scribed as hidden watermarks embedded in Beacon configurations.

After considerable analysis, it appears that the SSL public key embedded in configs can often be used
to cluster Beacons configured on the same server, while the misleadingly named PROCINJ_STUB can
be used to track which Team Server builds were used. The DEPRECATED_SPAWNTO configuration can
also be used to perform clustering in some instances.

These sparsely documented “hidden watermarks” have proved invaluable for enhancing intelligence
correlation (more so than the actual watermark setting!).

dissemination

After enriching our dataset during the human analysis phase, we were ready to disseminate our re-
search and findings to our various stakeholders.

Let’s look at how some of the data was consumed by various teams and XDR product and services
stakeholders.

threat intelligence

As demonstrated under the “Beacon of Hope” chapter, the main benefit to threat intelligence has been
increased correlation with known threat groups. This led to greater confidence when performing attribu-
tion and a broader understanding of active threat groups and campaigns.

The “watermark” values have allowed us to perform some powerful monitoring, by tracking values such
as the SSL public keys to cluster Beacons and Team Servers.

We can then use these values to further our knowledge and understanding of campaigns, as well as
produce some cool graphs and charts to keep our management team happy!

125

We can use this information to correlate against detections originating on endpoints we protect and
monitor. In instances where we have details of threat groups, we can immediately deploy our IR teams
to engage with the clients, providing them with full campaign details and indicators before they even
complete a compromise assessment.

With IABs increasingly establishing a foothold, then deploying Beacon and selling access to the high-
est bidder within a matter of days, this speedy response can present a brief window of opportunity to
disrupt campaigns before more (often fi nancially motivated) threats are deployed. It also presents the
possibility of separately tracking threat actors who solely perform IAB services vs. those who deploy
ransomware and other threats, as in the case of StrongPity/MountLocker/Phobos.

threat hunting

Once equipped with the dataset, our internal threat hunting teams wasted no time in identifying Team
Server traffi c and Beacons from a variety of sources, including private data feeds and online malware
repositories, such as VirusTotal.

Part of the reason for Cobalt Strike’s prominence is that, when it is confi gured carefully, it can operate
surreptitiously. When packaged and deployed with additional care, it can be used to evade detection in
many security solutions and services. While most security vendors fare perfectly well at detecting and
blocking Cobalt Strike Beacon payloads on disk, when it’s deployed in-memory via complex stagers,
things get a little more complicated due to transformations and injection techniques.

One such example our threat hunters uncovered was a strange process connecting to a known Team
Server IP. The process was odd, in that it was clearly a legitimate version of Java, used to invoke an
open-source web server application developed by Oracle, called GlassFish. After some research, it was
discovered that the threat group called WINNTI has been exploiting a remote code execution vulnerabil-
ity in GlassFish webservers to deploy Cobalt Strike Beacon payloads against selected targets.

Having the ability to hunt for and monitor Team Server IPs is invaluable. It helps to not only improve the
effi cacy of cybersecurity products and services, which is far and away the main aim, but also to uncover
new and exciting intelligence fi ndings. In this instance, we found an exploitable web server application

Figure 97 – Cobalt Strike detections by industry vertical

126

and further TTPs employed by the WINNTI group. Our customers benefit from enhanced protection and
monitoring, and we all get richer in shared intel!

incident response

Unsurprisingly, our incident response team frequently encounters Cobalt Strike Beacon at the heart
of their investigations. To that end, correlating our dataset with public and private intelligence allows
incident responders to perform attribution with a higher degree of accuracy. They can also correlate
incident and campaign timelines, as well as uncover related IOCs to use for hunting during live investi-
gations and compromise assessments. This helps them perform further actor and campaign profiling,
and it offers the chance to gather further contextual information around Team Servers. This in turn
leads to better intelligence production, enhanced alerting capabilities and more publishable research
opportunities across the XDR solutions and services space.

forensics

On that face of it, the dataset might not seem overly beneficial to forensic analysts. However, mining the
data for common filenames, module and export names, profile strings, rich headers and import hashes
provides a wealth of generic indicators that can be leveraged to assist in cybersecurity forensics. As
mentioned, Cobalt Strike Beacon payloads often reside entirely in-memory, and sometimes under ex-
ploited processes. Being able to quickly and efficiently ascertain whether Beacon is active on a system
when looking at a memory dump can be highly beneficial to investigators.

To that end, keyword files can be crafted and used to grep memory for common strings, and YARA rules
can be written to detect fragments of Malleable C2 profiles. Additionally, automatically correlating IPs
found in-memory with Team Server infrastructure via your forensic framework of choice offers a pow-
erful mechanism to aid further forensic workflows, such as automatically extracting and processing
Beacon payloads and configurations from memory.

data science

Having a curated and labelled dataset comprised of Beacons, parsed configuration settings and in-
telligence correlations presents a couple of interesting opportunities for the application of machine
learning.

The first, perhaps most obvious application, is the identification of Beacon DLLs for classification pur-
poses. Using the corpus of Beacon payloads pillaged from Team Servers, we can train a variety of su-
pervised machine learning (ML) models using methods such as KNN and SVC to classify Cobalt Strike
Beacon payloads accurately and reliably based on PE file features.

The second, perhaps less obvious application, is the identification of clusters of infrastructure belonging
to individual threat groups. To do this, we first need to figure out how best to coerce Beacon configura-
tion settings into usable ML training features (for example, hashing strings and performing hamming
distance calculations against Malleable C2 profiles). Then we can train a classifier to not only spot rela-
tionships between configurations, but also to reveal what decisions led to those conclusions. This can
lead to the discovery of new intelligence and allow us to determine if previously unseen Beacons relate
to known groups and campaigns.

NTT
The Operations of Winnti group
https://hello.global.ntt/-/media/ntt/global/insights/white-papers/the-operations-of-winnti-group.pdf

127

We plan to revisit this topic more in-depth in a future book!

soc

SOC analysts can take the enriched dataset and begin to select common indicators with which to build
rules for alerting. The most obvious data to consume fi rst is the IP and port listings, as well as URIs, cer-
tifi cate information and module names. These are typically indicators that most EDR platforms support
and that tend to yield high-confi dence alerts.

In general, anything that benefi ts the SOC also benefi ts our XDR products and services. We can use
correlation techniques to improve the accuracy of alerts, thereby reducing alert fatigue. But we can also
begin to provide context and meaning beyond simply tagging traffi c as originating from Cobalt Strike
Beacon.

These days, the most powerful opportunity for SOC analysts is in identifying threat groups from incident
alerts and providing actionable intelligence alongside contextual details. This will empower analysts
and responders alike in their decision-making and case-handling from the moment an incident occurs.

red team

Although red teams were not a direct stakeholder in any phase of our CTI lifecycle, it’s worth spending
some time considering the implications of some of the fi ndings with respect to OPSEC when deploying
Cobalt Strike.

The fi rst consideration is around the general hardening of Team Server infrastructure. We’ve observed

Figure 98 – Covariance ranking of features used to train a Cobalt Strike Beacon detection model
(feature labels redacted)

128

several threat groups deploying complex tunnelling mechanisms to obscure their C2 infrastructure in
the past, and we expect this to become more commonplace, especially as it helps to defeat automated
hunting systems. From SOCKS proxies to TOR fronting, SSH tunnelling and general IP hardening, we
expect red teamers and threat actors will likely step up their game with respect to network OPSEC.

The next major consideration concerns the new “watermarks”, and the possibilities that now exist for
tracking Team Server operators based on these hidden values. Whilst some of the values may be trivi-
ally spoofed without harming the functionality of Beacon, such as the PROCINJ_STUB and DEPRECAT-
ED_SPAWNTO, others, like the SSL public key, cannot be tampered with as easily without breaking the
C2 check-in process. This would leave operators with little choice but to rotate public/private keys often,
which would likely be a hassle to perform with any regularity.

It might seem like creating a highly customized Beacon would be an obvious choice for attackers. But
that’s the beauty of this method of correlation. While the intention of many bad actors was to use Cobalt
Strike to blend in with the crowd, it is now becoming apparent that there is sufficient “uniqueness” in
Beacon configurations to track and monitor users.

The main consideration for attackers when deploying Cobalt Strike these days is how best to strike a
balance when customizing Beacon. Use a default Malleable C2 profile and you risk being easily blocked
on the endpoint, while conversely, if you supply a highly customized profile, you risk being easily tracked.
Finally, a perhaps more drastic approach to evade detection would be to write your own customized
port of Beacon to interoperate with Team Server. This is exactly the method that researchers at Intezer
recently discovered, with a Linux port of Beacon build for RedHat distributions and leveraging OpenSSL
for cryptography. Interestingly, the new Beacon, dubbed Vermilion Strike, retains the configuration data
from Windows Beacons (simply ignoring irrelevant settings), meaning the possibility for clustering on
the SSL public key and other hidden watermarks still exists.

Defenders and attackers will continue to play the cat and mouse game. We wait for the inevitable ad-
vances in OPSEC with bated breath.

Intezer
Vermilion Strike: Linux and Windows Re-implementation of Cobalt Strike
https://www.intezer.com/blog/malware-analysis/vermilionstrike-reimplementation-cobaltstrike/

129

evaluation and feedback

The evaluation and feedback stage has led to continuous improvement throughout the CTI lifecycle, and
indeed, will most likely continue to yield improvements long after this book has been published.

During the early phase of the lifecycle, most feedback was focused on enhancing our automation plat-
form, with the primary focus on producing more intelligence data to allow us greater options for clus-
tering. Initially we started with a dataset mostly comprising parsed Beacon configuration data, but over
time, this has grown considerably to ultimately include:

Team Server information
• First/Last seen dates and times
• Certificate name/serial/domain/hash
• Geolocation
• ASN
• Netblock

Beacon configuration
• Configuration settings
• Time zone offset
• Malleable C2 profile identification
• Domain fronting
• Rich headers
• Import hashes
• Compile times
• Module name
• Exports

Miscellaneous
• Threat actor
• Labels
• OSINT correlation

Since disseminating the dataset to our various stakeholders, feedback is becoming more tailored to
each consumer’s specific circumstances. Some stakeholders require confidence ratings for IP block-
lists, others want real-time updates for new Team Servers and Beacons discovered in the wild, while
some want charts and graphs to plot the Cobalt landscape. Some of these tasks take minutes to com-
plete, while others are perhaps slightly more involved, and will feed back into our software development
lifecycle for planning and implementation.

fulfilling the xdr mission

As the CTI discipline matures, we find the process becoming less of an art and more of a science. This
newly emerging intelligence paradigm has led to huge benefits for cyber awareness across all security
products and services in the XDR solution space. Intelligence-led protection will pave the way for smart-
er, more unified security services with increased awareness. Greater intelligence and awareness will
ultimately lead to significant gains in machine-based detection capabilities, as well as superior real-time
contextual information.

Combining the holistic view of the security landscape offered by XDR with contextual intelligence and
deep insights offers many exciting new opportunities in the cybersecurity arena. One such avenue, ma-
chine-based decision-making in response to incidents, seems imminently achievable. By automatically
deriving playbooks from contextual intelligence correlated with alerts, we can potentially greatly aid
decision making and case management in response to incidents for SOC and IR teams alike.

130

beyond the hype and back again

A final word on CTI; we created this book as a case study highlighting the importance of the lifecycle,
and how to think about the processes that may be required. There are ideas on building a data-gathering
and intelligence-creation pipeline, using automation to collect and ingest data, correlating what you are
seeing, and linking to existing research.

We tried to frame this as a defined, structured approach; one that needs to be repeatable. In this way,
it’s more science, and less art. While all of this is true, working in this field is immensely rewarding and
at times, downright awesome.

Don’t take the seriousness with which we’ve talked about frameworks and proper procedures in this
book as meaning you will have less fun. The truth is quite the opposite: By ensuring you have the right
processes and technology in place, the people working with the data will have more time to focus on the
cool shi… stuff. It provides the base from which to let creativity flow.

Being involved in the work of threat intelligence often does not feel like a job. The rush when a hypoth-
esis is proven correct is addictive. So too is the personal challenge you can set for yourself when you
experience a moment of finding your hypothesis is wrong. Wanting, even needing, to understand the
data and why you were wrong is intoxicating.

Our lofty hope is that this book can be used to help teams understand the environment they operate in,
to make better decisions. We hope to get you to a point of taking proactive measures to stop or detect
malice sooner. And we want more people to experience the rush of doing this important work.

To all the analysts, researchers, IR, SOC and intelligence teams reading this, we hope you’re having as
much fun as we are in making the world a better, safer place.

– The BlackBerry Research and Intelligence Team

131

Disclaimer

The information contained in this book is intended for educational purposes only. BlackBerry does
not guarantee or take responsibility for the accuracy, completeness and reliability of any third-party
statements or research referenced herein. The analysis expressed in this report reflects the current
understanding of available information by our research analysts and may be subject to change as
additional information is made known to us. Readers are responsible for exercising their own due

diligence when applying this information to their private and professional lives. BlackBerry does not
condone any malicious use or misuse of information presented in this report.

132

 FINDING
 BEACONS
 IN THE
 DARK A Guide to

 Cyber Threat Intelligence

BlackBerry Research and Intelligence Team

 FIN
D

IN
G

 B
E

A
C

O
N

S
 IN

 T
H

E DA
R

K

 BlackBerry Research and Intelligence Team

