
1/14

Aniruddha Dolas July 31, 2020

MassLogger: An Emerging Spyware and Keylogger
seqrite.com/blog/masslogger-an-emerging-spyware-and-keylogger/

31 July 2020
Written by Aniruddha Dolas

Estimated reading time: 7 minutes

Summary:

We have been dealing with a new spyware for the past two months, named MassLogger.
This advanced keylogger and spyware are distributed via MalSpam attachments and has
more features than other present keylogger tools. It has been observed that this campaign is
using several different file types as malicious attachments as an initial infection vector. Also,
the dynamic behaviour of this camping is not constant across multiple samples. It comes with
several functionalities like keylogger, Windows Defender exclusion, taking Screenshots,
spreading via USB, clipboard stealing, VM detection, etc.

Technical Details:

Here are different file types used as spam attachments in this campaign:

zip
rar
gz

https://www.seqrite.com/blog/masslogger-an-emerging-spyware-and-keylogger/
https://www.seqrite.com/blog/author/aniruddha/

2/14

7z
img
iso
doc
arj
xz
ace
docm
z
xlsm
cab

After looking at the above list, we can see two major categories of attachment— first is
archive file and second is a document file. In the case of archive files, there is .NET
masslogger payload after extraction, while in the case of document file it contains VBA
macro and exploit which downloads masslogger payload from a remote server.

Polymorphic Process Chain:

We have seen different variants of dynamic behaviour across multiple samples in this
campaign. Below are snapshots of a few process chains:

Fig 1: Process Chain. Ref. https://app.any.run/

3/14

Fig 2: Process Chain. Ref. https://app.any.run/

Fig 3: Process Chain. Ref. https://app.any.run/

4/14

Fig 4: Process Chain. Ref. https://app.any.run/

Document analysis:

In some cases, threat actors have used office document file as initial infection vector with
VBA macro and equation editor exploit. The following figure shows the extraction of Excel
document having embedded OLE storage containing 2 VBScripts and 1 file of CVE-2017-
11882 exploit and VBA Project stream containing VBA macros.

Fig 5: OLE Streams and Storages
The following figure shows multiple OLE streams each containing different data.

Fig 6:

Ole Embeddings
The first stream oleObject1.bin is a VB script file contains renamer code and after which it
executes VBS file using Wscript.

5/14

Fig 7: VBS Job
OleObject2.bin stream is also a VB script which is highly obfuscated and having code to
download a payload from C2 server.

Fig 8: VBS downloader
The excel sheet containing stack-based buffer overflow editor exploit of the equation editor
renames and executes VB Scripts using WinExec api (0x00430C12) post-exploitation.

Fig

9: Shellcode
“1C00” is the header of Equation Editor, in the right side, the shellcode is present containing
cmd.exe initially renames the VB script and passes it to Wscript to execute that VB Script.
After overflow occurs, this whole data is passed to WinExec function which does the further
activity. For more info related to CVE-2017-1182 exploit, please refer our blog post.

To increase to chances of payload delivery, the attacker uses both exploit and VBA macros.
When exploit fails on a patched system, another component, VBA macros are also present in
the document file. The similar VBS code is present in VBA macros and macro code has the

https://blogs.quickheal.com/malspam-campaigns-exploiting-recent-ms-office-vulnerability-cve-2017-11882/

6/14

responsibility of dropping the VBS file in “C:\programdata\” folder and execute it as VBS Job
which does further similar activity as that of the Equation Native exploit.

Payload Analysis:

The payload is downloaded from different initial attack vectors as discussed above when it
executes and goes in sleep for a few seconds. There is a lot of sleep code present in this
binary. There are a total of 4 components present with 2 layers of the packed file.

Stage 1 layer:

In the 1 layer, when it gets executed it has a simple code hidden in a Form() component.
This code is responsible to extract a dll file from resource directory in present in reverse data
in Base64 format which further gets resolved and dumps a dll with name AndroidStudio.dll.

Fig 10: Fetch data from resources
AndroidStudio.dll have a responsibility to decompress and decrypt a buffer which passes to
it.

st

7/14

Fig 11: Android Studio code
GZip decompression method is used to decompress the buffer passed from the resource
directory. This dll is used to dump another PE file which is responsible for further activity.

Stage 2 Layer: Lazarus.exe

The Lazarus.exe gets dumped which is highly obfuscated .NET file which is now unpacked
from the parent file. We have decoded this file using de4dot tool successfully. In execution, it
goes in sleep for a few seconds, it checks if it’s own copy is present at “%appdata%”
location. If not, it drops a self-copy at “%appdata%” location. After that, to stay persistent in
the system, it creates an entry in task scheduler. For this, it creates and drops a.XML config
file at “%temp%” location which is the input for creating task scheduler. The metadata for
XML file is hardcoded and stored in PE resource. All data gets replaced at runtime.

Fig 12: Task Scheduler XML
The name of starts with string “Update\” followed by file name dropped at %appdata%
location.

8/14

Following command gets executed to add an entry in task scheduler.

“C:\Windows\System32\schtasks.exe” /Create /TN “Updates\<filename>” /XML “C:\Users\
<username>\AppData\Local\Temp\tmp<USERID>.tmp”

Now time to move to the final payload which is MassloggerBin.exe. Using Process Hollowing
technique, it injects code into its own process. Following image shows the use of the self-
hollowing technique to do its further activity.

Fig 13: Process Hollowing
When it successfully writes and creates a new process, the parent process gets terminated
and code injected process runs as an orphan. The code of this process is also highly
obfuscated. All function and class names are modified to random/obfuscated string.

Stage 3 layer: MassLoggerBin.exe

With the start, it extracts a dll file having name “Ionic.Zip.Reduced.dll” from its resources.
The Ionic.Zip.Reduced.dll is a DotNetZip free fast class library used for manipulating zip files.
The code used by the attacker in Masslogger is available on this site. The main motive of
using this dll is to create a zip file containing a compressed package of files like snapshots,
keyloggers, user info etc.

The internal config-based functionality is used by MassLogger to fetch the required
accordingly which is then assigned to a specific variable.

Following are the variables that fetch data stored in its internal config fig — by going to
particular offset is the first parameter and the config array from where data gets fetched is
the second parameter

https://archive.codeplex.com/?p=DotNetZip

9/14

Fig 14: Retrieves Config data

Fig 15: Config Data
It starts collecting system information like name of the system, Windows version, CPU, GPU,
AV installed, Public IP which it gets from URL: “hxxp[:]//api[.]ipify[.]org”, also gets running
process information.

Fig 16: Running Processes
MassLogger also stores a running process windows name in its log file.

MassLogger Functionality:

10/14

1. Application Data Stealer:

Following are some list of applications where it tries to steal user data and which further
sends to its C2 server.

By checking data from hardcoded path stored in this binary, it checks for particular data and
installation of these applications, if it does not find any details, it creates an entry in the
following format,

<|| Application-name ||>

Not Installed

The following modules are present in MassLogger binary. Following is the list of that:

2. Windows Defender Exclusion

It has a module named as “WD Exclusion” which is a Windows Defender Exclusion. Using
command “Add-MpPreference –ExclusionPath <path>“, it exclude it-self from Windows
Defender Anti-Virus.

3. USB Spread

Another module, USB Spread, it uses an open-source code of LimeUSB available on
GitHub. It is used to infect files stored on the USB drive. When files on USB gets executed, it
executes its own code as well as infected code.

https://github.com/NYAN-x-CAT/LimeUSB-Csharp/blob/master/LimeUSB-Csharp/Resources/Source.cs

11/14

Fig

17: USB Spread Module
4. Keylogger and Clipboard

It has a key log capture module, using “SetWindowHookEx” api it captures all keyboard keys
and logs it.

Fig 18: Keyboard Hooking
5. Anti VM

It also has Anti-VM techniques by checking for Video_Controller adapter using WMI “Select *
from Win32_VideoController” which retrieves which information related to the graphics card.
If the process is executing on Virtual Box then it returns “Virtual Box Graphics Adapter”.

12/14

Fig 19: Video Adapter
6. Search And Upload

As per config file, it searches for some file which it wants to send to the C2 server that stores
in “SearchAndUpload.zip” archive.

All data is stored and retrieved from its config file. Following is the view of MassLogger config
file.

Fig 20: Config File
Once all data collection is done, it creates a log file containing all data like when Masslogger
Process is started and ended and other collected details. After that, it compresses using ZIP
and gets stored at the location “C:\Users\<USERNAME>\AppData\Local”.

Following is an image showing MassLogger log file.

13/14

Fig 21: MassLogger log file
Conclusion:

Masslogger is a highly configurable and modular keylogger and spyware. The author behind
Masslogger tried to make it more sophisticated in features than other keyloggers, these
features make it hard to detect this advanced malware.

IoCs:

4A199C1BA7226165799095C2C2A90017 (XLSM)

D1FFF0C0782D08ED17387297369797E0 (XLSM)

31B65A54940B164D502754B09E3E9B63 (PE)

37958546CB6DC41F505FDCB3430CEE3B (PE)

Subject Matter Experts:

Aniruddha Dolas

Pawan Chaudhari

Aniruddha Dolas is part of the HIPS (Host-based Intrusion Prevention System) team in Quick
Heal Security Labs. He has worked on various security vulnerabilities...

Articles by Aniruddha Dolas »

No Comments

https://www.seqrite.com/blog/author/aniruddha/
https://www.seqrite.com/blog/author/aniruddha/

14/14

Leave a Reply.Your email address will not be published.

