New MultiloginBot Phishing Campaign

zscaler.com/blogs/security-research/new-multiloginbot-phishing-campaign

Multilogin is an application designed to make it easier to log into multiple accounts on a
single website or platform simultaneously. Recently, Zscaler ThreatLabz has come across a
live phishing campaign that is targeting genuine Multilogin users by tricking the users into
downloading a malicious installer. The installer is hosted on newly registered websites
"multilogin-uk[.]Jcom" and "multilogin-us[.]Jcom" (registered on September 2nd 2021) which
are a lookalikes of the legitimate website "multilogin[.Jcom". The threat actor has taken
great care to match every detail, starting from website layout to the url pattern used for
downloading the application, in order to impersonate as the legitimate website.

The malicious installer installs a stealer (named as multilogin), written in Dotnet, on the
compromised machine. This stealer gathers sensitive information from the victim's system
and sends it to its telegrambot in a zip format.

This blog aims to describe the behavior of the installer and the main functionalities of the
stealer.

Attack Flow:

The below snapshot shows the delivery mechanism and attack chain of the malware.

1/12

https://www.zscaler.com/blogs/security-research/new-multiloginbot-phishing-campaign

|

I Phishing Website
I
|
|

— -

—— — — Sending— — — — — — — Stolen Data ———%
s Attacker
Victim

— — — — Redirecting ———9 ‘

Legitimate Website

r————-

Technical Analysis

As a first step, the threat actors have cloned the legitimate website, giving it a similar
domain name, in order to trick the user into visiting the phishing website and downloading
the malicious installer hosted on it. The below snapshot shows the difference between the
fake and legitimate sites.

Fake Website Legitimate Website

€ 2 C i multioginukcomfget-softwere/etate=1 % @ €3 C i nubilegncomgetsoituaretate1 % 8

ACADEMY ~ USECASES PRICING BLOG SUPPORT CONTACTUS DOWNLOAD &,

Bownioad Miftiogin Download Multilogin

Latest stable version Latest stable version
Unity 5.17.2 Unity5.17.3

@ Whats new inthis version? @ Whats new inthis version?

DOWNLOAD FOR 64-BIT WINDOKS 4, DOWNLOAD FOR 64-BITWINDOKS
Dowrlcac for Linuxaéd @

For the purposes of analysis, we will look at the Installer with MD5 hash:
9986d6836e6b4456fd38e7d5b036¢727, which is an Inno package unsigned binary. The
below snapshot shows the comparison between the installer downloaded from the fake site
and the installer from the legitimate site.

2/12

Installer from Fake Site Installer from Legit Site

P muitilogin-5.17 2-15.exe Properties x @ multilogin-5.17.2-51-windows x86 64 setup.exe Properties e

General Compatibility Secunrevious Versions General Compatibility { Digital Signatures JSecurity Details Previous Versions
Property Value Property Value
Descrghon Description

=

Cﬂle description mutilogin Setup : ¢]le description Multilogin Setup
Type pplicaton Type Application
File yorsics SOl

File version 0.0.0.0
Product name Multilogin
Product version 5.17.3.51
Copyright

Froductname multlogin
Productwersion 517.2-15

Date modified 9/9/2021 6:19 AM Size 181MB
Language Language Neutral Date modified 9/22/2021 5:42 AM
Language Language Neutral

Remove Properties and Personal Information

Like the normal installer, the malicious installer creates a full environment, starting with
registry changes, then creating required folders (explained later), for the effective execution
of the malware. In order to achieve persistence on the compromised machine, the malicious
installer creates a shortcut file in the All Users startup folder as can be seen in the below
snapshot.

6:09:31 $J sample tmp 5588 &Crealeﬁle C:\ProgramData\MicrosoftWindows\Start Menu\Programs\multilogin.Ink SUCCESS
6:09:31 $J sample tmp 5588 &WmeFlle C:\ProgramData\MicrosoftWindows\Start Menu\Programs\multilogin.Ink SUCCESS

It is to be noted that the installer drops the malware at the user’s selected installation path
at the time of installing the application.

Required folders: The installer creates a folder named “Iltem” and the following sub-
folders, which shall be checked and used by the malware later:

AutoFills: Consists of text files containing browser’s autofill information.
Cookies: Consists of text files containing browser’s cookies information.
IP: Consists of a text file containing IP address information.
Passwords: Consists of text files containing user's login information.

After successful installation, the final GUI (Graphical User Interface) comes up with an
enabled check box to launch the application named as multilogin (hereinafter referred to as
malware). After clicking the “Finish” button, the malware comes into play. Now, let's get into
the code to understand the functionality of the malware.

Information Gathering

3/12

Before starting stealing activities, the malware checks the required folders in the system
and then executes its functions to collect information from the compromised machine,
explained below:

1.) IP Address Information:Firstly, the malware collects the IP address by making a web
request to “checkip.dyndns.org”’and stores the collected information at
“<Installation_Path>\ltem\IPAddress\IPAddress.txt”, in the format <IP_Address>:
<Country_Name>, asexplainedin the below snippet.

4{1,31\\6"); Regex for IP
pattern match

text);
Code for writing the output data into the
text file

Country Information of the TP

It is to be noted that the above code also acts as a checkpoint for an internet connection--
that is, if the malware doesn’t get a response, then the malware crashes.

2.) User’s Login data:
The steps to gather the login data of the user are as follows:

Creates a copy of existing login data file to the destination file that is named as
‘C:\LoginData0’ in this case. The below snippet shows the detailed steps.

4/12

ew List<CredentialModel>();

"\\..\\Local\\Google\\Chrome\\User Data\\Default\\Login Data";

if flag3==true, then it will copy the login data .db file to
<Drive>in the format <Drive> :\<copied_file name>
this. "\\..\\Local\\Google\\Chrome\\User Data\\Profile " + i.ToString() + "\ <Integer>, which in this case is C:\L.ogindata0
\Login Data";
folderPath = J (.SpecialFolder.

:)s
g fullkath = o UlclderRathgthiss)3 /f full path of login data Same is used further for carving out the

user's senstive information(=
bool flag2 = . (fullPath); //checks if the file exists(login data file) credentials)
if (flag2)

nfo[] drives = DriveInfo. ()5 //drives info £ (flag3)

num = (double)driveInfo.
o[] array = drives; str = driveInfo.
int j = @; j < array. 5 J++) 3 U
FileInfo fileInfo = new FileInfo(fullPath);
S num‘ch.ecks status of text = str + "Login Data" + i.ToString();
° drive+freespace| fileInfo.CopyTo(text, e);

DriveInfo driveInfo = array[j];
bool flag3 = driveInfo. &% (double)driveInfo.
if (flags) //checks flag status, if true

The below snippet shows how the SQL query is being executed against the newly
created i.e C:\LoginData0 file to carve out the login information. And then the
information is decrypted and stored in a new file placed at
<Installation_Path>\ltem\Password\
<Browser_name>Profile_<Integer>_PASSWORD.txt>.

PLzis = : (text) //file status check of " C:\Logindata0"
(flags)

("Profile " + i.ToString());

(sQLiteConnection sQLiteConnection = SQLiteConnection("Data Source=" + text + ";"))

sQLiteConnection.Open();
(sQLiteCommand sQLiteCommand = sQLiteConnection.CreateCommand())

{
sQLiteCommand. = "SELECT action_url, username_value , password_value FROM

logins™; //sql query to carve out the information
(SQLiteDataReader sQLiteDataReader = sQLiteCommand.ExecuteReader())

hasRows = sQLiteDataReader.
(GEELLITE)
{
path = Program.WORKING_PATH + "\\Password\\ChromeProfile_" + i.ToString()
+ "_PASSWORD.txt"; //nath of outnut file

[] key = . () ;! key to decrypt password
FileStream fileStream = FileStream(path, FileMode.)E
StreamWriter streamWriter = StreamWriter(fileStream, Encoding.)

(sQLiteDataReader.Read())

[] bytes = . (sQLiteDataReader, 2);
[1 iv;
[]1 encryptedBytes;

bytes of encrypted password : (bytes, iv, encryptedBytes);

text2= decrypted password text2 = - (encryptedBytes, key, iv);
streamWriter.WritelLine(. (

[]
« Ny
"Chrome|", format of writing
sQLiteDataReader.GetString(@), "“'—'ﬁ,——"' data
!

The login data contains passwords in an encrypted format, so the malware first gets
the key, which shall be used further to decrypt the encrypted password. The below
snapshots explain the same.

); reading "Local State" file

(text);

get the data after"encrypted key"

(CSharpBinderFla

Fle Edit View Debug Window Help @ 2

Assembly Explorer ~ X ChromeDeayptor

a

000 C - arg 11C_e(arg 11C_1, arg 117 @(arg 117 1,

byte[] source = Convert.FromBase64String(s);REUNEE! of base64 encoded string

(5). <byte>(); selection of encrynted bytes
(encr dData, null,|DataProtectionScope.); decryption of key

— " 0, arg))); §
Z\Users\IEUsenAppData\Locah\Google\Chrome\User ... - O X

Edit Search View Encoding Language Settings Tools Macro Run
ns Window ? X

I'he protected data is associated with the current
1t; decrypted key ser. Only threads running under the current user

b, B
8lsi=| 4 4 i g

ginData &4 H Local State E3

ile":{"name":{"migrated":true}}}, "netwo:k_time" A
"network time mapping":{"local™:1.631862014126025
e+12, "network":1.631862013e+12, "ticks":130365339.
0, "uncertainty":2743374.0}},"origin_trials":{"dis
abled features":["SecurePaymentConfirmation” "o
[5_crypt":{"encrypted_key": "REBBUEKBAARAOTYd3WEVOR
EMEGDATERXGWEARABBR /W7 16hZSYSQKYmKEq1EARARAATARAA
pABBMAAARAQARTAARAMMN TVLKIg/ TEFGgld 6t +WHEDSHVNRA2
[70T+1158/ 2pHAAAAAREARAAAAGAATARAARTpDINXADDk6GLE
[5zPQdjLolCh7KAC/17W4754iDecMARAAE4eWEd91eHbGBJI kB
[oWdcBSKRPo0QeKGbpyMB+fMtOicyPklanEOez+q3/kJHI060A
pARACWh9DK29NN/+S8/p92sEjzdxhDFUj 6tA6GhVe6eihL4D4WtE

006 wy ow

(hutall ancruntadRitac

ord manager": {"os_password blank":false,"os_passw
ord_last chanaed™-"13197502A44770913") . "ninains"-

Col:608 Sel:41]1 Windows (CRLF) UTF-8 INS

The next step is to get the encrypted data (password), which shall be passed to the
next function named “Decrypt” explained in the next step.

6/12

&

File Edit View Debug Window Help © G = b Continue

~ X ChromeService

Assembly Explorer
b4
b %3 BraveService @02000

¥D - [CAUsers\IEUser\Des|

ead())

[m} X
2):
fle Edit Search View Analysis Extras Window ? -&x 5o)
. . =3 16 51| ansl S| hex » getting the encrytped bytes of password which shall
o be decrypted and stored in "text2"
ogin Data -

iv);)

gEllc4 7€ 31 30

55 BB OC 3B Cé 98 FE C4 14

73 3R 2F 2F 61 €3 &3 6F 75 6E 7
A7 RO 2F &3 FF ED 2F 00 OF

Block: A573-A598

Length: 29

After getting the key and the encrypted data, the malware will decrypt them by using
the below code.

[1 encryptedBytes, []1 key, [1 iv)

pher(

meters(

(encryptedBytes.

ncryptedBytes, @, encryptedBytes.

The below snippet shows the format in which malware will store the user login data

information.
=1 ChromeProfile_0_PASSWORD txt D|
1 IChromeg|lottps: //www . facebook. com/login/| Gamail. conll]
2 |Chrome _Lpe LLir as i 5 it ahoomail.com]idmini123]
S IChromelllDlips: Z/www . reddi L, com/logln damal comIRDMIN
4 fchromd||htips: //accounts.google.com/sianin/v2/challenge/password/empt vl @gmail.com||JADMIN321!
) IChromel|lhtlps: L Fl, ter. n:m[n/:;(}:;:;Tnn:: | Bgmail. c:umll!/\dm infl123 I

Format = <Browser Name>|<website link_with_EmaillD>|<Password>

3.) Autofill and Cookies:

The malware uses a similar mechanism to the one explained above to collect autofill and
cookies information and stores the respective data in a file placed at
<Installation_Path>\ltem\Autofill\<Browser_name>Profile_<Integer>_AUTOFILL.txt>
and <Installation_Path>\ltem\cookies\
<Browser_name>Profile_<Integer>_cookies.txt>, respectively. The below table depicts
the targeted file and the sqgl queries used to extract the information.

7/12

Type Targeted Newly Sql Query Decryption
file Created file of bytes?
Path
Autofills Webdata C:\WebdataO0 Select name, value FROM autofills False
Cookies cookies C:\cookiesO SELECT host_key, is_httponly, True

path, is_secure, expires_utc,
name, encrypted_value,
creation_utc FROM cookies order
by host_key,creation_utc desc

The below snippet shows the format in which malware will store the related information.

a ChromeProfile_0_AUTOFILL txt (%] ‘
1 MAME: email VALUE: @gmail.com
2 NAME: identifier VALUE: @gmail.com
3 NAME: session[username or email] VALUE: @gmail.com
4 NAME: session key VALUE : @yahoomail . com
5 NAME: username VALUE: @gmail.com

; ChromeProfile_0_cookies bt (x|

Autofills

Cookies

20
21

22

1tNIiDrLem+I=|Default

.scorecardresearch.com|UIDR=16135026¢63;UID=1CF23a22324795a54c03d31]
.sitescout.com| ssuma=eyIxNyIloMTYxMzUwM]jgxMjk30X0;ssi=88f31da7-88el
3502812825 |Default

.tapad.com|TapAd 3WAY SYNCS5=;TapAd DID=0ft6el6l4-708b-1leb-aatb-5e6
2657 | Default

23 .turn.com|uid=8621895641383870192|Default

24 .twitter.com| ga=GAl1.2.1009900073.1613202390;guest 1id=v1$3A1613502¢
id="v1l faaSGBZsXYLrlbfusvIGJw=="|Default

25 .unsplash.com|ugid=b51177b8a086cl168303c558bba6e02515378343 |Default

Lo Wy 7111-'7_1—1“1 ,-J-:“_.-: el TAMADT I TN C | .'If—_,-«,—.‘ 1-2 N--_1 c2N21 129 1 Q1

Note:- Similar code and logic is there for stealing information from other browsers (except
Firefox). The below snapshot shows the list of browsers targeted by the malware author.

8/12

@0200000B

A TLT L VLT

00000C

AV LT LW LY L

200000F

LT LT L VLT

0000E

2000013

[WL VLWL

<Browser>Service = Responsible for checking the targeted file location and then writing of
the decrypted data.

<Browser>Decryptor= Responsible for decryption of the encrypted data

In the case of Firefox, the malware targets cookies.sqlite, signons.sqlite and logins.json files
to carve out the sensitive information and stores the data in
<Installation_Path>\Item\cookies\FFProfile_Cookies.txt and
<Installation_Path>\Item\Password\FFProfile_ PASSWORD _.txt respectively. It is to be
noted that for decryption of encrypted data, the malware uses PK11SDR_Decrypt’ API of
nss3.dll.

Zip file creation code

After stealing all the data from different browsers, the malware then creates a zip file which
shall be sent to the command and control (C2) server. The below code explains the same.

9/12

0

CultureInfo cultureInfo = CultureInfo("en-GB");
) regionInfo = RegionInfo(cultureInfo.

tterISORegionName = regionIn
ing("dd-

multilogin.exe & C:\Program Files (x86)\mulfilogin\tem\|IP\IPAddress.txt
£} multilogin exe C:\Program Files (x86)\multilogin\tem\IP\IPAddress.txt
6:13:41.... EPmultilogin.exe C:\Program Files (x86)\multilogin\item\AutofilNChromeProfile_0_AUTOFILL bt
| 6:1341 8mumlngin exe 8488 BanEFi\e CAProgram Files (x86)\multilogin\item\Autofil\ChromeProfile_0_AUTOFILL bt
6:13:43. multilogin.exe 8488 BsCreateF\le CAProgram Files (x86)\multilogin\item\cookies\ChromeProfile_0_cookies bt
6:13:43.. multilogin.exe 8488 E&WNEF”E CAProgram Files (x86)\multilogin\item\cookies\ChromeProfile_0_cockies.bt
6:1343... multilogin.exe 8488 BaCrealeFi\e C\Program Files (x86)\multilogipiligea asswordiChromeProfile 0 PASSWORD.txt
| 6:1343 multilogin.exe 8488 ELWHIEF\IE C\Program Files (x88)\multilogiffiitem

Current working directory folder name files with information

Telegram Bot

After zip creation, in order to transfer the zip file, the malware initiates C2 communication to
its Telegram bot, using a hard-coded token. The snippets of the code are shown below.

o Setting up of required protocols + Reading of zip file + Sending data (labeled 1)
e Full telegram bot url (labeled 2)

SecurityProtocolType.

Post-Stealing Activities

After successfully performing the stealing activities, in order to leave no trace, the malware
displays a pop-up with a false message to update the application and asks the user for
confirmation to proceed ahead. Once the user responds, then the malware opens a
legitimate link in the foreground and deletes the created zip file in the background,
irrespective of the option chosen by the user. It means that even if the user selects “No,”
the code will execute in the same pattern.

How to Defend Against This Attack

10/12

Zscaler's multilayered cloud security platform detects these indicators at various levels:
Win32.Backdoor.MultiloginBot.

The Zscaler sandbox coverage is below:

C' @ bauizscalerfeed.net

@>>zscaler Cloud Sandbox

Low Risk =
Analysis Performed: 9/8/2021 12:32:02 PM

® High Risk ® Moderate Risk

SANDBOX DETAIL REPORT

Report ID (MD5): 9986D6836E6B4456FD38E7D5B036... File Type: exe

CLASSIFICATION MACHINE LEARNING ANALYSIS VIRUS AND MALWARE

* Malicious - Low

Threat Score

86

Class Type
Malicious

Category No known Malware found
Malware & Botnet Detected: I

Gen:Variant.Bulz.674958

SECURITY BYPASS ca

® Sample Sleeps For A Long Time (Installer Files
Shows These Property).

* Found A High Number Of Window / User

NETWORKING b

Found Strings Which Match To Known Sacial
Media URLs

URLs Found In Memory Or Binary Data

STEALTH b

Disables Application Error Messages

Specific System Calls
Contains Long Sleeps

Executes Massive Amount Of Sleeps In A Loop

MITRE Att&ck Table

T1584 Compromise Infrastructure

T1547 Boot or Autostart Execution

T1555 Credentials from Password Stores
T1567 Exfiltration over Web Services
T1059 Command and Scripting Interpreter
T1005 Data from Local System

T1114 Email Collection

T1560 Archive Collected Data

11/12

https://threatlibrary.zscaler.com/threats/95294a02-669e-4115-b49f-9e9bc6cd16e3

T1606 Forge Web Credentials

IOCS

Below are information on IOCs, including MD5 hashes and URLSs, that should be blocked.
MD5s

9986d6836e6b4456fd38e7d5b036¢c727

f991573756dbc778b52b84212c7a36¢5

Phishing domains:

multilogin-uk[.Jcom

multilogin-us[.Jcom

12/12

