
1/7

October 17, 2018

The Emergence of the New Azorult 3.3
research.checkpoint.com/the-emergence-of-the-new-azorult-3-3/

October 17, 2018
Research by: Israel Gubi

During the past week, Check Point Research spotted a new version of Azorult in the wild
being delivered through the RIG exploit kit, as well as other sources. Azorult is a long known
information stealer and malware downloader, with this particular version being advertised in
an underground forum since October 4. The version number given to it by its authors is 3.3.

There are quite a few changes in this newly witnessed variant, the most prominent ones
being a new encryption method of the embedded C&C domain string, a new connection
method to the C&C and improvement of the Crypto currency wallets stealer and loader.

The timing of this update to the malware is not surprising, mainly in light of major leaks for
previous versions 3.1 and 3.2, in which panel source code and binary builders were released
for the public to use for free. Check Point shared those leaks to the research community for
further investigation last month. Moreover, we have witnessed and written about another
project related to Azorult, dubbed ‘Gazorp’ – a dark web binary builder that allows anyone to
craft the malware’s binaries for free. Having this in minds, it is plausible that the Azorult’s
author would like to introduce new features to the malware and make it worthy as a product
in the underground market.

The Forum Advertisement

On October 4, the following update to Azorult was advertised on the exploit.in underground
forum by the user CrydBrox. The updated version number 3.3 is shown below.

https://research.checkpoint.com/the-emergence-of-the-new-azorult-3-3/
https://twitter.com/_CPResearch_/status/1041687670567694336
https://research.checkpoint.com/the-gazorp-dark-web-azorult-builder/

2/7

Figure 1: Advertisement of Azorult v3.3

The above states the following improvements and features:

[+] Added support for stealing the following wallet credentials: BitcoinGold, electrumG,
btcprivate (electrum-btcp), bitcore, Exodus Eden

[+] Cryptocurrency wallet’s stealer component has been improved.

[+] The loader component was fixed and improved, allowing bat files to be loaded and
executed with no errors

[+] Lowered AV detection rate, increased successful installation rate

[+] Slight improvement in admin panel’s performance

Comparison to previous versions

In version 3.2, the C&C domain name was xored with a hardcoded key and then
encoded with base64. The current version 3.3 shows a new encryption method to
obfuscate the domain name. The script for decryption of the domain’s string can be
found in the Appendix below.
Every version of Azorult has a unique xor key for its connection method to the C&C. In
version 3.3 the connection key is: [0x3, 0x55, 0xae]. Moreover, every version
connection message contains a prefix (‘getcfg=’ in version 3.1 and ‘G’ in version 3.2)
prepended to the id hash before xoring with the connection key. The prefix in version
3.3 is the connection key, which makes the connection message sent to C&C starts
with 3 zero bytes.

Figure 2: adding connection key as prefix.

Azorult’s C&C server response is divided into 3 parts separated by tags:

https://research.checkpoint.com/wp-content/uploads/2018/10/fig1-1.png
https://research.checkpoint.com/wp-content/uploads/2018/10/fig2-1.png

3/7

<c></c> – the configuration part, encoded with base64

<n></n> – DLLs that Azorult copies to a new directory it creates under the %TEMP% folder.
The name of the new directory is unique for every version of Azorult (‘1M0’ in version 3.1 and
‘2fda’ in version 3.2). In the new version, the name of the directory is generated based on the
id hash of the victim’s computer. Therefore, the name of the directory will be different for
every victim.

The algorithm for generating the directory name is as follows:

Id_hash=hash_func(guid)-hash_func(product_name)-hash_func(user_name)-
hash_func(computer_name)-hash_func(guid+product_name+user_name+computer_name)

Directory_name = hash_func(hash_func(Id_hash))

The particular implementation of the hash_func method is outlined in a script, which appears
in the Appendix below.

<d></d> – names of application paths that Azorult harvests data from. In version 3.3,

The following application names are added:

%appdata%\ElectrumG\wallets\

\ElectrumG

%appdata%\Electrum-btcp\wallets\

\Electrum-btcp

BitcoinGold\BitcoinGold-Qt

BitCore\BitCore-Qt

BitcoinABC\BitcoinABC-Qt

%APPDATA%\Exodus Eden\

The authors of Azorult fixed a bug in the loader functionality that didn’t allow the malware to
load bat files and execute them successfully. The bug was caused by wrongfully comparing
the extension of the loaded file, causing the launch of all files with CreateProcessW API as
executables instead of ShellExecuteExW. In the new version, the authors fixed the
comparison method to avoid this bug.

4/7

Figure 3: loader extension comparison in versions 3.2 and 3.3. The former introduces a bug.

Appendix

C&C domain name decryption Python code:

def decrypt_domain_method_v3_3(encrypted_domain):

 decrypted_domain_array = []

 key_buffer = [0x1e, 0x15, 0x34, 0x49, 0x5e, 0x37, 0x24, 0x2f, 0x58, 0x27, 0x6e, 0xd3,
0xd4, 0x71, 0xd6, 0x73, 0xd8]

 index = 0

 sum = 0

https://research.checkpoint.com/wp-content/uploads/2018/10/fig3-1.png
https://research.checkpoint.com/wp-content/uploads/2018/10/fig3a.png

5/7

 while index < len(encrypted_domain):

 cur_byte = encrypted_domain[index]

 if cur_byte == key_buffer[0]:

 sum += 0x64

 elif cur_byte == key_buffer[1]:

 sum += 0x5a

 elif cur_byte == key_buffer[2]:

 sum += 0x50

 elif cur_byte == key_buffer[3]:

 sum += 0x46

 elif cur_byte == key_buffer[4]:

 sum += 0x3c

 elif cur_byte == key_buffer[5]:

 sum += 0x32

 elif cur_byte == key_buffer[6]:

 sum += 0x28

 elif cur_byte == key_buffe[7]:

 sum += 0x1e

 elif cur_byte == key_buffer[8]:

 sum += 0x14

 elif cur_byte == key_buffer[9]:

 sum += 0x0a

 elif cur_byte == key_buffer[10]:

 sum += 0x8

 elif cur_byte == key_buffer[11]:

6/7

 sum += 0x6

 elif cur_byte == key_buffer[12]:

 sum += 0x5

 elif cur_byte == key_buffer[13]:

 sum += 0x4

 elif cur_byte == key_buffer[14]:

 sum += 0x2

 elif cur_byte == key_buffer[15]:

 sum += 0x1

 elif cur_byte == key_buffer[16]:

 decrypted_domain_array.append(chr(sum))

 sum = 0

 elif cur_byte == 0:

 break

 index += 1

 decrypted_domain = ”.join(decrypted_domain_array)

 return decrypted_domain

hash_func method for calculating the generated directory name.

def hash_func(value):

 xor_key = 0x6521458a

 hash_output = 0

 for index in range(len(value)):

 cur_byte = ord(value[index])

 xor_value = cur_byte ^ xor_key

 hash_output = (hash_output + xor_value) % (2**32)

7/7

 right_value = (hash_output << 0xd) % (2**32)

 left_value = (hash_output >> 0x13) % (2**32)

 diff_value = right_value | left_value % (2**32)

 hash_output = (hash_output – diff_value) % (2**32)

 hash_string = hex(hash_output)[2:-1]

 if len(hash_string) < 8:

 diff = 8 – len(hash_string)

 output_string = (‘0’ * diff) + hash_string

 else:

 output_string = hash_string

 output_string = output_string.upper()

 return output_string

IOCs

Md5:

11147fd9ac12eec66d35b4d483aae71f

d893d8347ecad1a3d85064d2f5bded4f

a8d3e403995132f9af33e4557be301a0

C&C:

https://infolocalip.com/index.php

https://tohertgopening.com/index.php

https://certipin.top/index.php

TE signature: InfoStealer.Win.AZORult.C

https://infolocalip.com/index.php
https://tohertgopening.com/index.php
https://certipin.top/index.php

