
1/20

Analysis of Neutrino Bot Sample (dated 2018-08-27)
peppermalware.com/2019/01/analysis-of-neutrino-bot-sample-2018-08-27.html

In this post I analyze a Neutrino Bot sample. It was probably generated 2018-08-27. I will
compare the analyzed Neutrino sample with the NukeBot's source code that was leaked on
spring, 2017, and I will check that Neutrino Bot is probably an evolution (or, at least, it reuses
parts) of the NukeBot leaked code.

Original Packed Sample: 3F77B24C569600E73F9C112B9E7BE43F
Automatic Generated Report: PepperMalware Report
Virustotal First Submission: 2018-08-28 14:36:26
Sample Creation Date: 2018-08-27
Unpacked Banker Module: 896609A8EE8CC860C2214FCD1E3CF264
Internal executable id: aug27
Related links:

https://www.malware-traffic-analysis.net/2018/08/21/index2.html
https://twitter.com/malware_traffic/status/1032066941953945600
https://blog.malwarebytes.com/threat-analysis/2017/02/new-neutrino-bot-comes-
in-a-protective-loader/
https://securelist.com/jimmy-nukebot-from-neutrino-with-love/81667/

Analysis

1. Loader

1.1. First stage packer
1.2. Second stage, custom packer / injector
1.2.1. Antidebug Tricks
1.2.1.1. Antidebug tricks: API Obfuscation

http://www.peppermalware.com/2019/01/analysis-of-neutrino-bot-sample-2018-08-27.html
https://github.com/p3pperp0tts/malware-leaked-sources-1/tree/master/TinyNuke
https://www.hybrid-analysis.com/sample/13000a0da5fc8da437e70649fe39802cce240bf1529b6ab7ce3c273a592eb615
https://sandbox.peppermalware.com/publicreport/?filter=3f77b24c569600e73f9c112b9e7be43f&action=showpdf
https://www.hybrid-analysis.com/sample/fbc59d467919dd07a343f59e0e8718610fb663a08bb373d6a04bf0b70b073f82
https://www.malware-traffic-analysis.net/2018/08/21/index2.html
https://twitter.com/malware_traffic/status/1032066941953945600
https://blog.malwarebytes.com/threat-analysis/2017/02/new-neutrino-bot-comes-in-a-protective-loader/
https://securelist.com/jimmy-nukebot-from-neutrino-with-love/81667/

2/20

1.2.1.2. Antidebug tricks: Time Tricks
1.2.1.3. Antidebug tricks: HKCU\Software\Microsoft\Windows\Identifier
1.2.1.3. Antidebug tricks: CPUID checks
1.2.1.4. Antidebug tricks: Walk running processes searching for wellknown names
1.2.1.5. Antidebug tricks: Walk own process' modules searching for wellknown
names
1.2.1.6. Antidebug tricks: IsDebuggerPresent / CheckRemoteDebuggerPresent
1.2.2. Injection
1.2.3. Other details
1.2.3.1. BotId and mutex
1.2.3.2. PRNG

2. Banker module
2.1. WebInjects
2.2. Browser hooks
2.3. Other stealer capabilities

3. Similarities with NukeBot leaked source code
3.1. InjectDll function at banker module
3.2. Hollow-process explorer.exe
3.3. Random BotId

4. Yara rules
5. Conclussions

1. Loader

1.1. First stage packer

In the first stage, the sample is packed with an usual packer that allocates a memory block
where it copies a shellcode that decrypts a second stage code, and that second stage code
is overwritten over the original PE in memory.

3/20

1.2. Second stage, custom packer / injector

This second stage is an executable that is unpacked over the original executable in memory.
This second stage perfoms some antidebug tricks such as VM detection and API calls
obfuscation. In addition, it decrypts the third stage PE: the main banking code, and it injects
this third stage PE to explorer.exe process.

1.2.1. Antidebug Tricks
The analyzed sample performs a somo usual antidebug tricks. From analyzed sample (IDA
decompiled):

1.2.1.1. Antidebug tricks: API Obfuscation

In the Neutrino Bot loader, each time a API is going to be called, it is got from a hash.

https://2.bp.blogspot.com/-O6Pbuh60S-s/XCnsIYmWJkI/AAAAAAAAACg/YgHMe1n-SvsMeCyQNtVeTOGsGgLSxm89wCLcBGAs/s1600/usual_unpack.png
https://4.bp.blogspot.com/-PW5WWvLH5Io/XCp9IOaGwOI/AAAAAAAAAE4/Ba9oXpcjSSwGD5R5hDkrL6VHh0texxG2wCLcBGAs/s1600/nukebot_antidebug_trick.png

4/20

It seems to be using a custom hash algorithm, not crc32 or similar well-known algorithm
(frequently used by other malware families).

1.2.1.2. Antidebug tricks: Time Tricks

The analyzed sample plays with GetTickCount and waits (Sleep and WaitForSingleObject),
performing usual tricks to detect that it is running into a VM. From analyzed sample (IDA
decompiled):

1.2.1.3. Antidebug tricks: HKCU\Software\Microsoft\Windows\Identifier

The analyzed sample checks the key: HKCU\Software\Microsoft\Windows value: Identifier, it
hashs the content of that value with Fowler–Noll–Vo hash algorithm and it compares the
hash with 0xC9C8F009. I don't know exactly what content would match this hash, but
probably it matchs an specified content for some wellknown VMs (virtualbox, vmware, ...).
From analyzed sample (IDA decompiled):

https://1.bp.blogspot.com/-cge89BoRKh4/XCoAlSbR5zI/AAAAAAAAADQ/a6JWGMKneAw9lhsNUozPfqrfmYO7Up7GwCLcBGAs/s1600/nukebot_api_get.png
https://4.bp.blogspot.com/-svKDppm6Vxs/XCp6ftyOaDI/AAAAAAAAAEc/m-Y7IOmXmWoXrSNkYHOKvjyFPZ7RLwlAwCLcBGAs/s1600/nukebot_time_trick.png
https://en.wikipedia.org/wiki/Fowler%E2%80%93Noll%E2%80%93Vo_hash_function

5/20

1.2.1.3. Antidebug tricks: CPUID checks

The analyzed sample executes cpuid instruction to get cpu information, then it calculates a
fowler-noll-vo hash with the information returned by cpuid, and compares that hash with a set
of values: 0x3A72221D, 0xB609E57D, 0x11482F93, 0xA7C9423F, 0x7816EDDD,
0x6361F34. I don't know exactly the original data causing these hashes, but probably they
are values returned by cpuid related to wellknown VMs such as vmware, virtualbox, etc...
From analyzed sample (IDA decompiled):

https://4.bp.blogspot.com/-DR3xrfNk-Fs/XCpq_FxnErI/AAAAAAAAADs/YYSreGcr1A00cf9eaFs780mmYhH81699QCLcBGAs/s1600/nukebot_identifier_key.png

6/20

1.2.1.4. Antidebug tricks: Walk running processes searching for wellknown process's names

The analyzed sample calls toolhelp32's functions to walk running processes. Again, it
calculates the fowler-noll-vo hash foreach process name and compares against a set of
precalculated hashes: 0x4FAEA2EB, 0x689ED848, 0x57337435, 0xE8BC3AB9,
0x3C30BBA6, 0xA421254D, 0x26638D6A, 0xE3449C1. These hashes probably correspond
to names such as vmtoolsd.exe and other well known processes associated to VMs and
security products.From analyzed sample (IDA decompiled):

https://1.bp.blogspot.com/-P8yBmoWoKvw/XCpyRjkWuUI/AAAAAAAAAD4/zao2MOemcVQH3f98gDppbrdtcx94_JrtACLcBGAs/s1600/nukebot_check_cpuid.png

7/20

1.2.1.5. Antidebug tricks: Walk own process' modules searching for wellknown module'
names

In addition, it walks the modules of the current process searching for wellknown libraries
such as SbieDll.dll, etc... It compares the fowler-noll-vo hash of each module's name with the
following set of hashes: 0xCC23DB0E, 0xCCFE57BB, 0x9FECD578, 0xE69D9465,
0xC55CC270, 0x601CDCE9, 0x9DF7C709, 0x23E9F2F5, 0x70E2598E, 0x2C82D8A,
0x99CC8618, 0xB62000C5. From analyzed sample (IDA decompiled):

https://2.bp.blogspot.com/-HA6Do7AOIiU/XCp1cLLkkQI/AAAAAAAAAEE/j_-UToUcd4cG0FYDaQZPqNXvnRUJlLBhQCLcBGAs/s1600/nukebot_check_process_names.png

8/20

1.2.1.6. Antidebug tricks: IsDebuggerPresent / CheckRemoteDebuggerPresent

Not necesary explanation, usual antidebug checks:

https://2.bp.blogspot.com/-ScZCUFoF914/XCp5U3n3dQI/AAAAAAAAAEQ/Y8rn-0IhE3kT78q-q3AyDE3lN5NSWj0NwCLcBGAs/s1600/nukebot_check_process_modules_names.png
https://4.bp.blogspot.com/-6A54VAGTiks/XCp7HKqS77I/AAAAAAAAAEk/0_xKk1JqDIsvE3FFNH_KPWr58Ipn81QpACLcBGAs/s1600/nukebot_is_debugger.png

9/20

1.2.1.7. Antidebug tricks: Query device' names

The analyzed sample calls QueryDosDeviceW to get a list of devices, and calculates the
fowler-noll-vo hash foreach name, and then compares each name with a set of values:
 0x5C86B533, 0x7F65B61C, 0x464768AD, 0x9A781952. It tries to detect VM's common
devices, such as vmci or HGFS. From analyzed sample (IDA decompiled):

1.2.2. Injection

The analyzed sample decrypts the third stage PE (the banking module) by using the RC4
algorithm + decompression. It creates an explorer.exe instance, and it will inject the
decrypted PE into the address space of that explorer.exe instance (hollow process). From
analyzed sample (IDA decompiled):

https://3.bp.blogspot.com/-mV6OVnlqErU/XCp7wdAI6jI/AAAAAAAAAEs/2NNVXFHQsek6c3X36nB0K-WJ8E9SAwT0gCLcBGAs/s1600/nukebot_query_devices.png

10/20

1.2.3. Other details

1.2.3.1. BotId and mutex
The analyzed sample contains a kind of executable id, and the name of the mutex is created
based on that executable id. In the case of the analyzed sample this exe id is "aug27",
probably the date that it was generated (the virustotal first analysis date is 2018/08/28). From
analyzed sample (IDA decompiled):

A fowler-noll-vo hash is calculated from the string "aug27". Later, it uses the calculated hash
to initialize a PRNG (based on idum=1664525*idum+1013904223) to generate a random
guid, that will be the name of the created mutex. From analyzed sample (IDA decompiled):

https://4.bp.blogspot.com/-2XqmiSpkETg/XCtVyoaxVjI/AAAAAAAAAFE/n9GHLc_u3-syr8RRb5YCbbRiYQ6oWz0tACLcBGAs/s1600/nukebot_inject.png
https://1.bp.blogspot.com/-yhtJVNnliK0/XCtgiNhKfyI/AAAAAAAAAFo/yRlCv8TyrQocixuMc2s0--ADMvrAOAIdACLcBGAs/s1600/nukebot_mutex.png

11/20

1.2.3.2. PRNG
From analyzed sample (IDA decompiled):

https://3.bp.blogspot.com/-EmMxmoh3JiM/XCtgwtGP7GI/AAAAAAAAAFs/TlBQaa6o-hYYLY33nKAxq4W22C8okm3zgCLcBGAs/s1600/nukebot_random_guid.png
https://4.bp.blogspot.com/-3UFgndieXL8/XCtll7Xw40I/AAAAAAAAAGI/y-YdO-NA3wwnHE0ozBPBHnZsDRPglxZ6wCLcBGAs/s1600/nukebot_prng.png

12/20

2. Banker module

The third stage is the banker module. You can find the unpacked banker module's dll that I
unpacked here. It is quite similar to this other dll that was extracted by @james_in_the_box
(you can read about at twitter, here) from a sample shared by @malware_traffic, here.

This is a list of strings of the Neutrino Bot unpacked banker module.

2.1. WebInjects

The banker module performs webinjects. The following parts of code manage the
downloaded injects (IDA decompiled):

https://www.hybrid-analysis.com/sample/fbc59d467919dd07a343f59e0e8718610fb663a08bb373d6a04bf0b70b073f82
https://www.hybrid-analysis.com/sample/5d27da308eb6d494b656d67cbaded6a183e45823a7d9430e86573bd38011f3f4?environmentId=100
https://twitter.com/james_inthe_box
https://twitter.com/malware_traffic/status/1032066941953945600
https://twitter.com/malware_traffic
https://www.malware-traffic-analysis.net/2018/08/21/index2.html
https://pastebin.com/xctbmghM
https://4.bp.blogspot.com/-GQP4WoAxOsk/XCv7IhocuCI/AAAAAAAAAHQ/C28RI5wRDEcJwKu-QSUqYjkmrpSSX_gAwCLcBGAs/s1600/neutrino_banker_mod_getwebinject.png

13/20

2.2. Browser hooks

It performs hooks at frequently targetted nss3 and wininet APIs at browsers.

Nss3 hooks (IDA decompiled):

Wininet hooks (IDA decompiled):

https://3.bp.blogspot.com/-cmomFIqahpg/XCv87ILQQdI/AAAAAAAAAHc/IegZqWwQPPYoRdzRl2ag_zWB1eU76izSwCLcBGAs/s1600/neutrino_banker_mod_webinject2keywords.png
https://3.bp.blogspot.com/-DjD_Pysq7Ws/XCv_nXJXwdI/AAAAAAAAAHo/9RigTtqUC2snXlDuL4M8CKbS312nt62pACLcBGAs/s1600/neutrino_banker_nss3_hooks.png
https://2.bp.blogspot.com/-SsDr8hjascI/XCwAJgE80-I/AAAAAAAAAHw/Pr8aaeeCDAM--71K3QMjTm37PXcNedJBgCLcBGAs/s1600/neutrino_banker_wininet_hooks.png

14/20

2.3. Other stealer capabilities

Other strings found into the banker module reveal additional stealer capabilities:

3. Similarities with NukeBot leaked source

Comparing some parts of the NukeBot code that was leaked on spring 2017 with the
disassembled/decompiled code of the analyzed sample, we can check that there are
similarities between them. Probably Neutrino Bot is an evolution or, at least, it reused code
from NukeBot leaked code.

In this section, I comment about some parts of code where I found similarities, but probably,
there are other parts of code that are very similar too.

3.1. InjectDll function at banker module

InjectDll is a function that appears in NukeBot leaked code and Neutrino Banker module.You
can find the full code of both functions here:

InjectDll source code from NukeBot leaked source: https://pastebin.com/LL9PnVb6

https://4.bp.blogspot.com/-B_8_llJ7bCA/XCwDLG9GPhI/AAAAAAAAAH8/iawTSz8GJeoz2Btahpif6gwZJ5arlgR3ACLcBGAs/s1600/neutrino_banker_strings_related_stealer.png
https://3.bp.blogspot.com/-2dSDkdDM0aA/XCwDpmE3H3I/AAAAAAAAAIE/l_AUdeVd7QIjPnKzhkRh37KT_fJUhZhmQCLcBGAs/s1600/neutrino_banker_strings_related_stealer.png
https://pastebin.com/LL9PnVb6

15/20

InjectDll decompiled code from Neutrino Bot analyzed
sample: https://pastebin.com/K4cfUq4C

Comparing both codes, we can check both functions are almost identical between NukeBot
leaked source code and Neutrino analyzed sample. Probably this part of code was reused.

3.2. Hollow-process explorer.exe

The following parts of code from the neutrino and nukebot loader get the path of
explorer.exe, create an instance of the process, and inject it (hollow process).

https://pastebin.com/K4cfUq4C
https://2.bp.blogspot.com/-SxWLz0DxrfQ/XCx-ii_5EHI/AAAAAAAAAIQ/4zAW6K1-rS4PlOoPz_XXnFF50Ao203CRgCLcBGAs/s1600/nukebot_vs_neutrino_injectdll.png

16/20

From NukeBot leaked source code:

From Neutrino analyzed sample's loader (IDA decompiled):

The code used to inject processes is quite similar between the leaked source code and the
analyzed version:

From Nukebot leaked source code:

From Neutrino analyzed sample's loader (IDA decompiled):

https://4.bp.blogspot.com/-CUpG_r64jJU/XCuQML-ycbI/AAAAAAAAAGY/UXQuc-7cWNEOEBMokiq-SZFJo6RYe9_1ACLcBGAs/s1600/nukebot_leaked_inject.png
https://4.bp.blogspot.com/-NIFmBcx0HgQ/XCuQqL0jpgI/AAAAAAAAAGg/Ps5ZWExnTcobVmR97xtaKuuqbXmrBMy6gCLcBGAs/s1600/neutrino_inject.png
https://3.bp.blogspot.com/-RA4CnIHvbOU/XCn7272L9JI/AAAAAAAAAC4/4vwhhckLsmYOhrUZtyiRpMzWOo6EWLT1gCLcBGAs/s1600/nukebot_injection_leaked_source.png

17/20

3.3. Random BotId

Both, leaked NukeBot and Neutrino, generate a random GUID that is used as botid and to
create a mutex that the malware uses to know it is already running.

From NukeBot leaked code:

Random GUID is used to create the mutex:

https://1.bp.blogspot.com/-WTVTtzs8fho/XCn676rNB1I/AAAAAAAAACs/AEECCW387lYsZsJ58LsnEsHnVfZ4HDKrgCLcBGAs/s1600/nukebot_injection.png
https://2.bp.blogspot.com/-sJH-_4-ITEg/XCuTCC9g47I/AAAAAAAAAGs/zvjDn44GiQMujon5KSlJBBMxQGe7_IHJACLcBGAs/s1600/nukebot_leaked_get_botid.png

18/20

From Neutrino analyzed sample (IDA decompiled):

Random GUID is used to create the mutex:

4. Yara rules

https://1.bp.blogspot.com/-gzP6XZTJTyw/XCuUADYBJCI/AAAAAAAAAG4/YHCMnXNeJngKjmLIYgXznM0WUAQOP6lawCLcBGAs/s1600/Nukebot_leaked_CreateMutex.png
https://2.bp.blogspot.com/-EmMxmoh3JiM/XCtgwtGP7GI/AAAAAAAAAFw/sJvcOIVu3G8YmcDhAHD-i4uO3nwFcaDygCEwYBhgL/s1600/nukebot_random_guid.png
https://4.bp.blogspot.com/-DAPF74DUdgw/XCuU66KHoRI/AAAAAAAAAHE/X4KejImnXWk8wcspYvnUPAqNQH6xflLhgCLcBGAs/s1600/neutrino_CreateMutex.png

19/20

Banker module:

rule jimmy_08_2018 {
strings:
 $string1 = "reg add HKCU\\Software\\Microsoft\\Windows\\CurrentVersion\\Run
/ve /t REG_SZ /d \"%ls\" /f" wide
 $string2 = "Rundll32.exe SHELL32.DLL,ShellExec_RunDLL \"cmd.exe\" \"/c %ls\""
wide
 $string3 = "Rundll32.exe SHELL32.DLL,ShellExec_RunDLL \"%ls\"" wide
 $string4 = "Rundll32.exe url.dll,FileProtocolHandler \"%ls\"" wide
 $string5 = "Rundll32.exe zipfldr.dll,RouteTheCall \"%ls\"" wide
 $string6 = "/a /c %s" wide
 $string7 = "%ls_%ls_DLL" wide
 $string8 = "Cookie: %s=%s;uid=%ls"
 $string9 = "%ls\\nss3.dll" wide
 $injects1 = "injects"
 $injects2 = "set_host"
 $injects3 = "set_path"
 $injects4 = "inject_setting"
 $injects5 = "data_keyword"
 $injects6 = "inject_before_keyword"
 $injects7 = "inject_after_keyword"
condition:
 (all of them)
}

Packer stage 2:

rule neutrino_packer_stage2_08_2018 {
strings:
 $code1 = { 6A 25 [0-15] 6A 6C [0-15] 6A 73 [0-15] 6A 5C [0-15] 6A 2A [0-15] 6A 25
[0-15] 6A 6C [0-15] 6A 73 [0-15] 6A 5C [0-15] 6A 25 [0-15] 6A 6C [0-15] 6A 73 }
 $code2 = { 6A 65 [0-15] 6A 78 [0-15] 6A 70 [0-15] 6A 6C [0-15] 6A 6F [0-15] 6A 72
[0-15] 6A 72 [0-15] 6A 2E [0-15] 6A 78 }
 $code3 = { 6A 6B [0-15] 6A 65 [0-15] 6A 72 [0-15] 6A 6E [0-15] 6A 65 [0-15] 6A 6C
[0-15] 6A 33 [0-15] 6A 32 [0-15] 6A 2E [0-15] 6A 64 [0-15] 6A 6C }
 $code4 = { 6A 25 [0-15] 6A 6C [0-15] 6A 73 [0-15] 6A 5C [0-15] 6A 25 [0-15] 6A 6C
[0-15] 6A 73 }
condition:
 all of them
}

20/20

5. Conclussions

We have analyzed a Neutrino Bot sample dated 2018/08/27. After analyzing the sample
(3F77B24C569600E73F9C112B9E7BE43F), we have checked it could be an evolution (or at
least, could be using parts) of the leaked NukeBot source code's loader. Nukebot /
JimmyNukebot / NeutrinoBot / ... Probably, this set of families share code between them and
are in continuous development.

