

@ExaTrack http://www.exatrack.com Page 1

Hey Uroburos! What's up ?
ExaTrack - Stéfan Le Berre (stefan.le-berre [at] exatrack.com)

Uroburos is a malware / APT, detected in 2014, that had been a big deal in the world of computer

security. It distinguished itself from others by his 64b (rootkit) driver for Windows, including a bypass

of PatchGuard. Moreover the driver is not signed, the malware leveraged a vulnerability in a third

party driver to get kernel execution. For more details about past research on this malware, you can

read the Andrzej Dereszowski and Matthieu Kaczmarek’s publication in reference [1].

A few months ago now we have identified an Uroburos/Turla sample dating from 2017. After

investigation the driver turned out to be an evolution of the one used in 2014. We had a look at this

new driver and discovered that it had some serious differences with the original despite an common

base. In this paper we present an analysis of some new behaviours of this 64-bit rootkit.

The analysis will focus on the identification of the rootkit from a memory dump (as we would do

during a search for compromise), then we will study a part of its new communication protocol. The

goal is to be able to spot the presence of the rootkit remotely without requiring an authentication on

the server. It should be noted that the rootkit only targets servers.

The code we will analyze is:

https://www.virustotal.com/en/file/f28f406c2fcd5139d8838b52da703fc6ffb8e5c00261d86aec90c28

a20cfaa5b/analysis

To put ourself in the situation of a compromise search on a server, we will use the tool Comae

DumpIt (https://www.comae.io/) and will analyze the generated crashdump.

Identification of the core compromise

The driver hides itself quite well in the kernel space, it is not present in the list of loaded modules

and the integrity of the other modules is correct.

To assist the analysis we will use an internal tool developed by ExaTrack that aims to check the

integrity of the kernel and highlight the potential irregularities present.

The Windows Callback system, which allow arbitrary functions to be called during certain events such

as process creation, is among the critical components we check.

In our case, by looking at them we identify an anomaly:

http://twitter.com/ExaTrack
http://www.exatrack.com/
https://www.virustotal.com/en/file/f28f406c2fcd5139d8838b52da703fc6ffb8e5c00261d86aec90c28a20cfaa5b/analysis
https://www.virustotal.com/en/file/f28f406c2fcd5139d8838b52da703fc6ffb8e5c00261d86aec90c28a20cfaa5b/analysis

@ExaTrack http://www.exatrack.com Page 2

>>> ccb

Check CallBacks

 [*] Checking \Callback\TcpConnectionCallbackTemp : 0xfffffa8002f38360

 [*] Checking \Callback\TcpTimerStarvationCallbackTemp : 0xfffffa8004dfd640

 [*] Checking \Callback\LicensingData : 0xfffffa80024bc2f0

[...]

 [*] PspLoadImageNotifyRoutine

 [*] PspCreateProcessNotifyRoutine

 Callback fffffa8004bc2874 -> SUSPICIOUS ***Unknown*** 48895c2408574881ec30010000488bfa

The callbacks in the PspCreateProcessNotifyRoutine list are called when creating a process.

Adding an entry to it is particularly interesting to modify the data, and therefore the behavior, of a

new process. In the previous command, the tool has identified an entry that is considered suspicious

because it points to a memory address that is not assigned to a driver.

A second anomaly is present in the callbacks, it is less visible because it does not impact deeply the

operation of the system, but it slightly modifies it.

 [...]

 [*] IopNotifyShutdownQueueHead

 Name : Null

 Driver Object : fffffa80032753e0

 Driver : \Driver\Null

 Address: fffff88001890000

 Driver : Null.SYS

 Name : 000000a6

 Driver Object : fffffa8003d2adb0

 Driver : \Driver\usbhub

 Address: fffff88000da6000

 Driver : usbhub.sys

[...]

>>> cirp \Driver\Null

 Driver : \Driver\Null

 Address: fffff88001890000

 Driver : Null.SYS

 DriverUnload : fffff88001895100 c:\windows\system32\drivers\null.sys

 IRP_MJ_CREATE fffff88001895008 Null.SYS

 IRP_MJ_CREATE_NAMED_PIPE fffff80002abb1d4 ntoskrnl.exe

 IRP_MJ_CLOSE fffff88001895008 Null.SYS

 IRP_MJ_READ fffff88001895008 Null.SYS

 IRP_MJ_WRITE fffff88001895008 Null.SYS

 IRP_MJ_QUERY_INFORMATION fffff88001895008 Null.SYS

 IRP_MJ_SET_INFORMATION fffff80002abb1d4 ntoskrnl.exe

 IRP_MJ_QUERY_EA fffff80002abb1d4 ntoskrnl.exe

 IRP_MJ_SET_EA fffff80002abb1d4 ntoskrnl.exe

 IRP_MJ_FLUSH_BUFFERS fffff80002abb1d4 ntoskrnl.exe

 IRP_MJ_QUERY_VOLUME_INFORMATION fffff80002abb1d4 ntoskrnl.exe

 IRP_MJ_SET_VOLUME_INFORMATION fffff80002abb1d4 ntoskrnl.exe

 IRP_MJ_DIRECTORY_CONTROL fffff80002abb1d4 ntoskrnl.exe

 IRP_MJ_FILE_SYSTEM_CONTROL fffff80002abb1d4 ntoskrnl.exe

 IRP_MJ_DEVICE_CONTROL fffff80002abb1d4 ntoskrnl.exe

 IRP_MJ_INTERNAL_DEVICE_CONTROL fffff80002abb1d4 ntoskrnl.exe

 IRP_MJ_SHUTDOWN fffff80002abb1d4 ntoskrnl.exe

 IRP_MJ_LOCK_CONTROL fffff88001895008 Null.SYS

 IRP_MJ_CLEANUP fffff80002abb1d4 ntoskrnl.exe

 IRP_MJ_CREATE_MAILSLOT fffff80002abb1d4 ntoskrnl.exe

 IRP_MJ_QUERY_SECURITY fffff80002abb1d4 ntoskrnl.exe

http://twitter.com/ExaTrack
http://www.exatrack.com/

@ExaTrack http://www.exatrack.com Page 3

 IRP_MJ_SET_SECURITY fffff80002abb1d4 ntoskrnl.exe

 IRP_MJ_POWER fffff80002abb1d4 ntoskrnl.exe

 IRP_MJ_SYSTEM_CONTROL fffff80002abb1d4 ntoskrnl.exe

 IRP_MJ_DEVICE_CHANGE fffff80002abb1d4 ntoskrnl.exe

 IRP_MJ_QUERY_QUOTA fffff80002abb1d4 ntoskrnl.exe

 IRP_MJ_SET_QUOTA fffff80002abb1d4 ntoskrnl.exe

 IRP_MJ_PNP fffff80002abb1d4 ntoskrnl.exe

The "\Driver\Null" driver is referenced in the list of modules to be called when the system is shut

down. This driver is not supposed to be in this list. However its IRP table does not seem to have been

modified and even points to ntoskrnl (for IRP_MJ_SHUTDOWN interface). We did not identify any

real usefulness to that behavior.

Let's continue troubleshooting, Windows has many filter systems in its Input Output (IO) handlers.

Among these IO there is the network that is divided into several parts, we will take a deeper look at

one of those: NetIO.

NetIo also offers a system of callbacks which allow to act on the exchanged network data. These

callbacks are called "Callout" and are therefore network callbacks, the structures are not

documented and do not appear in the Windows symbols. These properties make it a good place to

implant a malware. In the dump we can find 5 callbacks that point to code not belonging, again, to

any driver.

>>> cnetio

 [*] NetIo Callouts (callbacks) : fffffa8004965000 (4790)

 Callback fffffa8004bd9580 -> SUSPICIOUS ***Unknown*** 488bc448895808488950105556574154

 Callback fffffa8004bca6b0 -> SUSPICIOUS ***Unknown*** 33c0c3cc40534883ec20488b89500100

 Callback fffffa8004bd9af8 -> SUSPICIOUS ***Unknown*** 4883ec286683f91474066683f916750f

 Callback fffffa8004bd9ca0 -> SUSPICIOUS ***Unknown*** 48895c24084889742410574883ec4048

 Callback fffffa8004bd9de0 -> SUSPICIOUS ***Unknown*** 4c8bdc49895b0849896b104989731857

One of these functions will be studied in more detail later in the document.

Finally we will search for loaded drivers that try to hide from Windows.

>>> pe

[...]

 [OK] fffff88001899000 : \SystemRoot\System32\Drivers\Beep.SYS

 [OK] fffff88000da6000 : \SystemRoot\system32\DRIVERS\usbhub.sys

 [NO] fffffa8004bb8000 (Header overwritten)

 [OK] fffff88006a00000 : \SystemRoot\system32\DRIVERS\E1G6032E.sys

 [OK] fffff880017d2000 : \SystemRoot\System32\Drivers\Npfs.SYS

[...]

>>> dq fffffa8004bb8000 100

 FFFFFA8004BB8000 0000000300000000 0000FFFF00000004 ?...?...¦¦..

 FFFFFA8004BB8010 00000000000000B8 0000000000000040 @.......

 FFFFFA8004BB8020 0000000000000000 0000000000000000

 FFFFFA8004BB8030 0000000000000000 000000D800000000

 FFFFFA8004BB8040 CD09B4000EBA1F0E 685421CD4C01B821 ??.?....!.?L.!Th

 FFFFFA8004BB8050 72676F7270207369 6F6E6E6163206D61 is program canno

 FFFFFA8004BB8060 6E75722065622074 20534F44206E6920 t be run in DOS

http://twitter.com/ExaTrack
http://www.exatrack.com/

@ExaTrack http://www.exatrack.com Page 4

 FFFFFA8004BB8070 0A0D0D2E65646F6D 0000000000000024 mode....$.......

 FFFFFA8004BB8080 095520395A3B417D 0955203909552039 }A;Z9 U.9 U.9 U.

 FFFFFA8004BB8090 095520A609542039 0955203C092E28A6 9 T.. U..(..< U.

 FFFFFA8004BB80A0 0955203B0928E61E 095520510938E61E ?.(.; U.?.8.Q U.

 FFFFFA8004BB80B0 09552038092FE61E 09552038092DE61E ?./.8 U.?.-.8 U.

 FFFFFA8004BB80C0 0955203968636952 0000000000000000 Rich9 U.........

 FFFFFA8004BB80D0 0000000000000000 0006866400000000 d.?.

 FFFFFA8004BB80E0 000000005900F3CF 202200F000000000 ...Y.........."

 FFFFFA8004BB80F0 00042E000008020B 000000000001BC00 ??....?...?.....

>>> list fffffa8004bb8000 fffffa8004bbb000

 FFFFFA8004BB8000 rwx-

 FFFFFA8004BB9000 rwx-

 FFFFFA8004BBA000 rwx-

Here again, an important anomaly is observable. A driver is present in memory and has overwritten

its MZ and PE headers probably to hide itself from raw memory search. Its addressing corresponds to

the callbacks we encoutered before and it is mapped with RWX rights.

All the elements support the idea that a malware operates from the kernel. We will now analyze

some of its code (mainly network communication) to get an idea of how it works.

Driver analysis

Entry point
During its initialization the driver quickly targets the "Null" device. It retrieves a pointer to the object

and registers it in the list of "shutdown" callbacks mentioned previously. It also registers its callback

called during process creations.

[...]

 if ((unsigned int)get_top_deviceObjet(L"\\Device\\Null", &device_obj_null)

 && (result = get_top_deviceObjet(L"\\Device\\Beep", &device_obj_null),

(_DWORD)result))

 {

 __asm { xchg rbx, qword ptr cs:isNullDeviceFailed }

 }

 else

 {

 v5 = IoRegisterShutdownNotification(device_obj_null);

 if (v5 || (drvobj_null = device_obj_null->DriverObject, (v5 =

sub_4E21C(byte_1188D)) != 0))

[...]

 PsSetCreateProcessNotifyRoutine(cbCreateProcess, 0i64);

[...]

Encrypting strings
To avoid easy identification by anti-virus all of the Uroburos related strings are encrypted. Each block

of encrypted data is 0x40 bytes, a XOR operation is performed with the previous 0x40 bytes.

http://twitter.com/ExaTrack
http://www.exatrack.com/

@ExaTrack http://www.exatrack.com Page 5

The decryption function can be represented as follows (an oneliner is simpler for IDA). It is thus

possible to decipher all the chains.

Python>def decrypt(addr, clen): return ''.join(chr(b) for b in

[struct.unpack('B'*clen,idaapi.get_many_bytes(addr,64))[a] ^

struct.unpack('B'*clen,idaapi.get_many_bytes(addr-clen,clen))[a] for a in xrange(clen)])

Python>[decrypt(0x53530 + (i*0x80) , 0x40).replace("\x00",'') for i in xrange(38)]

['system', 'isapi_http', 'isapi_log', 'isapi_dg', 'isapi_openssl', 'shell.{F21EDC09-85D3-

4eb9-915F-1AFA2FF28153}', 'Hd1', 'Hd2', 'RawDisk1', 'RawDisk2', 'wininet_activate',

'dmtev', 'Ultra3', 'Ultra3', 'services_control', 'fixdata.dat', '$NtUninstallQ817473$',

'fdisk.sys', 'fdisk_mon.exe', '400', '16', '{AAAA1111-2222-BBBB-CCCC-DDDD3333EEEE}',

'~WA434.tmp', '~WA4276.tmp', '.', '~WA356.tmp', 'rasmon.dll', 'rasman.dll', 'user',

'internat', 'NTUSER.DAT', 'ntuser.dat.LOG1', '.', 'mscrt.dll', 'msvcrt.dll', '0', '1',

'.']

A YARA rule of the cryptographic function is provided in the appendix.

Network interception
As seen above, network callbacks are installed. They will be registered through the function

"FwpsCalloutRegister0" (which allows to add a network filter) and allows the driver to transfer or not

the data received.

 v20 = addCalloutAddress(

 &stru_14930,

 &a2,

 DeviceObject,

 (__int64)intercept_packet,

 (__int64)&ret_null,

 (__int64)a6,

 (__int64)&v47,

 (__int64)&v34,

 &a9,

 &a10);

http://twitter.com/ExaTrack
http://www.exatrack.com/

@ExaTrack http://www.exatrack.com Page 6

The "intercept_packet" function (at address fffffa8004bd9580 in the memory dump) will analyze the

data passing through the network connections. Interestingly, it will not look at data passing through

port 139. For the other ports it will only look at data received and only if the host is the server.

 if (v9 || LOWORD(a1->layerId) == 20 && a1->pIP_infos->src_port == 139)

 return;

 if (LOWORD(a1->layerId) == 22 && a1->pIP_infos->src_port == 139)

 return;

[...]

 fwpsCopyStreamDataToBuffer0(v8, datas_tcp_buffer, *(_QWORD *)(v8 + 48), &v31);

[...]

 buffer_type_2 = find_and_decode_datas(datas_tcp_buffer, v24, *((_DWORD *)v11 +

0x1FF) == 0, &a4a);

The "find_and_decode_datas" function is responsible for testing the different accepted

communication protocols. In our case we will study an HTTP communication. The goal is to see if it is

possible, remotely, to determine if a server is compromised by Uroburos.

The malware validates that the received message is a standard HTTP request. Then he will look for a

covert message in one of the arguments of the HTTP header.

 if (space_offset_1 != 3i64

 || ((v18 = *(_WORD *)Buf < (unsigned __int16)str_GET, *(_WORD *)Buf !=

(_WORD)str_GET)

 || (v19 = Buf[2], v18 = (unsigned __int8)v19 < BYTE2(str_GET), v19 !=

BYTE2(str_GET)) ? (v20 = -v18 - (v18 - 1)) : (v20 = 0),

 v20))

 {

 if (space_offset_1 != 4 || *(_DWORD *)Buf != str_POST)

 return 0i64;

 }

[...]

 if (*(_DWORD *)start_word_2 != *(_DWORD *)"http://"

[...]

 if (v33 != *(_DWORD *)"HTTP/" || (v35 = v32[4], v34 = v35 < aHttp_0[4], v35 !=

aHttp_0[4]))

[...]

 || !(unsigned int)check_and_decode_buffer(&Buf[nextline], v14, response_tag,

out_decoded_b64, v7))

[...]

The "check_and_decode_buffer" function will look for the first ':' and will try to find a covert

message in the corresponding HTTP argument.

 v15 = memchr(v10, ':', (unsigned int)(v14 - 1));

 if (!v15 || *((_BYTE *)v15 + 1) != ' ')

 return (unsigned int)v5;

http://twitter.com/ExaTrack
http://www.exatrack.com/

@ExaTrack http://www.exatrack.com Page 7

This is followed by a check of the message by means of several checksums.

 v10 = get_checksum(datas, 12);

 result = (unsigned __int64)reverse_littleendian(v10) == *(_DWORD *)v4;

The checksum function use a modified "threefish256" algorithm truncated to 4 bytes.

 crypto_it(v3, v6, (v5 - 1) >> 5, 32);

[...]

 memcpy((void *)(v3 + *(_QWORD *)(v3 + 8) + 64), v6, v5);

 *(_QWORD *)(v3 + 8) += v5;

The hash function is used three times to obtain a final hash, the first time with a static buffer that will

allow to initialize the data, the second with the data to hash and a last with the hash of this data. This

final hash will be truncated on 4 bytes and used as checksum. A key is initialized, our guess is that

there is one per target. It allows to have a shared secret between the malware and the operator. It

will be used in the calculation of hashes but will not be sent in the request.

The message is contained at the end of the line, it is 7 bytes + 1 byte integrity check which is only an

sum of the previous 7 bytes. This 8 bytes block is then base64 encoded.

The HTTP request data will be adjusted as follows:

It is interesting to note that the "Code" element is not present in the final query. Four values can be

used and they are bruteforced by the malware during the verification.

When a server is contacted with a request of this type (on a port already open) it is the rootkit that

answers us (the data will not be transferred to the userland).

If the message corresponds to the expected format the driver will send a response of variable size

and padded with random bytes.

 if (reply_datas[6] & 2)

 {

 v8 = 8 * (rand() % -32);

 v4 = v8;

 v9 = &v21[-v8];

 if (v8)

 {

 v10 = v8;

Key Code Tag Sum1 Tag

Threefish

HttpHeader : Sum1 Tag Sum2

Threefish

Message X

Checksum

Base64

http://twitter.com/ExaTrack
http://www.exatrack.com/

@ExaTrack http://www.exatrack.com Page 8

 do

 {

 *v9++ = rand();

 --v10;

 }

 while (v10);

 }

 }

 }

 *(_BYTE *)(v7 + 0xBE0);

 sprintf(Dest, "HTTP/1.1 200 OK\r\nContent-Length: %u\r\nConnection: %s\r\n\r\n",

(unsigned int)(v4 + 8));

Only the first 8 bytes respond to a specific format, all other data are random. The integrity of this

block is enforced by an additional checksum between the first 7 bytes, with the result stored in byte

8. This cheksum is similar to the one mentioned above.

We are therefore able to develop a PoC to remotely check if a server is compromised by this version

of the malware:

> request_builder.py 192.168.48.133 8080

datas :

 0000000000000000 E8 F6 E8 4E 72 61 03 EA C8 B3 DD 8D 25 D0 26 12 ...Nra♥.....%.&↕

 0000000000000010 B7 F9 50 E5 8C D2 01 62 A0 37 2F FB AD C8 91 DA ..P...☺b.7/.....

 0000000000000020 44 A5 53 C7 1D 76 0E 4D AC AF F7 18 F4 12 57 A2 D.S.↔v♫M...↑.↕W.

 0000000000000030 A0 75 3B 0F 50 C5 6C 55 31 4B A1 9F D0 2E F4 F4 .u;☼P.lU1K......

 0000000000000040 30 39 93 13 1A DF B8 A2 B4 7C DB 88 55 DE 26 98 09.‼→....|..U.&.

 0000000000000050 98 04 29 6F AF 25 CF 9F FA F5 90 0D D8 23 E9 97 .♦)o.%.......#..

 [*] checksum OK – Host is compromised

This PoC is available on our website [2].

Differences and similarities between Uroburos 2014 and 2017

Several changes and non-change are surprising compared to the 2014 version of the malware. This

list is really not exhaustive but allows to realize the state of the project as of today.

The names of the files remained the same and the name of the service too, which makes it easily

detectable by any IOC.

The driver is always loaded with a VirtualBox exploit. A kernel vulnerability exploitation is therefore

done at each reboot of the system.

The PatchGuard bypass has been removed, which necessarily limits kernel alterations later.

Driver 2014:

 if (v2)

 installService(v3);

http://twitter.com/ExaTrack
http://www.exatrack.com/

@ExaTrack http://www.exatrack.com Page 9

 v4 = PG_bypass();

 if (v4)

 goto LABEL_16;

 ObjectAttributes.Length = 48;

 ObjectAttributes.RootDirectory = 0i64;

Driver 2017:

 if (v2)

 installService(cp_DriverObject);

 ObjectAttributes.RootDirectory = 0i64;

 ObjectAttributes.SecurityDescriptor = 0i64;

The \Driver\Null driver is still used and the \Device\FWPMCALLOUT device is still attached to it.

>>> drv_stack \Driver\Null

- Stack of device name : \Device\FWPMCALLOUT

 Driver Object : fffffa80032753e0

 Driver : \Driver\Null

 Address: fffff88001890000

 Driver : Null.SYS

- Stack of device name : \Device\Null

 Driver Object : fffffa80032753e0

 Driver : \Driver\Null

 Address: fffff88001890000

 Driver : Null.SYS

The string encryption system has remained the same. The registering of the "Null" driver in

IopNotifyShutdownQueueHead is a good idea in itself but we have not seen its use. A possible use of

this callback would be the possibility to inject registry key for persistance at shutdown time.

The checksum system has evolved, the malware uses Threefish and the message's format has

evolved since the 2014 version. The goal was probably to escape the network signatures. However

the correction of a English typo 221 Service closing transmittion channel to give 221 Closing

transmission channel allows us to date the driver as more recent (see reference [1]).

Overall the rootkit still has serious assets, but also some carelessness, such as the names of files and

registry keys, suggesting that it will only be used on isolated servers. Despite an apparent decreased

popularity, kernel malware (64b) are still present and are not ready to disappear because their

presence is harder to identify than userland components.

http://twitter.com/ExaTrack
http://www.exatrack.com/

@ExaTrack http://www.exatrack.com Page 10

References

[1] Paper of "Andrzej Dereszowski" and "Matthieu Kaczmarek", one of moste valuables on this
subject:
http://artemonsecurity.com/uroburos.pdf

[2] PoC of http request:
http://www.exatrack.com/public/uroburos_poc.py

[3] SNAKE CAMPAIGN & CYBER ESPIONAGE TOOLKIT:
http://artemonsecurity.com/snake_whitepaper.pdf

Appendix

YARA rule :

rule Sig

{

 strings:

 $strings_crypt = { 4d 8b c1 41 ba 40 00 00 00 41 ?? ?? ?? 41 ?? ?? 49 83 c0 01 49 83

ea 01 75 ??}

 $hash_part1 = { 49 c1 c3 0e 4e ?? ?? ?? 4c 33 dd 4c 03 c7 4c 03 c1 48 c1 c0 10 49 33

c0 4d 03 c3 48 03 e8 48 c1 c8 0c 48 33 c5 49 c1 cb 07 4d 33 d8 4c 03 c0 49 03 eb 49 c1 c3

17 4c 33 dd 48 c1 c8 18 49 33 c0 4d 03 c3 48 03 e8 49 c1 cb 1b 4d 33 d8 4c 03 df 4c 03 d9

48 c1 c0 05 48 33 c5 4a ?? ?? ?? ??}

 condition:

 1 of them

}

http://twitter.com/ExaTrack
http://www.exatrack.com/
http://artemonsecurity.com/uroburos.pdf
http://www.exatrack.com/public/uroburos_poc.py
http://artemonsecurity.com/snake_whitepaper.pdf

