
1/10

Dissecting Emotet’s network communication protocol
int0xcc.svbtle.com/dissecting-emotet-s-network-communication-protocol

April 22, 2019

Request Packet format

Communication protocol for any malware lies at the core of its functionality . It is the
essential way for any malware to communicate and receive further commands . Emotet has
a complex communication format .

 Its peculiarities are the way the protocol is built and sent across the network . Knowing
internal details of its communication format is essential to keep tabs on it . In this post we are
going to analyze Emotet communication format .

 we will be skipping the unpacking and reconstruction part , as it is irrelevant to this topic of
discussion .

In this post , we will be specifically looking for areas of interest in the binary , there will be
some parts that are analyzed preemptively .

An unpacked emotet sample has around ~100 functions , as populated by IDA . Going
through each of them to look for communication subroutines would be “A short in the dark” .
The easiest way would be to look for network API calls and xrefs would sort out most of the
dirty work for us

https://int0xcc.svbtle.com/dissecting-emotet-s-network-communication-protocol
https://svbtleusercontent.com/8W23UpkDJf2KpMcM2pxB5L0xspap.png

2/10

Luckily in emotet., there is only one xref to this API call , which perhaps would be the
subroutine where the communication to c2 server happens . This subroutine receives an
encrypted and compressed packet with parameters like c2 server, port and sends it out .
Xrefing back few subroutines would land us to the place where the packet is formulated . For
comprehension , let’s name this subroutine as ConnectAndSend

https://svbtleusercontent.com/dEwHmD7Z3h28VjAoBMEFBh0xspap.png

3/10

Tracking back xfrefs , we finally reach to the subroutine where the packet is generated . And
, based on API calls and variables used , we can easily name few local variables and
subroutines used , for example Botid, crc32, etc

Based on how stack variable are set , we get an idea that a struct is formulated . The
definition of the structure would be as following

https://svbtleusercontent.com/3Qrq2uNWJp3YNGj9ahhwRp0xspap.png

4/10

struct Emotet_BotInfo
{
 DWORD Uptime;
 BYTE *BotID;
 DWORD BotIDLen;
 DWORD MajMinOSversion;
 DWORD TermSessID;
 DWORD Crc32HashBinary;
 BYTE *ProcList;
 DWORD ProlistLen;
 DWORD PluginsInstalled[];
 DWORD PluginsLen;

};

Uptime - Measure of uptime of the infection
BotID - Botnet Identifier (unique per infection)
BotIDLen - Length of BotID
MajMinOSversion *- Operating system identifier
*TerminalSessID - Terminal Session ID
Crc32HashBinary - CRC32 hash of binary
ProcList - List of running processes (comma segregated)
PluginsInstalled - Array of DWORD consisting of MODID’s of plugins installed

This structure is passed on to a function that calculates total round size based on some bit
shifts . This shifting gives us a clue about the format of the packet . Lets look at these
patterns

5/10

Translating it to a code snippet would roughly be equivalent to

towrite = number & 0x7f
number >>= 7

This code encodes an integer to LEB128 or Little Endian Base 128 format (VARINT). And
one of the serialized buffer formats that support it is the google protobuf format , this clue
again makes the reversing equation easy for us . Some old emotet analysis blogs support
our assumption .   

https://svbtleusercontent.com/8WkQbK67VQWhqemqqvuVue0xspap.png
https://svbtleusercontent.com/vNzZG5i8bi15k6xiGFqf980xspap.jpg

6/10

Emotet has two packets one being encapsulated in the other . The inner layer lets call it base
packet.   Base packet fundamentally is a group of entries with metadata information .
Metadata includes type of data and an index number particular to the entry . Entries have a
simple structure , but varies according to the type of entry

Struct EmotetEntry
{
 VARINT ULEB128_EntryLength ;
 BYTE Data[ULEB128_EntryLength];

}

Emotet’s base packet has three type of data entries, and are marked by numbers in the
metadata

Type of element and type of data entry is specified in the metadata field

so, the complete definition of base packet would be something like this

struct BaseEmotetPacket
{
 BYTE MetaData
 Struct EmotetEntry
 {
 VARINT ULEB128_EntryLength ;
 BYTE Data[ULEB128_EntryLength];

 }

}[n];

MetaData is a bitfield data type , which consists of
**  0-3 bits - Type of data field **
**3-7 bits - Index Number of Data field **

Where index is a incremental number and type is an enum

Enum Type
{
 Type 5 : Machine dependent endian WORD size integer
 Type 2 : Buffer Struct { VARINT ULEN128_Size, BYTE data[ULEN128_Size];
 Type 0 : ULEN128 encoded variant
}

The code to add an entry in base packet can be defined in python as

7/10

def AppendElement(protoBuf, type, value, itemNum):
 protoBuf = protoBuf + struct.pack("B", ((itemNum << 3) | type) & 0xff)

 if type == 5: #DWORD Copy 32bit integer as it is
 return protoBuf + struct.pack("I", value)
 if type == 2: # Memory Buffer struct {VARINT ULEB128_Size, void * buf}
 return protoBuf + encode(len(value)) + value
 if type == 0: # encode DWORD in ULEB128
 return protoBuf + encode(value)

Later on , base packet is compressed and further more encapsulated in another packet

The definition of the final packet is almost the same as the base packet , but the only subtle
difference is that it only has one field , which is the encapsulated base packet

struct FinalPacket
{
 BYTE MetaData;
 Struct BaseEmotetPacket BasePacket;

};

https://svbtleusercontent.com/nioJVWuizTWKf16igYtDnD0xspap.png

8/10

This data is sent to c2 server immediately after encrypting the final packet .

Response Packet format

https://svbtleusercontent.com/nioJVWuizTWKf16igYtDnD0xspap.png

9/10

Response data from c2 from received is decompressed , and the plain text data is supplied
to a subroutine for deserialization .

The response data field uses the same variable length integer encoding and is almost
structured in the same way .

Response format is complex and tentative for each type of request and bot configuration .

Similarly like base request packet, this structure consists of a type and number bitfield ,
which determines which type of data field is it . In case of response , it has three of them

https://svbtleusercontent.com/veTs1ZU6Rk1Dfy7ZWpjrdA0xspap.png

10/10

1 : Main module packet *
*2 : Binary update data
3 : Deliverables data

struct EmotetResponse
{
 unsigned char Number : 4;
 unsigned char Type : 4;
 unsigned char ModID; // Each module has modid (0 for main module)

 unsigned char Number : 4;
 unsigned char Type : 4;
 VARINT UpdateBinLen; // Varint Type ULEB128 Encoded
 BYTE BinaryBlob[UpdateBinLen]; // Update Binary PE FILE

 unsigned char Number : 4;
 unsigned char Type : 4;
 VARINT deliverablesLen;

 struct deliverables_
 {
 unsigned char Number : 4;
 unsigned char Type : 4;
 unsigned char ModID; // PluginModid

 unsigned char ExeFlag; // "" 3 - Plugin , 2 - WriteElevatedExecute, 1 -
writeExecute"""

 VARINT PluginLen; // Varint Type ULEB128 Encoded
 BYTE PluginBinaryBlob[PluginLen]; // Update Binary PE FILE

 }

}

29

Kudos

29

Kudos

