
New Mozi malware family quietly amasses IoT bots

blog.centurylink.com/new-mozi-malware-family-quietly-amasses-iot-bots/

April 13, 2020

Black Lotus Labs Posted On April 13, 2020

0

Summary

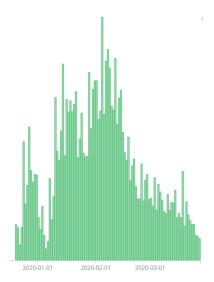
The explosion of Internet of Things (IoT) devices has long served as a breeding ground for malware distribution. The inability for users to patch many IoT devices has only compounded this problem, as bad actors continue to evolve tactics to leverage botnets for DDoS attacks and other malicious behavior. Black Lotus Labs tracks malware families that present new or distinct threats to the global community, and recently began tracking a new malware family called Mozi.

Mozi is evolved from the source code of several known malware families – Gafgyt, Mirai and IoT Reaper – that have been brought together to form a peer-to-peer (P2P) botnet capable of DDoS attacks, data exfiltration and command or payload execution. The malware targets IoT devices, predominantly routers and DVRs that are either unpatched or have weak telnet passwords. After a notable traffic increase in December was mistakenly attributed to other malware families by researchers, Black Lotus Labs reviewed entries in our reputation system for that timeframe, which revealed a different story. This traffic was not simply increased activity by a known family, but a new family altogether.

Black Lotus Labs Findings

In December 2019, Black Lotus Labs observed an increase of entries of compromised hosts in our reputation system labeled as IoT Reaper. Since this malware family has not changed in some time, the increase was unexpected, and led to further investigation of the increase. Upon review of these entries we began to see a pattern develop, each host had an http server listening on a random port that served a file which included "Mozi" in the name. File names such as "Mozi.m" and "Mozi.a" were seen throughout all of the identified hosts.

Research revealed that these hosts were part of a growing P2P botnet and were making the Mozi files available for distribution to newly infected hosts. While the increase in data began in December, our data shows that the use of the Mozi filename began earlier, in September. Further analysis revealed that the malware had been identified under many of its contributing families, including Mirai, Gafgyt, and IoT Reaper. The original spike consisted of 69 hosts, but a broader look revealed 4,216 hosts. Shortly after we began our research based on samples being detected as multiple families, Netlab360 shared their findings on this malware[1] confirming our understanding.


The Mozi botnet is comprised of nodes that utilize a distributed hash table (DHT) for communication, similar to the code used by IoT Reaper and Hajime. These nodes also host the Mozi.m and Mozi.a malware binary files, passed during the compromise of new hosts, on a randomly chosen port. The standard DHT protocol is commonly used to store node contact information for torrent and other P2P clients. Using DHT allows the malware to bypass the use of standard malware command and control servers while hiding behind the large amount of typical DHT traffic. This makes it harder to track and impact the control infrastructure. As a P2P botnet, Mozi implements its own custom extended DHT described later.

To enumerate the botnet, Black Lotus Labs implemented a machine learning model trained on the observed unique DHT traffic implementation utilized by Mozi. This allows us to distinguish between Mozi nodes and benign hosts, and identify the IPs suspected of participating in the botnet. When we identify a new suspected Mozi node, our software attempts to confirm the suspicion by sending messages proprietary to the malware's p2p protocol, and looks for correctly formatted responses. When the correct response is seen, the host is validated as a member of the Mozi botnet.

The Mozi botnet is growing as the malware evolves

To get a view on the potential size of this new botnet we continue to review the data within our reputation system, and the IPs of the hosts confirmed as Mozi botnet nodes.

Looking at unique Mozi nodes hosting the malware during the initial spike witnessed, there were 323 unique nodes, by Dec. 27 unique nodes had grown to 1,205, then hitting a high point on Feb. 4 with 2,191 nodes. Our review showed a steady increase in the number of compromised hosts over a span of three months – then a decline beginning in late February. Overall, we have observed over 15,858 unique Mozi nodes over the last four months.

The geographic distribution of Mozi botnet nodes since September, 2019:

Country	Mozi Nodes
China	71%
USA	10%
India	10%
Korea	1%
Brazil	1%
Russia	1%
All Others	6%

Throughout the life of the Mozi botnet, the bulk of the nodes have been located in Asia, with China hosting 71% of infected hosts. Outside of Asia, the largest footprint has been the US, with 10% of all nodes. A review of the data for just the month of March shows China increasing to 81% of the botnet nodes and the United Stated dropping to less than 1%.

Our first observations of the malware in December found only three distinct samples. As time as has passed, we've now seen 34 unique samples, suggesting the operators are continuing to manipulate the malware.

A deeper look into the Mozi malware

The Mozi samples analyzed are ELF binaries with versions targeted for MIPS and ARM processor architectures. Once executed, the binary forks many versions of itself renamed as 'ssh' or 'dropbear'. The forked processes are responsible for setting up the DHT communications and closing ports to prevent infection by other malware. The forked processes can also set up HTTP on a randomly chosen port to host the Mozi binary.

Mozi uses a modified DHT protocol for communication. The bot initially DHT pings several nodes hardcoded in the binary to bootstrap the initial connection to the DHT network (listed below). For the nodes that respond, the bot then sends a DHT 'find_node' command to locate other bots on the Mozi botnet. It often takes several find_node attempts to locate an active Mozi peer.

Example find_node request:

d1:ad2:id20:888888888khxe3\x90\xe6\xcbT\x1f\x89\x0a[\xda\x896:target20:88888888:ad2:id2bo\xa5\x88e1:q9:find_node1:t4:fn\x00\x00\1:v4oB\xe5

If this request is sent to an active Mozi peer, the peer will often return the config of the contacted peer as the value to the 'nodes' key, alternatively it will return other nodes in the 'nodes' key. The config is XOR encrypted with a hardcoded key.

The encoded 'find_node' request looks like:

00000000	64	31	3a	61	64	32	3a	69	64	32	30	3a	38	38	38	38	d1:ad2:i d20: <mark>8888</mark>
00000010	38	38	38	38	68	e3	90	e6	cb	54	1f	89	0a	5b	da	89	8888hT[
00000020	36	3a	74	61	72	67	65	74	32	30	3a	38	38	38	38	38	6:target 20:88888
00000030	38	38	38	3a	61	64	32	3a			32						888:ad2: id2boe
00000040	31	3a	71	39	3a	66	69	6e			6e						1:q9:fin d_node1:
00000050	74	34	3a	66	6e	00	00	31	3a	76	34	3a	6f	42	e5	71	t4:fn1 :v4:oB.q
00000060	31	3a	79	31	3a	71	65										1:y1:qe
00000000	64	31	3a	72	64	32	3a	69	64	32	30	Зa	38	38	38	38	d1:rd2:i d20:8888
00000010	38	38	38	38	d4	49	70	01	8d	22	2a	ee	b5	55	3d	a2	8888.Ip"*U=.
00000020	35	3a	6e	6f	64	65	73	36	32	34	3a	15	15	29	d2	f3	5:nodes6 24:)
00000030	aЗ	f7	0c	fe	df	1a	5d	bd	3f	32	46	76	5e	62	b7	b8]. ?2Fv^b
00000040	fØ	94	78	a2	с4	37	5b	8e	2c	00	Øb	20	12	07	e7	f4	x7[. ,
00000050	bc	dc	19	a2	83	2e	67	fb	7a	5e	50	22	07	75	e8	ef	g. z^P".u
00000060	f9	93	4a	e9	91	75	36	e4	76	57	4b	7c	51	7c	ff	f5	Ju6. vWK Q
00000070	f5	с4	57	f9	dc	62	35	b4	6a	5d	18	6b	54	3c	ed	e1	Wb5. j].kT<
00000080	a1.	c8	56	a3	cf	28	6b	fa	14	06	1a	3e	Зb	01	a0	e3	V(k>;
00000000		~~~															
00000090		_	4d	f9	f1	47	06	d5	4f	6f	7e	4e	66	5a	8f	80	MG Oo~NfZ

The bytes removed are repeating bytes of the XOR key and will be 0x00 bytes after decryption

000001B0	c8	ас	23	8d	ас	47	06	d5	4f	6f	7e	4e	66	5a	8f	80		#G	Oo~NfZ
000001C0	c8	ac	23	8d	ac	47	06	d5	4f	6f	7e	4e	66	5a	8f	80		#G	Oo~NfZ
000001D0	с8	ac	23	8d	ac	47	06	d0	8b	36	ea	b8	ed	aa	ce	5a		#G	.6Z
000001E0	d6	55	bf	38	26	98	7a	02	b4	71	b2	1a	18	29	a8	a4	.0	.8&.z.	.q)
000001F0	d1	85	7b	df	52	5f	1f	61	41	e9	a2	0c	12	97	56	fe		{.Ra	AV.
00000200	d6	ab	12	95	9a	9d	e0	80	99	de	15	bd	57	06	87	08			W
00000210	e5	d7	da	ae	77	7a	с5	b4	3e	38	de	35	d4	30	5c	31		wz	>8.5.0\1
00000220	15	са	46	a2	a6	4e	eb	6b	58	b2	00	bb	48	97	a0	eb		FN.k	хн
00000230	8b	9d	66	ed	с6	45	9d	bd	16	34	01	29	b8	ae	d6	Зd		fE	.4.)=
00000240	72	ac	a7	75	b4	0a	93	9d	3a	44	ea	42	df	fc	b4	a0	r.	.u	:D.B
00000250	24	97	5e	83	7e	54	53	47	96	7b	93	2d	fØ	ba	aa	00	\$.	^.~TSG	.{
00000260	94	2a	90	3e	5a	b8	4a	a9	_f7	26	Øf	f3	21	92	97	сс	.*	.>Z.J.	.&!
00000270	13	20	66	5e	aa	2f	2b	df	30	59	8c	dd	e7	60	04	08		f^./+.	0Y`
00000280	f7	34	6d	bc	69	92	2d	с7	92	74	78	05	8f	fd	43	e4	.4	m.i	.txC.
00000290	24	9d	36	Ød	ba	76	2e	03	1f	df	с0	65	31	Зa	74	34	\$.	6v	e1:t4
000002A0	3a	66	6e	00	00	31	Зa	76	34	3a	83	42	8d	7d	31	3a	:f	n1:v	4:.B.}1:
000002B0	79	31	Зa	72	65												y1	:re	

Yellow - Bot ID

Blue - Target ID

Purple - Version flag

Orange - Responding nodes ID

Green - Encrypted config

Bytes without color coding - Bencode encoded bytes not specific to Mozi

Eventually Mozi peers will return their XOR encoded config. Once decrypted the config contains (as described by Netlab360) a bot role and a DHT prefix. The bot roles that we have seen in our data are 'bot', 'sk', 'ftp', and 'sns'. The DHT prefix seems to always be '888888888', except in the case of the 'sns' bot role in which it is just '888'.

Decoded config samples:

[ss]sns[/ss][cpu].m[/cpu][hp]888[/hp]

[ss]ftp[/ss][cpu].w[/cpu][hp]888888888[/hp]

[ss]sk[/ss][hp]88888888[/hp][count]http://ia.51[.]la/go1?id=20198527&pu=http%3a%2f%2fbaidu[.]com/[idp][/count]

[ss]bot[/ss][hp]88888888[/hp][count]http://ia.51[.]la/go1?id=19894027&pu=http%3a%2f%2fbaidu[.]com/[idp][/count]

Mitigation Recommendations

Mozi is a fitting example of a new botnet ramping up virtually unnoticed or misattributed. What was initially viewed as small spike of a single family was actually a single, much larger, growing botnet. As evidenced by the rapid increase in size of this botnet, there are still large numbers of vulnerable IoT devices on the Internet. Black Lotus Labs continues to monitor the Mozi botnet and will continue to work to enumerate the P2P nodes. Black Lotus Labs has reached out to the most active nodes' upstream providers in an attempt to disrupt and slow the botnet's growth.

All the vulnerabilities targeted by the botnet are well known and are prevented by either proper patching or proper password management. Companies and individuals can follow these security best practices to help prevent these types of compromises in the future:

- · Implement effective passwords on all IoT devices when possible.
- · Restrict IoT devices access to the wide-open internet.
- · Implement proper patching methodologies.
- · Review this list of affected devices and their vulnerabilities.

Netlab360 shared a table of affected devices and their vulnerabilities:

Affected Device	Vulnerability
Eir D1000 Router	Eir D1000 Wireless Router RCI
Vacron NVR devices	Vacron NVR RCE
Devices using the Realtek SDK	CVE-2014-8361
Netgear R7000 and R6400	Netgear cig-bin Command Injection
DGN1000 Netgear routers	Netgear setup.cgi unauthenticated RCE
MVPower DVR	JAWS Webserver unauthenticated shell command execution
Huawei Router HG532	CVE-2017-17215
D-Link Devices	HNAP SoapAction-Header Command Execution
GPON Routers	CVE-2018-10561, CVE-2018-10562
D-Link Devices	UPnP SOAP TelnetD Command Execution
CCTV DVR	CCTV/DVR Remote Code Execution

loCs

Malware Hashes

006965027c1f636295b5011a46905121

1bd4f62fdad18b0c140dce9ad750f6de

2560a86361257837b78d7ba289a031fb

2d2ffa0422db66640561c46b8e428267

2f8d6c0c6a449f3c074cfc0d6c8dbfc6

300f850c0186077550830fa35edddc4e

39434e0d800b62a72e8dfa202e2da9cd

3a103ab0da4d13ccc9ed2d612de71441 4dde761681684d7edad4e5e1ffdb940b 5b9b2a796c88da82d75553c48488b63f 635d926cace851bef7df910d8cb5f647 649e482199c9eb826fa0fca7016c325d 68bf06fb2a8cef72a61b01dcd10fd10d 6aa92a03083a19783ddf4e4913c230d3 781228e0a889c0624a5f1d8e9f5b0b30 849b165f28ae8b1cebe0c7430f44aff3 868180d3f78ae330c8ab4e6c20045930 8bfbda4203cfb4bb7aaeafe7afe9748a 8d207e2b6d13ebd5fc4430ef3670558f 8e81f08432ba7d64c67032a2a5580a48 92defd440acfd41595ce20c9107c3262 93be88ab0908a9359d7e5472ace22fe5 9a111588a7db15b796421bd13a949cd4 9c6539c9f5b3e831d5bcb1357d51d049 b08d4099b14e37ceda1923681a2f70f2 c16feda9ad177c8f7e6a07f57d84851f c46327a65a1f9bf9c367fbda95f1bd22 c89a06d5b3a55a45b7d508e6b9152aa8 d107c5dc752cd262cd4d6c461c8583c4 d2b8a429bcf9e0eca54939e2cd4408dc d71d01d469414e992ded9038ea761564 d96bbc2b1e5cc6b085bf04a8e487632e dd4b6f3216709e193ed9f06c37bcc389 eda730498b3d0a97066807a2d98909f3 Top talking botnet nodes from most recent data 67.58.78.157 78.187.40.53 177.128.34.146 122.165.131.7 80.92.189.5 78.187.20.244 85.105.104.74 94.156.57.84 112.196.16.26

185.101.27.48

- 82.209.9.181
- 187.85.255.194
- 103.123.46.51

213.174.31.77

103.97.244.22

103.41.56.62

187.85.248.209

103.59.134.156

88.247.16.223

89.160.95.67

External References

This information is provided "as is" without any warranty or condition of any kind, either express or implied. Use of this information is at the end user's own risk.

Services not available everywhere. ©2022 Lumen Technologies. All Rights Reserved.