Evidence Aurora Operation Still Active: Supply Chain Attack
Through CCleaner

& intezer.com

9/20/2017

Recently, there have been a few attacks with a supply chain infection, such as Shadowpad being implanted in many
of Netsarang’s products, affecting millions of people. You may have the most up to date cyber security software, but
when the software you are trusting to keep you protected gets infected there is a problem. A backdoor, inserted into
legitimate code by a third party with malicious intent, leads to millions of people being hacked and their information

stolen.

Avast’s CCleaner software had a backdoor encoded into it by someone who had access to the supply chain.
Through somewhere that had access to the source code of CCleaner, the main executable in v5.33.6162 had been
modified to include a backdoor. The official statement from Avast can be found here

The Big Connection:

Costin Raiu, director of Global Research and Analysis Team at Kaspersky Lab, was the first to find a code
connection between APT17 and the backdoor in the infected CCleaner:

The malware injected into #CCleaner has shared code with several tools used by one of the APT

groups from the #Axiom APT 'umbrella’.

— Costin Raiu (@craiu) September 19, 2017

17

http://www.intezer.com/evidence-aurora-operation-still-active-supply-chain-attack-through-ccleaner/
https://securelist.com/shadowpad-in-corporate-networks/81432/
https://blog.avast.com/update-to-the-ccleaner-5.33.6162-security-incident
https://twitter.com/hashtag/CCleaner?src=hash&ref_src=twsrc%5Etfw
https://twitter.com/hashtag/Axiom?src=hash&ref_src=twsrc%5Etfw
https://twitter.com/craiu/status/910059453948579840?ref_src=twsrc%5Etfw

Using Intezer Analyze™ , we were able to verify the shared code between the backdoor implanted in CCleaner and
earlier APT17 samples. The photo below is the result of uploading the CCBkdr module to Intezer Analyze™ , where
the results show there is an overlap in code. With our technology, we can compare code to a huge database of
malicious and trusted software — that's how we can prove that this code has never been seen before in any other
software.

INTEZER | Code Intelligence™

ccleanup_malware sample | 83 Genes Edit

Known Malicious

A deeper analysis leads us to the functions shown below. The code in question is a unique implementation of
base64 only previously seen in APT17 and not in any public repository, which makes a strong case about attribution
to the same threat actor.

217

http://www.intezer.com/intezer-analyze/
http://www.intezer.com/intezer-analyze/

text:
text:
text:
text:
text:
ctext:
.text:
.text:
text:
text:
text:
text:
text:
ctext:
text:
text:
text:
text:
ctext:
text:
text:
.text:
.text:
text:
text:
text:
text:
text:
text:
text:
text:
.text:
text:
ctext:
text:
text:
text:
text:
text:
text:
text:
text:
ctext:
text:
text:
text:
.text:
text:
ctext:
text:
text:
text:
text:
text:
text:
.text:
text:
cbext:
text:
ctext:
text:
ctext:
text:
text:
text:
text:
text:
text:
text:

oe4e1018
oe4e1018
00401016
00401016
00401016
0e401016
o0o4e101e
00401016
00481016
oo4o101e
041017
00401019
00401018
00401018
0e4e101C
0040101F
00401021
00401027
00491028
004091031
00401034
00401036
00401038
00401039
00401038
0040103D
0040103F
00401040
00401042
00401045
00401047
00401049
0049104C
0040104F
00491051
00401054
00401056
00401059
0040105C
0040105C
0040105C
0040105F
004091061
00401063
00401066
0040106C
00401071
00401071
00401071
oe4e1071
00401074
0e40187A
0e40107C
0040107D
0040107F
00401082
00401082
00491082
00401084
00401087
00401088
00401088
00401080
0040108E
00401091
00401093
004891094
00401099
00401098

baseb4_encode

var_4
arg_0
arg_4
arg_8
arg_C

loc_40105C:

loc_401071:

main_loop:

proc near ; CODE XREF: sub_4014CD+18Dyp
; sub_4014CD+1ABLp

= dword ptr -4

= dword ptr 8

: duord ptr GCh APT17 Samp|e

= duword ptr 18h

= dword ptr 14h

push ebp

mou ebp, esp

push ecx

push esi

push edi

nou edi, [ebptarg_8]

test edi, edi

jz loc_401166

cmp [ebptarg_4], O

jz loc_481166

mou eax, [ebptarg_i]

push 3

XOr edx, edx

pop ecx

diu ecx

push 3

xor edx, edx

pop esi

moy ecx, eax

mov eax, [ebp+arg_4]

diu esi

moy eax, ecx

shl eax, 2

mou [ebp+arg_0]. eax

test edx, edx

mou [ebptuar_4], edx

short loc_40105C
eax, 4
[ebptarg_B], eax

; CODE XREF: basesﬂ_encode+3£?j
esi, [ebp+targ_8]
esi, esi
short loc_H401071
[ebptarg_C], esi
loc_4011686
loc_401168

; CODE XREF: baseGH,encode+437j
[ebp+arg_C], eax
loc_401166
ecx, ecx
ebx
short loc_4%010ET
[ebptarg_C]. ecx

: CODE XREF: hase64_encode+CFlj
bl, [edi]
al, [edi+1]
edi
byte ptr [ebptarg_4+3], al
al, bl
edi
al, 2
al, 3Fh
eax
get_baseb4_character
[esi]. al
al, byte ptr [ebptarg_u+3]

ctext:
text:
text:
ctext:
ctext:
ctext:
text:
ctext:

text:
text:

Ctext:
text:
ctext:
ctext:
ctext:
text:
ctext:
text:
ctext:
Ltext:
Ctext:
Ctext:

text:

Ctext:
ctext:
ctext:
Ltext:
Ltext:
Ltext:
ctext:
ctext:
ctext:

text:
text:

Ctext:
Ctext:
Ltext:
ctext:
ctext:
ctext:
text:
ctext:
text:
Ltext:
Ctext:
Ctext:

text:

ctext:
ctext:
text:
text:
Ltext:
ctext:
ctext:
ctext:
ctext:

text:
text:

Ctext:
Ctext:
text:
Stext:
ctext:
ctext:
text:
text:
ctext:
ctext:
Ctext:

003E121D
003E121D
003E121D
003E121D
003E121D
003E121D
003E121D
003E121D
BO3E121D
BO3E121D
003E121E
003E1220
003E1221
003E1222
003E1223
003E1226
003E1228
003E122E
003E1232
003E1238
003E123B
003E123D
BO3E123F
003E1240
003E1242
0O3E1244
003E1246
003E1247
003E1249
003E124C
003E124E
003E1250
BO3E1253
BO3E1256
BO3E1258
003E125B
003E125D
003E1260
003E1263
003E1263
003E1263
003E1266
003E12638
003E126A
003E126D
003E1273

0B3E1278

0O3E1278
003E1278
003E1278
0O3E127B
003E1281
003E1283
003E1284
003E1286
003E1289
BO3E1239
0O3E1289
BO3E128B
003E128E
003E128F
003E1292
003E1294
003E1295
003E1298
003E129A
003E129B
003E12A0
003E12A2

base64_encode

var_4
arg_0
arg_4
arg_8
arg_C

loc_3E1263:

loc_3E1278:

main_loop:

proc near ; CODE XREF: sub_3E252E+114}p
; sub_3E252E+13E4p
= dword ptr -4
= dword ptr 8
B v . i T CCbkdr.dll
= dword ptr 18h
= dword ptr 14h
push ebp
noy ebp, esp
push ecx
push esi
push edi
nou edi, [ebp+arg_0]
test edi, edi
jz loc_3E136D
cmp [ebptarg_4], ©
jz loc_3E136D
mou eax, [ebptarg_H]
push
xor edx, edx
pop ocx
div ecx
push 3
xor edx, edx
pop esi
mov ecx, eax
mov eax, [ebptarg_H]
div esi
mouy eax, ecx
shl eax, 2
mou [ebptarg_0], eax
test edx, edx
noy [ebp+uar_4], edx
jz short loc_3E1263
add eax, 4
mou [ebpt+arg_08], eax
; CODE XREF: baseﬁh_encode*SETj
mov esi, [ebptarg_8]
test esi, esi
jnz short loc_3E1278
cmp [ebpt+arg_C], esi
jnz loc_3E136D
jmp loc_3E136F
; CODE XREF: bassﬁﬂ_encode+487j
cmp [ebp+arg_C], eax
jb loc_3E136D
test ecx, ecx
push ebx
jbe short loc_3E12EE
mou [ebptarg_C], ecx
; CODE XREF: basebld_encode+CFlj
mou bl, [edi]
mou al, [edi+1]
ine edi
nov byte ptr [ebptarg_4+3]. al
mou al, bl
inc edi
sar al, 2
and al, 3Fh
push eax
call get_basebY4_character
mou [esi], al
nou al, byte ptr [ebp+arg_4+3]

This code connection is huge news. APT17, also known as Operation Aurora, is one of the most sophisticated cyber
attacks ever conducted and they specialize in supply chain attacks. In this case, they probably were able to hack
CCleaner’s build server in order to plant this malware. Operation Aurora started in 2009 and to see the same threat
actor still active in 2017 could possibly mean there are many other supply chain attacks by the same group that we
are not aware of. The previous attacks are attributed to a Chinese group called PLA Unit 61398.

Technical Analysis:

The infected CCleaner file that begins the analysis is from
6f7840c77f99049d788155¢1351e1560b62b8ad18ad0e9adda8218b9f432f0a9

A technical analysis was posted by Talos here (http://blog.talosintelligence.com/2017/09/avast-distributes-
malware.html).

The flow-graph of the malicious CCleaner is as follows (taken from the Talos report):

3/7

http://blog.talosintelligence.com/2017/09/avast-distributes-malware.html

CCleaner is
executed

Mahware delays for
601 seconds

v

Malware checks to
confirm 600 seconds
have passed

IF
Mo

x

Malware Operation
Terminates

Infected function:

Execution is
redirected to
CC_InfectionBase

PIC PE loader
locates and
executes DLL

v

Malware determines
if user is admin

b

Malware Operation
Terminates

>

il e =

infected_function proc near

call init_backdoor
moy eax, offset unk_A8BDYEBC
retn

infected_function endp

PIC PE loader and
DLL is decrypted

CCleaner resumes
normal operations

System s profiled
and C2 is
establizhed

Data received from

C2 is then stored in

MEmory

Data received
from C2 is then
executed

417

Load and execute the payload code:

Ctext

.text

:PO4R102C init_backdoor
Ctext:
Ltext:
:0040102C hHeap
Ctext:
Ctext:
.text:
Ltext:
Ctext:
Ctext:
Ltext:
Ltext:
Ctext:
Ctext:
.text:
Ltext:
Ctext:
Ctext:
Ltext:
Ltext:
Ctext:
Ctext:
.text:
Ltext:
Ctext:
Ctext:
Ltext:
Ltext:
Ctext:
Ctext:
.text:
Ltext:
Ctext:
Ctext:
Ctext:
Ltext:
Ltext:
Ctext:
.text:
Ltext:
Ctext:
Ctext:
Ctext:
Ltext:
Ltext:
Ctext:
.text:
Ltext:
Ltext:
Ctext:
Ctext:
Ltext:
Ltext:
Ctext:
Ctext:
Ltext:
Ltext:
Ctext:
Ctext:
Ltext:
Ltext:
Ctext:
Ctext:
.text:
Ltext:
Ctext:
Ctext:
Ltext:
Ltext:
Ctext:
Ctext:
.text:
Ltext:

pO4HO102C
0040102C lpMem
pe4e102C
[e4R102C
DO4B102E
QO4102F
PO4O1031
0O4O1032
pe4R1033
[O4R103Y4
0O401035
0e4R1036
[O4B103B
[e4103C
OO4O1041
oO4HO1042
[O4A104T
[e4R104E
oe41049
DO4O104B
DO4104C
DO4E104D
00401052
DO4O1058
[OY4R105B
pe4R105D
DO4B105F
0O40106Y4
[e4A1065
[e4R1066
0040106C
DO4010BE
poHO10TI
[e4R1AT3
[E4R1ATS
[e4R1ATT
[e4E1ATI
[e4R10TE
0O4O10TB
DO4O10TE
pO4O1081
pe4R1088
DOYR108F
0e4B1090
pe4e1092
[O4O109Y4
0O401096
DO4O1098
DO4O1098
pe4R1098
PO4YR109E
DO4B10AS
QO410AC
[O410AD
QO4010AF
DO4O10B1
0O4010BY
DO4R10BE
pO4YR10BY
0O4010BF
DO4010BF
DO4010BF
[e41aCc2
DO4O10CE
oO4O10CE
pe4R1aCE
pe4R1ACcY
[e4R1ACA
oe4R10CE
peYe1acc
004010CC init_backdoor

loc_40107B:

loc_401098:

loc_HO10BF:

loc_4010C8:

proc hear ; CODE XREF: infected_function}p
= dword ptr -8
= dword ptr -4
mouv edi, edi
push ebp
mov ebp, esp
push ecx
push ecx
push ebx
push esi
push edi
mouv esi, 2978h
push esi
mov ebx, offset loc_8S2E0QARS
push ebx
call sub_401000
pop ecx
pop ecx
xor edi, edi
push edi . dwMaximumSize
push edi ; dwInitialSize
push 400668h ; FlOptions
call ds:__imp_HeapCreate
mou [ebpthHeap], eax
cmp eax, edi
jz short loc_4018C8
push 3978h ; duBytes
push edi ; dwFlags
push eax ; hHeap
call ds:__imp_HeapAlloc ; allocate memory on heap for decrypted code
mou edx, eax ; edx = eax == allocated mem on heap
mou [ebptlpHem], edx
cmp edx, edi
jz short loc_4018BF
mouv edi, edx ; edi = edx == allocated mem on heap
Xor ecx, ecx
sub edi, ebx
; CODE XREF: init_backdoor+66}j
mou bl, byte ptr loc_82EBA8[ecx]
mou byte ptr loc_82EBA8[editecx], bl
mouv byte ptr loc_82E0A8[ecx], O
inc ecx
cmp ecx, esi
jl short loc_40107B
call edx ; call decrypted code
xor ecx, ecx
; CODE XREF: init_backdoor+83}j
mouv dl, byte ptr loc_82EOA8[ecx]
mouv byte ptr loc_82E0A8[edi+ecx], dl
mouv byte ptr loc_82EBA8[ecx], O
inc ecx
cmp ecx, esi
jl short loc_401098
push [ebp+1pHen] ; lpMem
push 0] ; dwFlags
push [ebp+hHeap] ; hHeap
call ds:__imp_HeapFree
; CODE XREF: init_backdoor+4?7j
push [ebp+hHeap] ; hHeap
call ds:__imp_HeapDestroy
. CODE XREF: init_backdoor+31Tj
pop edi
pop esi
pop ebx
leave
retn
endp

After the embedded code is decrypted and executed, the next step is a PE (portable executable) file loader. A PE file
loader basically emulates the process of what happens when you load an executable file on Windows. Data is read

5/7

from the PE header, from a module created by the malware author.

The PE loader first begins by resolving the addresses of imports commonly used by loaders and calling them.
GetProcAddress to get the addresses of external necessary functions, LoadLibraryA to load necessary modules into
memory and get the address of the location of the module in memory, VirtualAlloc to create memory for somewhere
to copy the memory, and in some cases, when not implemented, and memcpy to copy the buffer to the newly
allocated memory region.

push
mov
sub
push
push
xor
push
push
call
mov
lea
push
add
call
mov
lea
push
moy
push
mov
mov
moy
moy
call
mov
lea
push
moy
push
mov
mov
moy
call
mov
lea
push
mov
mov
mov
call
lea
mov
push
push
mov
call
mov
mov
mov
add
push
push
mov
push
push
call
cmp
mov
jz
moy
mov
mouzx
add
moy
lea
lea
push
push
push
mov
call

ebp

ebp, esp

esp, 40h

ebx

esi

ebx, ebx

edi

ebx

sub_H401354

edi, eax

eax, [ebptvar_10]

eax

edi, 12h

sub_H401290

esi, eax

eax, [ebptuvar_30]

eax

[ebp+var_38], esi

[ebptuar_10]

[ebptuar_30], ‘daol’

[ebp+var_2C], 'rbil’

[ebptuar_28]. "Ayra’

[ebptuar_24], ebx

esi ; GetProcAddress to LoadlLibraryA
[ebptuar_3C], eax ; Save LoadlLibraryA address
eax, [ebptuvar_30]

eax

[ebp+var_30], "triu’

[ebptuar_10]

[ebptuar_2C], "Alau’

[ebptvar_28], ‘coll’

[ebptuar_24], ebx

esi : GetProcAddress to UirtualAlloc
[ebp+uar_40]. eax ; Save UirtualAlloc Address
eax, [ebptuvar_30]

eax

[ebptvar_30]. ‘cusm’

[ebptvar_2C], ‘"d.tr’

[ebptvar_28], '11°

[ebptuar_3C] ; Call LoadLibraryf with msucrt.dll as parameter
ecx, [ebptuvar_30]

[ebptvar_30]. ‘cmem’

ecx

eax

[ebptuar_2C], "yp’

esi ; GetProcAddress to memcpy
esi, [edi+3Ch]

[ebptuar_34], eax

[ebp+uar_C], esi

esi, edi

48h ; PAGE_EXECUTE_READWRITE

1000k ; MEM_COMMIT

eax, [esi+50h]

eax i dwlize

ebx ; lpAddress (B, NULL, any aligned address the operating system has free)
[ebp+var_40] ; Call to VirtualAlloc. Allocate readable, writeable, executable (RWX) memory
eax, ebx

[ebptuar_4], eax

loc_H01289

ecx, [esi+Z8h]

edx, [ebptvar_C]

ebx, word ptr [esi+6]
ecx, eax
[ebptuar_20], ecx
ecx, [ebx+ebxxi]

ecx, [edx+tecxx8+0F8h]
ecx

edi

eax

[ebptuar_1C], ecx
[ebptuar_34] ; memcpy, copy embedded module to allocated memeory

After the module is copied to memory, to load it properly, the proper loading procedure is executed. The relocation
table is read to adjust the module to the base address of the allocated memory region, the import table is read, the
necessary libraries are loaded, and the import address table is filled with the correct addresses of the imports. Next,

6/7

the entire PE header is overwritten with 0’s, a mechanism to destroy the PE header tricking security software into not
realizing this module is malicious, and after the malicious code begins execution.

The main module does the following:

1. Tries an anti-debug technique using time and IcmpSendEcho to wait

2. Collect data about the computer (Operating system, computer name, DNS domain, running processes, e tc)
3. Allocates memory for payload to retrieve from C&C server

4. Contacts C&C server at IP address 216.126.225.148

a. If this IP address is unreachable, uses a domain generation algorithm and uses a different domain depending
on the month and year

5. Executes code sent by C&C
By the time of the analysis, we were unable to get our hands on the code sent by the C&Cs.

If you would like to analyze the malware yourself, you may refer to my tweet.
#ccleaner malware DLL w/ IAT fix https://t.co/FprmtmkV64 https.//t.co/dgWiQVd31k @ TalosSecurity
@malwrhunterteam pic.twitter.com/TxsbveFoHJ

— Jay Rosenberg (@jaytezer) September 18, 2017

By Jay Rosenberg

Jay Rosenberg is a self-taught reverse engineer from a very young age (12 years old), specializing in @
Reverse Engineering and Malware Analysis. Currently working as a Senior Security Researcher in “
Intezer.

77

https://twitter.com/hashtag/ccleaner?src=hash&ref_src=twsrc%5Etfw
https://t.co/FprmtmkV64
https://t.co/dgWiQVd31k
https://twitter.com/TalosSecurity?ref_src=twsrc%5Etfw
https://twitter.com/malwrhunterteam?ref_src=twsrc%5Etfw
https://t.co/TxsbveFoHJ
https://twitter.com/jaytezer/status/909807005266825216?ref_src=twsrc%5Etfw

	Evidence Aurora Operation Still Active: Supply Chain Attack Through CCleaner
	The Big Connection:
	Technical Analysis:

