
GraceWrapper: 
The new TA505’s 
post-exploitation enabler

2022



2

GraceWrapper: The new TA505’s post-exploitation enabler

1. Introduction����������������������������������������������������������������������������������3

2. MirrorBlast Campaign Recap������������������������������������������������������3

3. Technical Analysis������������������������������������������������������������������������5
3.1. Anti-Analysis��������������������������������������������������������������������������������������������������� 5

3.1.1.	 Packer����������������������������������������������������������������������������������������������������������������������������������������������� 5

3.2. Obfuscation���������������������������������������������������������������������������������������������������� 6
3.2.1.	 Random Sleeps�����������������������������������������������������������������������������������������������������������������������������10

3.2.2.	 Heavy Use of Low-Level Windows Functions������������������������������������������������������������������������11

3.3. Command Line Arguments����������������������������������������������������������������������� 12
3.4. Injection Mechanisms�������������������������������������������������������������������������������� 12

3.4.1.	 Leveraging APC queues and ROP��������������������������������������������������������������������������������������������12

3.4.2.	 Fallback Injection Routine����������������������������������������������������������������������������������������������������������18

3.5. Configuration����������������������������������������������������������������������������������������������� 19
3.6. Payload Execution��������������������������������������������������������������������������������������� 24

3.6.1.	 Building the Payload��������������������������������������������������������������������������������������������������������������������24

3.6.2.	 Unprivileged Execution���������������������������������������������������������������������������������������������������������������26

3.6.3.	 Injection to Remote Processes�������������������������������������������������������������������������������������������������26

4. Conclusions���������������������������������������������������������������������������������28

5. YARA���������������������������������������������������������������������������������������������29

6. References�����������������������������������������������������������������������������������29

7. Appendix��������������������������������������������������������������������������������������31
7.1. Appendix A: Original Import Address Table����������������������������������������� 31
7.2. Appendix B: Original Strings��������������������������������������������������������������������� 34

© 2022 Leap In Value S.L. & Outpost24 All rights reserved.

The information provided in this document is the property of Blueliv, and any modification or use of all or part of the content of this document without 
the express written consent of Blueliv is strictly prohibited. Failure to reply to a request for consent shall in no case be understood as tacit authorization 
for the use thereof.

Blueliv® is a registered trademark of © 2021 Leap In Value S.L. & Outpost24 All rights reserved. All other brand names, product names or trademarks 
belong to their respective owners.



GraceWrapper: The new TA505’s post-exploitation enabler

3

1. Introduction
TA505 is an infamous, financially motivated threat actor group believed to have been operating for 
almost a decade. Operating the Necurs botnet, the group started its core business by selling access 
to compromised networks to other malware operators, through which it was able to operate some of 
the most notorious spam campaigns in recent memory.

In addition to this, it is believed that TA505, or a subset of the group, started conducting ransomware 
operations. This was likely motivated by the estimated $25 million income that the nefarious group 
was generating back in 2016 [1]. This signaled the group’s first steps in the ransomware game as 
it teamed up with none other than the Locky gang, one of the most successful ransomware-as-a-
service (RaaS) providers to date [2].

Since then, a vast number of tools have been claimed to belong to the group’s arsenal, and the attacks 
attributed to them have demonstrated a diverse set of tactics, techniques and procedures (TTPs). 
Thus, attributing them to a specific attack has always been a challenging task.

Today it is believed that the group is responsible for operating the Clop ransomware after compromising 
corporate networks by using a variety of remote administration malware such as SDBbot, FlawedAmmy 
and FlawedGrace, which were downloaded via Get2, Gelup or Mirrorblast.

In this research, Outpost24’s Blueliv Labs shares findings from the analysis of the Mirrorblast spam 
campaign, the last known spam operation attributed to TA505. Within the convoluted sequence of 
malware pieces involved in the attack, one is believed to be an updated version of the FlawedGrace 
RAT, due to the evident relations in its code and behaviour similarities. 

However, a thorough inspection reveals a very interesting component belonging to the Grace family, 
whose main purpose appears to be hindering the detection of the actual RAT and its modules while 
facilitating the deployment of post-exploitation tools in the infected machine. The rest of this report 
shows the technical details of this new component that we have named GraceWrapper.

2. MirrorBlast Campaign Recap
Back in September 2021, Proofpoint detected a new malware, dubbed MirrorBlast, used in large spam 
campaigns that replicated the modus operandi of previous TA505 attacks. The last member of the 
infection chain was none other than a fresh version of FlawedGrace, which was already identified to 
have a close bond with the group. [3]

Like many other spam campaigns, the MirrorBlast attacks started with a phishing email containing a 
link to a malicious XLS document that, upon opening and allowing its macros to run, would trigger the 
download and execution of the next stage of malware. The first downloaded executable would be an 
MSI containing a script written in the KiXtar scripting language that would download the MirrorBlast 

file:///Users/rtauler/Library/CloudStorage/Box-Box/MARKETING/Design/reports-whitepapers/gracewrapper_22/./1.%09https:/ucsdnews.ucsd.edu/pressrelease/google_uc_san_diego_and_nyu_estimate_25_million_in_ransomware_payouts
https://threatpost.com/ransomware-gang-arrested-locky-hospitals/155842/
https://www.bleepingcomputer.com/news/security/operation-cyclone-deals-blow-to-clop-ransomware-operation/
https://outpost24.com/products/cyber-threat-intelligence
https://www.scmagazine.com/brief/phishing/new-mirrorblast-phishing-campaign-targets-financial-entities
https://threatpost.com/ta505-retooled-flawedgrace-rat/175559/


4

GraceWrapper: The new TA505’s post-exploitation enabler

malware. 

MirrorBlast is a Rebol script, contained within another MSI file, which would generate a unique 
identifier for the victim’s machine and access its command and control for the next stage of malware, 
the ReflectiveGnome loader. That loader would be responsible for downloading FlawedGrace and 
executing it within its own process memory. 

KXL
CNC

1
KiXtar Loader

MirrorBlast

ReflectiveGnome

GraceWrapper

KXL
CNC

2

MB
CnC

RG
CnC

Send PC/User/Domain names and process list

Receive Next CnC

Get next stage malware

Send PC/User/Domain names, OS Version and arch

Receive unique identifier

Run payload in memory

Send uuid until next stage / Rebol script ready

Download Shellcode

During the analysis of the MirrorBlast infection chain, we identified notable differences between 
ReflectiveGnome’s payload and previous FlawedGrace RAT samples. Naturally, we decided to take a 



GraceWrapper: The new TA505’s post-exploitation enabler

5

closer look at the sample. 

3. Technical Analysis
3.1. Anti-Analysis
3.1.1. Packer
Even after that many stages, ReflectiveGnome’s payload is still packed. Again, this packer is a small 
piece of code with the sole purpose of allocating, decoding and executing its payload. An interesting 
characteristic of this sample is that it tries to impersonate ATMLIB.DLL, a library belonging to Adobe 
Type Manager, which is present on many workplace computers.

Figure 1: ATM related metadata.

The malicious library does not contain any export, as it is designed to be executed straight from 
the memory of a (down)loader process. Additionally, it does not specify any import as it employs a 
dynamic API resolution function to obtain the addresses of the Windows functions needed.

By only using three low-level API functions (i.e., LdrGetProcedureAddress, ZwAllocateVirtualMemory 
and ZwFreeVirtualMemory) and a simple decoding function, the packer loads the payload to its own 
memory and executes it by a call to its entry point.



6

GraceWrapper: The new TA505’s post-exploitation enabler

Figure 2: Packer’s decoding routine.

Figure 3: Main packer’s function after some renaming.

3.2. Obfuscation
After unpacking, a first look at the obtained sample with a disassembler reveals that it contains 
different obfuscation mechanisms designed to complicate the malware analysis tasks. The malware 
has been filled with plenty of junk code in a bid to discourage reverse engineers from analyzing the 



GraceWrapper: The new TA505’s post-exploitation enabler

7

sample. 

Figure 4: Main function of the obtained sample showing many lines of junk code.

Figure 5: Main function after deobfuscation jobs.

In order to properly analyze the sample, this junk code needs to be removed. Once the code has been 



8

GraceWrapper: The new TA505’s post-exploitation enabler

recovered, it is possible to find two other common obfuscation mechanisms present in most modern 
malware: string encryption and dynamic Windows API resolutions. Combined, these mechanisms 
prevent analysts from obtaining an approximate picture of a program’s capabilities at first sight.

The string encryption function consists of a xor loop that takes three parameters: the bytes of the 
encrypted string, a hardcoded encryption key contained in the sample and a single byte passed as an 
argument to the function. After replicating its code, it is possible to recover all the original strings from 
the binary. As an extra defense against memory analysis techniques, the strings are decrypted only 
when they are needed and erased from the memory once they have been used.

Figure 6: String decryption function.

Within the decrypted strings, the original import address table (IAT) function names are found. As a 
result, this process offers a good first picture of the capabilities of this software. Both the original IAT 
and the plain text strings can be found in the appendix of this document. 

At this point of the analysis, it is obvious that the sample does not correspond to a FlawedGrace 
binary, as it lacks some of its capabilities. For example, it does not have any means to communicate 
with its command and control.

The dynamic Windows API resolution function is quite simple; it will receive a number as an argument 
and translate it to its corresponding function address.



GraceWrapper: The new TA505’s post-exploitation enabler

9

Figure 7: Dynamic Windows API resolution code.

Combining all the knowledge exposed in this section, it is possible to alter the disassembly of the 
binary to further simplify its analysis. 



10

GraceWrapper: The new TA505’s post-exploitation enabler

Figure 8: Start of main’s thread function code before deobfuscation.

Figure 9: Cleaned code.

3.2.1. Random Sleeps
GraceWrapper’s developers included a function to put the malware to sleep before executing some 



GraceWrapper: The new TA505’s post-exploitation enabler

11

important parts of the code, either to add extra noise to behaviour logs or to confuse malware detection 
software. The function will randomly call Sleep, or create a thread that randomly chooses between 
Sleep or WaitForSingleObject for its purpose.

Figure 10: Randomly sleeping or creating a new thread.

Figure 11: Randomly choosing between Sleep or WaitForSingleObject.

As mentioned above, this function is called before executing some crucial code within the malware, 
such as:

•	 Creating the main execution thread.

•	 First call within the main thread.

•	 After config initialization.

•	 Various times within the main injection routine.

•	 During the payload loading thread.

The developers also added a way to prevent these periods of sleep from being executed by employing 
the command line argument –nm.

3.2.2. Heavy Use of Low-Level Windows Functions
After obtaining the original IAT of the sample, it is possible to observe how GraceWrapper’s developers 
make frequent use of low-level (Rtl*, Nt*, Zw*) Windows functions. This is a well-known technique to 
evade analysis tooling that monitors only the higher-level libraries while also complicating manual 
analysis tasks (as some of these functions are not officially documented).



12

GraceWrapper: The new TA505’s post-exploitation enabler

3.3. Command Line Arguments
GraceWrapper’s behaviour can be manipulated by the command line parameters listed below:

•	 -cs [dword]: allows setting up a different value for encoding the identifiers of the config. 

•	 -nm: prevents the random sleep function from executing if present. Also causes the self-injection 
routine not to execute. 

•	 -em: after injecting itself into another process, if it has not been run from powershell.exe or 
rundll32.exe and this argument is not present, the program exits by calling ExitThread instead of 
RtlExitUserProcess. It is likely that more functionalities will be added.

•	 -ss [s]: sets the program to sleep for s seconds before executing the self-injection routine.

•	 -sf [file path]: creates the specified empty file.

•	 -wf [file path]: wipes the specified file.

‘

Figure 12: -ss command line arg being checked.

3.4. Injection Mechanisms
3.4.1. Leveraging APC queues and ROP
GraceWrapper’s main purpose is to make its payload as evasive as possible, and the painstaking 
implementation of its main injection routine is unmistakable evidence of that. This software combines 
Return-Oriented Programming (ROP) and heavy use of Windows’s Asynchronous Procedure Calls 
(APC) to make its execution unnoticed. 

ROP [4] is a well-known software exploitation technique which consists of searching for small code 
fragments, referred to as gadgets, within the code section of a program. After getting all gadgets 
needed for the exploitation, the stack of the program is manipulated so that the gadgets will be 
executed in a specific order, which is known as the ROP chain. This technique allows bypassing 
operating systems to implement ‘write or execute’ policies which prevent memory regions from being 
writable and executable at the same time, as the malicious code is already present in an executable 
memory area.

To begin its injection routine, GraceWrapper builds an array of ROP gadgets present in NTDLL.DLL. 
Note that NTDLL is a library present in any Windows process and that it is always loaded at the same 



GraceWrapper: The new TA505’s post-exploitation enabler

13

address for each system startup, making it the perfect target for building ROP chains that can be 
executed in any remote process.

To further complicate things, instead of searching for the gadgets at the code section of the currently 
loaded NTDLL, which would cause a huge amount of memory accesses in its address space that 
could potentially trigger some alarms, GraceWrapper loads a copy of the library from the filesystem.

Figure 13: Loading NTDLL from the filesystem to search the ROP gadgets.

After reading NTDLL’s contents, the malware walks its .text section to find the following gadgets:

•	 pop esp; ret
•	 pop eax; ret
•	 pop ecx; ret
•	 pop ebx; ret
•	 pop esi; ret
•	 pop r8; ret
•	 add rsp 0x8; ret
•	 add rsp 0x28; ret
•	 mov qw [ecx], rax; ret
•	 add rsp, 0x50; pop rbx; ret
•	 mov rdx, rbx; call rax
•	 mov r9, rsi; call rax
•	 pop r9; pop r8; pop rdx; pop rcx; jmp rax
•	 pop rdx; pop rcx; pop r8; pop r9; pop r10; pop r11; ret
•	 pop rdx; pop rcx; pop r8; pop r9; ret

Once the offsets of the gadgets have been found, GraceWrapper translates them into their absolute 
virtual address within NTDLL’s memory and stores the result in an array for later use.



14

GraceWrapper: The new TA505’s post-exploitation enabler

Figure 14: ROP Gadgets being built before searching them.

Following the collection of ROP gadgets, GraceWrapper will programmatically pick a thread of the 
host process using APC tasks [8]. Here, the code chooses between explorer.exe or lsass.exe, electing 
the former when executed under Administrator privileges. After enumerating all target threads, the 
same number of events will be created by calling CreateEventW as many times as necessary. The 
purpose of these events is to create an event-thread relationship by duplicating each handle into a 
single thread by means of NtDuplicateObject.

Once every target’s thread has an event handle, NtQueueApcThreadEx is used to submit a call to 
SetEvent for each thread’s APC queue that will signal its corresponding event handle. By means of 
WaitForMultipleObjects, GraceWrapper receives the first event signalled and keeps the corresponding 
thread handle to use for the injection.



GraceWrapper: The new TA505’s post-exploitation enabler

15

Figure 15: Picking the first thread executing its APC queue as the victim of the injection.

After deciding its victim thread, the loader proceeds to build the payload that will trigger the execution. 
On one side, a named image mapping is created and filled with a small code stub, embedded in 
GraceWrapper’s executable, which is followed by the contents of the injected binary. The sole purpose 
of this stub is to calculate and jump at the address of the binary’s original entry point.

Figure 16: Injected stub.



16

GraceWrapper: The new TA505’s post-exploitation enabler

Figure 17: Named mapping creation, filled with the payload to be executed.

At this stage, the ROP chain is finally built. This is due to a function that combines the array of ROP 
gadgets, the addresses of OpenFileMappingW, NtMapViewOfSection and RtlCreateUserThread and 
the CONTEXT structure of the elected thread. The ROP chain’s code will open the previously described 
file mapping, load its contents and create a new thread within the target process to execute the 
malware.

GraceWrapper’s developers took exceptional care in developing this routine, as causing a thread to 
malfunction within the Explorer’s process might cause the entire system to freeze, followed by an 
Explorer’s restart, which will terminate the malware’s execution.



GraceWrapper: The new TA505’s post-exploitation enabler

17

Figure 18: ROP chain

After all the important pieces have been gathered, GraceWrapper will proceed to replace the contents 
of the targeted thread stack with those from the ROP chain buffer. It employs APC tasks to accomplish 
this objective.

By issuing calls per byte to the memset function using ZwQueueApcThreadEx, GraceWrapper 
overrides the stack of the host thread with the ROP chain to finally call NtResumeThread, finishing 
with this twisted injection routine.



18

GraceWrapper: The new TA505’s post-exploitation enabler

Figure 19: Overriding the stack of the host thread with the ROP chain, using one APC task per byte.

This routine is employed firstly to inject the whole GraceWrapper binary and restart its execution in a 
safer environment (which can be avoided if executed with –nm, or if the process name is TestStart.
exe or TestService.exe), and secondly to inject the embedded FlawedGrace binary into winlogon.exe 
and other processes, if the malware is being run with Administrator privileges.

The use of the APC functions to execute evasive payloads is a well know technique employed by 
some red teaming tools. However, it is not yet popular in modern malware; just a few families or 
actors, such as IcedID or FIN8, have been reported to actively use this Windows feature during their 
malicious activities [5]. With this piece of software, TA505 goes a step further by combining APC 
process injection together with ROP in an intensive effort to prevent the detection of new FlawedGrace 
samples.

3.4.2. Fallback Injection Routine
In case the main injection routine fails or if the operating system version is not new enough to make 
use of APC, GraceWrapper’s developers created a more conservative mechanism of injection. By 
means of NtAllocateVirtualMemory, NtWriteVirtualMemory and RtlCreateUserThread, the remote 
process gets the payload written in its memory, and a new thread is created to execute the malware.

This function will also check if the process is running under the Windows on Windows subsystem 
(WoW), which allows running 32-bit applications on 64-bit systems in order to perform the good old 
Heaven’s Gate technique, which adds the capability to inject a 64-bit payload from a 32-bit version of 
this loader.



GraceWrapper: The new TA505’s post-exploitation enabler

19

Figure 20: Heaven’s Gate code to switch contexts within GraceWrapper’s .rdata section.

3.5. Configuration
During its first execution on a machine, GraceWrapper will obtain its configuration file from an 
embedded resource included in its binary. By means of LdrFindResource_U and LdrAccessResource, 
the encrypted config file is read.

The original file is compressed using the LZMA algorithm and then encrypted with AES before being 
embedded in the binary. That process is reversed to access the plain contents of the configuration file.

Figure 21: Obtaining original config file.



20

GraceWrapper: The new TA505’s post-exploitation enabler

Figure 22: Grace config file.

The resulting file is employed to instantiate a custom data collection. The implementation of this data 
collection is accomplished by a complex and carefully thought out set of classes and plenty of data 
structures, all belonging to FlawedGrace. Oversimplifying its inners, the Grace malware family organizes 
its config data as a set of named entries which contain data streams and/or other named entries in 
a similar way to a traditional dictionary. The implementation also contains memory management 
features and supports concurrency, allowing different instances or threads of the malware and its 
modules to access and modify its data safely.

The configuration has many different named entries. It is remarkable that in previous FlawedGrace 
versions [6], the names were significative strings such as ‘port’ or ‘servers’, whereas in this 
GraceWrapper sample, just a few letters represent each entry. During the analysis of the wrapper’s 
sample, the following entry names have been identified:

•	 Sr: used to store if the current execution is running as Administrator.

•	 P1, p2: contain a binary to be used to hide FlawedGrace executable.

•	 L1, l2: contain the FlawedGrace executable.

•	 Hv: set to the hardcoded value of 1074. Unknown purpose.

•	 Hnu: if present, a PE will be extracted from h and executed in a new thread.

•	 H: the entry is created during GraceWrapper’s first execution, containing its own executable.



GraceWrapper: The new TA505’s post-exploitation enabler

21

•	 Avt: set to a number that represents the vendor of the installed anti-virus, if any. The supported 
AV products/vendors are Windows Defender (2), Symantec (3), Norton (4), TrendMicro (5), 
Bitdefender (6), Sophos (7). If no listed AV is detected, avt Is set to 1.

•	 Ni: this entry is assigned to a GUID generated by CoCreateGuid the first time the wrapper 
executes in a machine. It is also the parent entry for ‘mt’ and ‘mo’. The code shows that such 
GUID can be used to format different config entry names if provided with the wildcard character 
‘%’. For example, instead of having a ‘p1’ entry, the config could contain a ‘p1%’, that will be 
converted to ‘p1[ni-GUID]’ before its usage. The specific use of this feature cannot be inferred 
from the analysis of a sample but, hypothetically, this could allow setting different configuration 
parameters for different running executions of the Grace family. The entries that support this 
kind of formatting are at least: p1, p2, hv, hnu, hfu, h and m.

•	 Mt: contains ‘se’ and ‘mo’ entries.

•	 Mo, se and huf purposes are unknown currently.

•	 H1: C&C IP.

To hide all the binaries embedded in the config file from memory analysis, the configuration is never 
allowed to be loaded in memory while it is not being used. The Grace malware family employs 
Windows’s file mapping objects to keep an encrypted copy of the serialized configuration that is 
loaded and decrypted on demand. 

The name for the configuration file mapping is generated by combining data from the victim’s machine 
and data from GraceWrapper’s binary itself, a cautious approach to preventing third parties from 
being able to generate those artefacts for detection purposes. To further complicate the process, the 
operators of the malware can use the –cs command line argument to provide a different encoding 
key that will replace the one embedded in the binary.



22

GraceWrapper: The new TA505’s post-exploitation enabler

Figure 23: Using -cs to alter the result of the name generation algorithm.

To generate machine-bound strings, the Grace family retrieves the computer name and the volume’s 
serial number to construct a stream of 16 bytes. The first 8 bytes are the result of a xor operation 
between the encoding key and the volume’s serial number. Whereas the last bytes are produced 
by, again, a xor operation using the computer name, the volume’s serial number and the previously 
generated bytes. The resulting buffer is passed to a string formatting function to obtain the final name. 

Figure 24: Name generation function.

After obtaining the corresponding name, GraceWrapper will create the named mapping and assign a 
named mutex to it by replacing the first char of the string with an ‘m’, which will prevent other threads 



GraceWrapper: The new TA505’s post-exploitation enabler

23

or processes from manipulating the configuration while it is being used. If executed with Administrator 
privileges, a global file mapping will be created, which means processes from other logon sessions 
will have access to it.

Once the file mapping is created, it is filled with the config contents re-encrypted. GraceWrapper again 
uses AES for this, but instead of employing the hardcoded key used during decryption after obtaining 
it from the binary’s resources, it will instead generate a key bound to the infected machine by using 
the function described above.

To store the changes made to the config, GraceWrapper stores an encrypted copy at the registry. To 
do so, the malware opens the HKCU key, or HKLM if executed with enough privileges, and creates a 
subkey under Software\Classes\CLSID\{[CLSID]}. The CLSID is created using the same function that 
generates the encryption key and the config mapping name.

Figure 25: Config subkey generation.

This way, the data stored by the Grace family is masked as COM object data. The encrypted config 
contents are split into blocks of 524288 bytes and stored in enumerated values that combine its index 
with another generated CLSID. Additionally, the InprocServer32 subkey is created empty, most likely in 
order to further improve its impersonation of a COM object.

Figure 26: Encrypted conf stored



24

GraceWrapper: The new TA505’s post-exploitation enabler

3.6. Payload Execution
Once the wrapper has hidden its own execution within another process and its configuration is ready to 
function, it can execute its payload. Depending on the privileges of the current process, GraceWrapper 
will allocate memory within its own process and execute FlawedGrace by creating a new thread or 
choosing a remote process to inject its payload using the mechanisms previously exposed.

3.6.1. Building the Payload
Another additional defense against analysis included in this malware is the capability to hide the 
original FlawedGrace executable, or any other PE file, by encoding its contents and appending them 
to another embedded executable that will decode and run it upon its execution.

Figure 27: Grace contents within GraceWrapper’s configuration file.

First, GraceWrapper will source the fields l1 and p1 or l2 and p2 for 32-bit or 64-bit executions from its 
config, respectively. After calculating their combined size, the same amount multiplied by five will be 
used to allocate that many bytes and fill them with random values. 

Then, the contents of the pX field (i.e., the packer executable) will be placed at the beginning of the 
randomized memory area. Notably, the packer is the same one used to distribute GraceWrapper, 
which we described at the beginning of the analysis.

By parsing its headers, the last entry of its section table [7] is retrieved to modify the fields 
SizeOfVirtualData and SizeOfRawData to match the size it will have after appending the guest binary. 
The SizeOfImage, as well as either SizeOfInitializedData, SizeOfUninitializedData or SizeOfCode, are 
used depending on the type of section, and PE optional header fields are patched accordingly. 

After patching pX’s header, lX contents are appended to it; the malware will encode its contents to 
hide the actual malware from memory analysis tools, but before that, it will crawl pX’s code to find a 
pattern and replace it with lX’s start position.



GraceWrapper: The new TA505’s post-exploitation enabler

25

Figure 28: Patching packer’s code with lX’s start position.

GraceWrapper’s code contains three different encoding sequences depending on the exported name 
of the host binary, indicating that at least three different packer binaries exist. In any case, the first four 
bytes of the guest binary are patched with their own size. 

If the pX PE doesn’t contain any library name, or if it matches ‘b.dll’, the fifth byte will be replaced by 
a randomly generated value that will be combined in an XOR operation with a key embedded within 
GraceWrapper’s data sections.

Figure 29: Encoding function for binaries with no exports, ‘b.dll’ and other names different than ‘c.dll’

If the exported library name matches ‘c.dll’, a 56 random bytes buffer will be generated, replacing 
the bytes following the patched binary size, resulting in most of the DOS Header being overridden. 
Afterwards, the buffer is used in an XOR operation against the rest of the binary to hide its contents.



26

GraceWrapper: The new TA505’s post-exploitation enabler

Figure 30: Encoding function used for ‘c.dll’

If the exported name is other than the ones mentioned, the same process as with ‘b.dll’ is replicated, 
but this time the single-byte key is a fixed value that is not patched into the memory of the binary.

In this sample, the ‘c.dll’ packer is used, which matches the one used to pack GraceWrapper itself.

3.6.2. Unprivileged Execution
If the current process does not have Administrator privileges, GraceWrapper will build the payload, 
allocate memory for each of the regions within its own process and call its entry point. At the state 
of development manifested by the analyzed sample, GraceWrapper would not support binaries that 
need relocations or have an actual IAT. 

Figure 31: Incomplete PE loader.

3.6.3. Injection to Remote Processes
If executed with enough privileges, GraceWrapper will target the winlogon.exe process to inject 
FlawedGrace by using the routine combining APC and ROP described within this report. It will also 
make use of the function WTSEnumerateSessionsExW to get a list of the currently active user sessions 
on the infected computer and attempt the infection of the corresponding explorer.exe instance of 
every section. 



GraceWrapper: The new TA505’s post-exploitation enabler

27

This course of action was likely designed to allow it to execute FlawedGrace and its modules under 
different user sessions, which is a very valuable capability for post exploitation tasks.

Figure 32: Targeting other users’ explorer.exe to inject FlawedGrace in.

GraceWrapper

Explorer.exe

Grace

1. Injects itself

2. Load and run

GraceWrapper

Figure 33: Unprivileged execution.



28

GraceWrapper: The new TA505’s post-exploitation enabler

GraceWrapper

LSASS

GraceWrapper

WINLOGON

Grace

User 1 EXPLORER

Grace

User 2 EXPLORER

Grace

User N EXPLORER

Grace

Figure 34: Privileged execution

4. Conclusions
We know that during the MirrorBlast campaign, TA505 deployed a fully refurbished toolkit. Employing 
a set of easily replaceable new downloaders as intermediate links of the infection chain, the group 
was able to bypass detection mechanisms while disguising the attribution of the attacks. 

Not content with stopping there, TA505 deployed an evolved multi-component Grace version. The 
characteristics and features included in GraceWrapper show that the developers of this malware 
family are taking a step forward to protect and hide their tools from both analysts and automatic 
detection tools. In addition, by compromising the LSASS, WINLOGON and all EXPLORER process 
instances, the Grace family has positioned itself as a strong enabler for post-exploitation tasks.



GraceWrapper: The new TA505’s post-exploitation enabler

29

Due to the appearance of testing and death code within the sample, we strongly believe the Grace 
family was under active development during the MirrorBlast campaign, and it is likely that newer 
versions of the malware exist at this moment.

At Outpost24 Kraken Labs, we consider the monitoring of the evolution of this sophisticated family a 
crucial task if we are to better understand the activities of TA505 and its allies.

5. YARA
rule atmlib_packer 
{
    meta:
        description = “Rule to detect the packer used with the Grace family during MirrorBlast campaign.”
        author = “David Catalán at Outpost24 Kraken Labs.”
        date = “2022-08-1”
    strings:
        $c1 = {48 B8 00 60 00 00 00 00 00 00 C3}
        $c2 = {C6 44 24 59 4D C6 44 24 5A 65 C6 44 24 5B 6D C6 44 24 5C 6F C6 44 24 5D 72 C6 44 24 5E 79}
    condition:
        all of them
}

rule flawedgrace64_2021
{
    meta:
        description = “Rule to detect FlawedGrace”
        author = “David Catalán at Outpost24 Kraken Labs”
    strings:
        $o1 = {B8 ?? ?? 00 00 48 6B C0 ?? 48 8B 0D ?? ?? ?? ?? 0F BE 04 01 83 F8 ?? 75 ?? B8 ?? ?? 00 00 48 
6B C0 ?? 48 8B 0D ?? ?? ?? ?? C6 04 01 ??}
        $o2 = {0F B7 05 ?? ?? ?? ?? 69 C0 ?? ?? ?? ?? 66 89 05 ?? ?? ?? ??}
        $o3 = {48 B8 ?? ?? ?? ?? ?? ?? ?? ?? 48 8B 0D ?? ?? ?? ?? 48 ?? C8 48 8B C1 48 89 05 ?? ?? ?? ??}

    condition:
        #o1 > 70 and #o2 > 400 and #o3 > 2000

}

6. References
1.	 https://ucsdnews.ucsd.edu/pressrelease/google_uc_san_diego_and_nyu_estimate_25_million_in_ransomware_payouts

2.	 https://outpost24.com/blog/a-history-of-ransomware

3.	 https://www.proofpoint.com/us/blog/threat-insight/whatta-ta-ta505-ramps-activity-delivers-new-flawedgrace-variant

4.	 https://hovav.net/ucsd/dist/rop.pdf

5.	 https://attack.mitre.org/techniques/T1055/004/

6.	 https://www.msreverseengineering.com/blog/2021/3/2/an-exhaustively-analyzed-idb-for-flawedgrace

7.	 https://docs.microsoft.com/en-us/windows/win32/debug/pe-format#section-table-section-headers

8.	 https://repnz.github.io/posts/apc/user-apc/

https://ucsdnews.ucsd.edu/pressrelease/google_uc_san_diego_and_nyu_estimate_25_million_in_ransomware_payouts
https://outpost24.com/blog/a-history-of-ransomware
https://www.proofpoint.com/us/blog/threat-insight/whatta-ta-ta505-ramps-activity-delivers-new-flawedgrace-variant
https://hovav.net/ucsd/dist/rop.pdf
https://attack.mitre.org/techniques/T1055/004/
https://www.msreverseengineering.com/blog/2021/3/2/an-exhaustively-analyzed-idb-for-flawedgrace
https://docs.microsoft.com/en-us/windows/win32/debug/pe-format#section-table-section-headers


30

GraceWrapper: The new TA505’s post-exploitation enabler

7. Appendix
7.1. Appendix A: Original Import Address Table

LdrFindResource_U

LdrAccessResource

RtlInitUnicodeString

RtlGetVersion

RtlDeleteRegistryValue

RtlCompareUnicodeString

RtlGetNtVersionNumbers

RtlGetCompressionWorkSpaceSize

RtlCompressBuffer

RtlDecompressBuffer

RtlCompareString

RtlAnsiStringToUnicodeString

RtlUnicodeStringToAnsiString

RtlRandomEx

RtlCreateUserThread

RtlUnicodeStringToInteger

RtlEqualString

NtCreateKey

NtFlushKey

NtClose

NtOpenKey

NtRenameKey

NtEnumerateKey

NtEnumerateValueKey

NtDeleteKey

NtSetValueKey

NtQueryValueKey

NtCreateFile

NtOpenFile

NtQueryInformationFile

NtReadFile

NtWriteFile

NtFlushBuffersFile

NtSetInformationFile

NtQueryDirectoryFile

NtDeviceIoControlFile

NtQuerySystemInformation

NtSetInformationProcess

NtQueryInformationProcess

NtTerminateProcess



GraceWrapper: The new TA505’s post-exploitation enabler

31

NtDuplicateObject

NtAllocateVirtualMemory

NtOpenProcess

NtFreeVirtualMemory

NtCreateEvent

NtLoadDriver

NtQueueApcThreadEx

NtOpenThread

NtResumeThread

NtMapViewOfSection

NtOpenSection

_wcsicmp

_snprintf

_snwprintf

NtProtectVirtualMemory

NtWriteVirtualMemory

NtReadVirtualMemory

NtCreateThreadEx

Wow64EnableWow64FsRedirection

Wow64DisableWow64FsRedirection

CreateRemoteThreadEx

IsWow64Process

HeapFree

Sleep

CloseHandle

CreateThread

GetCurrentProcessId

GetProcessHeap

TerminateProcess

GetSystemDirectoryW

ResumeThread

ExitProcess

CreateProcessW

GetSystemTimeAsFileTime

GetProcAddress

GetModuleHandleW

HeapAlloc

OpenProcess

GetLastError

CreateFileW

GetCurrentProcess

MultiByteToWideChar

WideCharToMultiByte

CompareStringA

CompareStringW

WriteFile

SetFilePointerEx

FindClose

VirtualProtect

GetCurrentThreadId

VirtualQuery

FlushFileBuffers

GetStringTypeW

GetFileType

GetStdHandle

GetACP

SetConsoleCtrlHandler

VirtualFree

WaitForMultipleObjects

TerminateThread

WTSGetActiveConsoleSessionId

GetConsoleWindow

GetTickCount

LocalFree

GetFullPathNameW

SetEvent

ResetEvent

WaitForSingleObject

CreateEventW

OpenEventW

VirtualAlloc

GetCommandLineW

FreeLibrary

LoadLibraryW

GetWindowsDirectoryW

GetVolumeInformationW

GetComputerNameA

CreateDirectoryW

GetModuleFileNameW

CreateToolhelp32Snapshot

Process32FirstW

Process32NextW

LoadLibraryExW

OutputDebugStringA

VirtualFreeEx

ReleaseMutex

CreateMutexW

MapViewOfFile

UnmapViewOfFile

CreateFileMappingW

OpenFileMappingW

GetSystemTime



32

GraceWrapper: The new TA505’s post-exploitation enabler

GetLocalTime

OpenMutexW

GetModuleFileNameA

GetModuleHandleExW

DeleteCriticalSection

LeaveCriticalSection

EnterCriticalSection

SetLastError

LCMapStringW

FindFirstFileExA

FindNextFileA

IsValidCodePage

GetOEMCP

GetCPInfo

GetCommandLineA

GetEnvironmentStringsW

FreeEnvironmentStringsW

SetStdHandle

HeapSize

GetConsoleCP

GetConsoleMode

WriteConsoleW

ProcessIdToSessionId

InterlockedFlushSList

RtlUnwindEx

GetStartupInfoW

IsDebuggerPresent

InitializeSListHead

RtlCaptureContext

RtlLookupFunctionEntry

RtlVirtualUnwind

UnhandledExceptionFilter

SetUnhandledExceptionFilter

IsProcessorFeaturePresent

QueryPerformanceCounter

HeapReAlloc

RaiseException

InitializeCriticalSectionAndSpinCount

TlsAlloc

TlsGetValue

TlsSetValue

WaitForSingleObjectEx

EncodePointer

ReleaseSemaphore

GetSystemInfo

SetThreadIdealProcessor

CreateSemaphoreW

GetModuleHandleA

GetNativeSystemInfo

OutputDebugStringW

RtlPcToFileHeader

DuplicateHandle

GetExitCodeProcess

SetHandleInformation

CreatePipe

PeekNamedPipe

DeviceIoControl

GetFirmwareEnvironmentVariableW

GetComputerNameW

GetLocaleInfoW

Thread32First

Thread32Next

SuspendThread

GetThreadContext

RegCloseKey

RegDeleteValueW

RegFlushKey

RegOpenKeyExW

RegQueryValueExW

RegSetValueExW

ConvertStringSecurityDescriptorToSecurityDescriptorW

CheckTokenMembership

LookupPrivilegeValueW

SetSecurityDescriptorDacl

InitializeSecurityDescriptor

FreeSid

AllocateAndInitializeSid

EqualSid

AdjustTokenPrivileges

GetTokenInformation

OpenProcessToken

InitiateSystemShutdownW

RegDeleteTreeW

RegDeleteKeyW

RegCreateKeyExW

RegOpenCurrentUser

ConvertSidToStringSidW

RegisterServiceCtrlHandlerExW

SetServiceStatus

StartServiceCtrlDispatcherW

CreateProcessAsUserW

GetUserNameW



GraceWrapper: The new TA505’s post-exploitation enabler

33

MessageBoxW

MessageBoxA

ShowWindow

GetSystemMetrics

wsprintfW

ReleaseDC

GetDC

IsCharAlphaA

SendMessageA

PostMessageA

GetWindowTextA

EnumWindows

CommandLineToArgvW

SHFileOperationW

SHGetFolderPathW

CoCreateGuid

CoSetProxyBlanket

CoInitializeSecurity

CoInitializeEx

CoCreateInstance

CoUninitialize

WTSFreeMemory

WTSEnumerateSessionsW

WTSQueryUserToken

GetModuleFileNameExW

StrStrIW

CreateEnvironmentBlock

DestroyEnvironmentBlock

NetApiBufferFree

NetWkstaGetInfo

GetFileVersionInfoSizeW

GetFileVersionInfoW

VerQueryValueW

GetDeviceCaps

CryptBinaryToStringA

SeDebugPrivilege



34

GraceWrapper: The new TA505’s post-exploitation enabler

7.2. Appendix B: Original Strings
-nm

TestStarter.exe

TestService.exe

explorer.exe

winlogon.exe

lsass.exe

notepad.exe

Software

powershell.exe

-sf

-wf

-ss

rundll32.exe

-em

ntdll.dll

memset

kernel32.dll

%s_%i

\REGISTRY\MACHINE

\??\

Local\%s

Global\%s

er0ewjflk3qrhj81

bitdefender

sophos

windows defender

symantec 

norton 

trend micro

wtsapi32.dll

\Software\Microsoft\Windows\CurrentVersion\Policies\
System

wmsgapi.dll

-cs

Software\Classes\CLSID

%s\%s

cd

\InprocServer32

%s\diag

advapi32.dll

user32.dll

shell32.dll

ole32.dll

psapi.dll

ws2_32.dll

shlwapi.dll

userenv.dll

netapi32.dll

version.dll

gdi32.dll

oleaut32.dll

crypt32.dll

%s%.08X%s%.04X%s%.04X%s%.04X%s%.02X%.02X%.02X%.02X%.02X%.02X%s

%s%.08x%s%.04x%s%.04x%s%.04x%s%.02x%.02x%.02x%.02x%.02x%.02x%s

root\SecurityCenter2

WQL

SELECT * FROM AntiVirusProduct

displayName

Windows Defender

D:P(A;OICI;GA;;;SY)(A;OICI;GA;;;BA)(A;OICI;GWGR;;;IU)

Global

Local



info@outpost24.com

linkedin.com/outpost24

twitter.com/outpost24

outpost24.comAbout Outpost24
The Outpost24 group is pioneering cyber risk management 
with vulnerability management, application security testing, 
threat intelligence and access management – in a single 
solution. Over 2,500 customers in more than 65 countries 
trust Outpost24’s unified solution to identify vulnerabilities, 
monitor external threats and reduce the attack surface with 
speed and confidence.

Delivered through our cloud platform with powerful automation 
supported by our cyber security experts, Outpost24 enables 
organizations to improve business outcomes by focusing on 
the cyber risk that matters.

Blueliv ® is part of the Outpost24 Group.  is a registred trademark of Leap inValue 
S.L. in the United States and other countries. All brand names, product names or 
trademarks belong to their respective owners.
© LEAP INVALUE S.L. ALL RIGHTS RESERVED

https://se.linkedin.com/company/outpost24
https://twitter.com/outpost24
http://outpost24.com

