
It’s Parliamentary: KeyBoy and the targeting of the Tibetan
Community

 citizenlab.org /2016/11/parliament-keyboy/

By: Adam Hulcoop, Matt Brooks, Etienne Maynier, John Scott-Railton, and Masashi Crete-Nishihata

Key Findings
In this report we track a malware operation targeting members of the Tibetan Parliament over August and
October 2016.

The operation uses known and patched exploits to deliver a custom backdoor known as KeyBoy.

We analyze multiple versions of KeyBoy revealing a development cycle focused on avoiding basic antivirus
detection.

This operation is another example of a threat actor using “just enough” technical sophistication to exploit a
target.

Introduction
The Tibetan community has been targeted for over a decade by espionage operations that use malware to infiltrate
communications and gather information. They are often targeted simultaneously with other ethnic minorities and
religious groups in China. Examples as early as 2008 document malware operations against Tibetan non-
governmental organizations (NGOs) that also targeted Falun Gong and Uyghur groups. More recently in 2016,
Arbor Networks reported on connected malware operations continuing to target these same groups, which the
Communist Party of China perceives as a threat to its power.

These types of operations have multiple components, each with their own associated costs to the operator. There is
the exploit code and malware used to gain access to systems, the infrastructure that provides command and control
to the malware operator, and the human elements – developers who create the malware, operators who deploy it,
and analysts who extract value from the stolen information.

We anticipate that operators will attempt to balance the amount of information they expect to gather with the
operational costs and risks of deploying different strategies and technologies. For example, in deploying a particular
malware implant against a target the operator will balance the likelihood and cost of discovery with the perceived
value of extracting information from that target. If a toolkit is exposed inadvertently, the target may increase
defenses and the operator will have to spend more time and resources on development.

Civil society groups, due to their generally limited technical capacity and lack of security expertise and
countermeasures, shift the risk/reward ratio in ways favourable to the malware operator. For example, we have
observed frequent reuse of older (patched) exploits in malware operations against the Tibetan community. Up-to-
date operating systems and software would block these threats, but the operators have probably discovered through
experience that the their targets have unpatched systems and a general lack of security controls beyond antivirus
programs. The continued use of old exploits is a cost reduction strategy: since they still work, there is little need to
use more expensive exploits.

Moreover, many of the malware defenses used by the Tibetan diaspora involve individuals recognizing signs of a
malicious email, such as exhortations to open attachments. This kind of behavioral strategy pushes the operators to
change their social engineering tactics, but does not provide pressure to radically change their toolkits. This

1/25

https://citizenlab.org/2016/11/parliament-keyboy/
https://isc.sans.edu/diary/Overview+of+cyber+attacks+against+Tibetan+communities/4177
https://www.arbornetworks.com/blog/asert/wp-content/uploads/2016/04/ASERT-Threat-Intelligence-Report-2016-03-The-Four-Element-Sword-Engagement.pdf
https://citizenlab.org/2016/03/shifting-tactics/
https://citizenlab.org/wp-content/uploads/2016/11/figure1.png
https://citizenlab.org/wp-content/uploads/2016/11/figure_2_parliament.jpeg
https://citizenlab.org/wp-content/uploads/2016/11/figure_3_parliament.png
https://citizenlab.org/wp-content/uploads/2016/11/figure-4_parliament.png
https://citizenlab.org/wp-content/uploads/2016/11/figure_5_parliament.png
https://citizenlab.org/wp-content/uploads/2016/11/figure_6_parliament.png
https://citizenlab.org/wp-content/uploads/2016/11/figure_7_parliament.png
https://citizenlab.org/wp-content/uploads/2016/11/figure_9_parliament.png
https://citizenlab.org/wp-content/uploads/2016/11/figure_10_parliament.png
https://citizenlab.org/wp-content/uploads/2016/11/figure_11_parliament.png
https://citizenlab.org/wp-content/uploads/2016/11/figure_12_parliament.png

situation is different from a technical-indicator based institutional security environment. In practice, minimal code
changes sufficient to bypass signature-based security controls such as antivirus may be all that are necessary.

This report analyzes an operation targeting members of the Tibetan Parliament. The actors used a new version of
“KeyBoy,” a custom backdoor first disclosed by researchers at Rapid7 in June 2013. Their work outlined the
capabilities of the backdoor, and exposed the protocols and algorithms used to hide the network communication and
configuration data.

We observed operations in August and October 2016, shortly after an order in June to demolish the Larung Gar
Buddhist Academy and days before organized protests on October 19 around the same issue. These operations
involved highly targeted email lures with repurposed content and attachments that contained an updated version of
KeyBoy. We assess that KeyBoy is the product of a development cycle that is iterated only as much as necessary to
ensure the survival of the implant against antivirus detection and basic security controls.

This report is divided into two parts:

Part 1: The Parliamentarian Operation Analyzes an operation targeting the members of the Tibetan Parliament by
repurposing legitimate content, and documents implanted with Keyboy.

Part 2: KeyBoy – Tracking Evolution Examines the KeyBoy development cycle revealing a focus on avoiding
basic antivirus detection.

To assist other researchers, we include appendices and indicators of compromise that detail the KeyBoy samples
we analyzed and provide an in-depth analysis of some features of the most recent implant.

Part 1: The Parliamentarian Operation
In August and October 2016 we observed a malware operation targeting members of the Tibetan Parliament (the
highest legislative organ of the Tibetan government in exile, formally known as Central Tibetan Administration). We
collected two emails sent to Parliamentarians that rapidly repurposed legitimate content in an attempt to entice
recipients to open malicious documents. The first attempt leveraged an old vulnerability in the parsing of Rich-text-
format (.rtf) files (CVE-2012-0158). The second attempt used a newer, but also patched, .rtf vulnerability
(CVE-2015-1641). Both attempts used versions of KeyBoy and shared the same command and control
infrastructure as well as other configuration details.

Attempt 1

On August 25, 2016, members of the Tibetan Parliament received an email with information on an upcoming
conference relevant to the Tibetan community. This email had the same subject and attachment as a legitimate
message sent to the same recipients just 15 hours prior, but in this case the attachment was crafted to exploit a
frequently targeted vulnerability in Microsoft Office. The accompanying malware was a backdoor implant designed
to surveil the computers of the Parliamentarians. This malicious attachment used the original, legitimate filename as
a decoy (see: Figure 1).

This level of targeting and re-use of a legitimate document sent only hours before shows that the actors behind the
operation are closely watching the Tibetan community, and may have already compromised the communications of
one or more of the Parliamentarians.

Document name:
theme of the
conference.doc

MD5: 8307e444cad98b1b59568ad2eba5f201

2/25

https://community.rapid7.com/community/infosec/blog/2013/06/07/keyboy-targeted-attacks-against-vietnam-and-india
https://en.wikipedia.org/wiki/Larung_Gar_Buddhist_Academy
https://www.facebook.com/events/190950044675347/
http://tibetanparliament.org/
http://tibet.net/
http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=cve-2012-0158
https://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-1641

Figure 1: Email lure containing malicious document. Note the use of letters ‘r n’ in an attempt to appear as ‘m’ in the sender address.

Figure 2: Process chain after exploit is successful

Opening the attachment (an apparently blank document) in Microsoft Word would result in the infection of the target
system with the KeyBoy implant.

The Infection Chain

The email attachment is a .rtf document containing a dropper, delivered using an exploit designed to leverage
CVE-2012-0158, a vulnerability in the way that Microsoft Word handles .rtf files. Over the past four years, this
vulnerability has been consistently used in malware campaigns against the Tibetan community despite having been

patched since April 2012.

If the exploit is successful, the following infection chain (see: Figure 2) is observed on the system.

The files in this infection chain are outlined below. The exploit launches an executable ‘dropper’ component which is
responsible for placing the malware payload and its configuration file on disk, and finally for launching the main
malware code.

Note that the dropper and the final (DLL) payload were compiled within seconds of each other.

Name: dw20.exe

Size:
256512
bytes

3/25

http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-0158
https://targetedthreats.net/

Compile Time:
09 May 2016 08:41:26
UTC

MD5: 0b4d45db323f68b465ae052d3a872068
SHA256: 5f24a5ee9ecfd4a8e5f967ffcf24580a83942cd7b09d310b9525962ed2614a49
Purpose: dropper binary, used to install and execute the main implant
Name: wab32res.exe
Size: 46080 bytes

Compile Time:
13 April 2008 18:30:52
UTC

MD5: 8f08609e4e0b3d26814b3073a42df415
SHA256: 58105e9772f6befbc319c147a97faded4fbacf839947b34fe3695ae72771da5d
Purpose: legitimate Microsoft Windows Address Book executable, used to load final payload
Name: wab32res.dll

Size:
138240
bytes

Compile Time:
09 May 2016 08:41:05
UTC

MD5: 495adb1b9777002ecfe22aaf52fcee93
SHA256: 9a55577d357922711ab0821bf5379289293c8517ae1d94d48c389f306af57a04
Purpose: malware payload, launched by wab32res.exe via DLL search order hijacking

Next, the dropper places a renamed copy of the legitimate Windows Address Book executable, along with the
malware binary, wab32res.dll, in the Local Application Data directory. Notably, the dropper modifies the
timestamps of the configuration file and the payload to match those of the
\Microsoft\SystemCertificates\My\ directory within the user’s Local Application Data directory. Once these
files are written to disk, the dropper starts the Windows Address Book executable which loads and executes the
malicious wab32res.dll file via DLL search-order hijacking.

Attempt 2

On October 11, 2016, the Tibetan Parliamentarians received an email with content repurposed from a Tibetan
activism campaign protesting the demolition of a Buddhist monastery in Tibet. The email was sent from the same
email address as the previous attempt (tibetanparliarnent[@]yahoo.com) and appears to copy content from
the Facebook page of a Tibetan NGO promoting the campaign. The message urges recipients to open an attached
.rtf file with further details on the campaign (see: Figure 3).

Document name:
urgent action larung gar buddhist
academy.rtf

MD5: 913b82ff8f090670fc6387e3a7bea12d

Opening the attachment (an apparently blank document) in Microsoft Word would, similar to the first attempt, result
in the infection of the target system with the KeyBoy implant.

The Infection Chain

The .rtf document attached to the malicious email was designed to exploit a more recent vulnerability: CVE-2015-
1641. If successful, this exploit launches a newer version of the same malware used in the August attempt outlined
above, using a similar infection chain.

Name: n/a

4/25

https://www.fireeye.com/blog/threat-research/2010/07/malware-persistence-windows-registry.html
https://www.facebook.com/events/190950044675347/
https://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-1641

Figure 3: Email lure used in second attempt

Size:
262144
bytes

Compile Time:
29 September 2016 00:46:11
UTC

MD5: 23d284245e53ae4fe05c517d807ffccf
SHA256: 542c85fda8df8510c1b66a122e459aac8c0919f1fe9fa2c43fd87899cffa05bf
Purpose:dropper binary, used to install and execute the main implant
Name: wab32res.exe
Size: 46080 bytes

Compile Time:
13 April 2008 18:30:52
UTC

MD5: 8f08609e4e0b3d26814b3073a42df415
SHA256: 58105e9772f6befbc319c147a97faded4fbacf839947b34fe3695ae72771da5d
Purpose:legitimate Microsoft Windows Address Book executable, used to load final payload

Name: wab32res.dll

Size:
143872
bytes

Compile Time:
29 September 2016 00:21:34
UTC

MD5: 087bffa8a570079948310dc9731c5709
SHA256: 5da2f14c382d7cac8dfa6c86e528a646a81f0b40cfee9611c8cfb4b5d589aa88
Purpose:malware payload, launched by wab32res.exe via DLL search order hijacking

As with the first attempt, the resulting dropper installs the malware payload into the
Local Application
Data

directory as wab32res.dll and subsequently launches it using the same method of DLL search-order hijacking
against the legitimate Windows Address Book executable.

A Note on Vulnerabilities

5/25

Figure 4: Format strings illustrating some of the system information obtained by KeyBoy from an infected machine

The two .rtf vulnerabilities targeted in these exploitation attempts, CVE-2012-0158 and CVE-2015-1641, are
among a set of four .rtf vulnerabilities discussed in recent reporting from researchers at Arbor Networks.

The researchers describe the presumed existence of an exploit document ‘builder’ designed to selectively
weaponize .rtf files using four older, patched, vulnerabilities: CVE-2012-0158, CVE-2012-1856, CVE-2015-1641,
and CVE-2015-1770.

The Arbor report describes the ongoing use of these four vulnerabilities in a series of espionage campaigns against
not only Tibetan groups, but also others related to Hong Kong, Taiwan, and Uyghur interests. While we have not
connected the campaign targeting the Tibetan Parliamentarians to the campaigns described by Arbor, the continual
pairing of these older .rtf vulnerabilities with malware operations against the Tibetan community is noteworthy.

The Malware

The malware samples deployed in both of these operations are updated versions of the KeyBoy backdoor first
discussed in 2013 by Rapid7. KeyBoy provides basic backdoor functionality, allowing the operators to select from
various capabilities used to surveil and steal information from the victim machine.

KeyBoy functionality:

Gather system information, including details of the operating system, processor, disk, memory, display, and
uptime (see: Figure 4)

Upload files to the victim computer

Download files from the victim computer

Browse the file system, including gathering details about attached drives

Execute commands and applications

Launch interactive shell

These updated
versions of
KeyBoy make
use of an
encoded
configuration file
to store their
command and
control (C2)
information
along with other
required
settings. In both
cases, the
dropper wrote
this configuration
file in the user’s
Local Application
Data directory as
win32res.dat.
After analyzing these malware samples, we were able to decode the following configuration parameters, presented

6/25

http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=cve-2012-0158
https://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-1641
https://www.arbornetworks.com/blog/asert/wp-content/uploads/2016/04/ASERT-Threat-Intelligence-Report-2016-03-The-Four-Element-Sword-Engagement.pdf
http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=cve-2012-0158
http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=cve-2012-1856
https://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-1641
https://www.cve.mitre.org/cgi-bin/cvename.cgi?name=cve-2015-1770
https://community.rapid7.com/community/infosec/blog/2013/06/07/keyboy-targeted-attacks-against-vietnam-and-india

in Table 1

Line Description First sample Second sample

Line 1 Identity code, used to ensure config was correctly decoded 9876543210 9876543210

Line 2 C2 Server #1 (hostname/ip) 45.125.12[.]147 45.125.12[.]147

Line 3 C2 Server #2 (hostname/ip) 103.40.102[.]233 45.125.12[.]147

Line 4 C2 Server #3 (hostname/ip) 45.125.12[.]147 45.125.12[.]147

Line 5 Port used with C2 Server #1 443 443

Line 6 Port used with C2 Server #2 443 443

Line 7 Port used with C2 Server #3 443 443

Line 8 Password for operator login tibetwoman tibetwoman

Line 9 Campaign ID, transmitted to C2 during login NNNN NNNN

Table 1: Decoded configuration parameters from both KeyBoy samples observed in the Parliamentarian operation

A full description of the new algorithm used by KeyBoy to decode its configuration file is presented in Appendix A.

Once the KeyBoy DLL has been executed, it validates that a particular string value (likely identifying the KeyBoy
version) is set in the Windows Registry.

Key First
sample

Second
sample

HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Internet
Settings\Zonemap\Ver

20160509 agewkassif

Additionally, these versions of KeyBoy ensure persistence by setting the wab32res.exe file to be loaded upon
login via exploiting the Winlogon Shell key, which in turn loads the malicious wab32res.dll file by the
aforementioned DLL search-order hijacking method.

Key Value

HKEY_CURRENT_USER\Software\Microsoft\Windows
NT\CurrentVersion\Winlogon\Shell

explorer.exe,
“C:\users\\AppData\Local\wab32res.exe”

The backdoor then sends a login beacon to the C2 server which, once decoded, looks like:

7/25

a
USER-PC
192.168.100.101
NNNN
2016/09/13
16:11:56
20160509

These values are described as follows in Table 2:

Value from Example Description

a Data header code for initial check-in beacon

USER-PC %computername% of victim PC

192.168.100.101 IP address of victim PC

NNNN Campaign ID from the KeyBoy configuration file

2016/09/13 16:11:56 Timestamp of local PC

20160509 Internal version identifier

Table 2: Descriptions of the login beacon values

This login data, as well as all other communication between backdoor and command and control server, is
transmitted using an encoding mechanism based on principles from modular arithmetic. We describe this network
communication encoding in detail in this supplementary document.

As can be seen in the login event example above, when sending data to the C2, the KeyBoy implant uses a series of
header ‘codes’ to specify the type of data which is being transmitted, described in Table 3:

Header code Data being transmitted

l Heartbeat / Keepalive

a Initial check-in beacon

s System information (drive info, system specifications, interface info)

d Data from remote commands and shell

f Data relating to interactions via File Manager

g Ready to initiate file download

h Ready to initiate file upload or update

Table 3: KeyBoy header codes for sending data to the C2 server

The Infrastructure
8/25

https://citizenlab.org/wp-content/uploads/2016/11/keyboy-network-comm.pdf

The command and control (C2) servers used in the Tibetan Parliament operation were extracted from the KeyBoy
configuration files:

C2 Host: 45.125.12[.]147 Desc: Royal Network Technology Co City: Guangzhou Country: China

No relevant data or passive DNS information was available

C2 Host: 103.40.102[.]233 Desc: Dragon Network Int’l Co. Ltd City: Hong Kong Country: Hong Kong

Domain: tibetvoices[.]com

Host First Seen: Last Seen:

127.0.0.1 2016-09-29 Current as of publication

103.40.102[.]233 2016-07-15 2016-09-28

112.10.117[.]47 2016-05-25 2016-05-26

We uncovered very little information about the command and control (C2) infrastructure used in this operation. The
configuration files referenced hard-coded IP addresses for the C2 servers, as opposed to using domain names as
was seen in prior KeyBoy campaigns.

Passive DNS analysis revealed one domain, tibetvoices[.]com, which was briefly pointed to one of the C2
server IP addresses found in the KeyBoy configuration file used in the first attempt against the Parliamentarians.
This domain was created in May 2016 (around the time that the KeyBoy sample used in the first attempt was
compiled) and was pointed to IP address 103.40.102[.]233 from July 15 to September 28. Subsequently, this
domain was pointed to 127.0.0.1, effectively taking it offline.

This behavioural tactic was previously mentioned in relation to KeyBoy in a 2013 blog post by Cisco. Cisco
hypothesized that the actors behind KeyBoy may have been nullifying the DNS records when an active campaign
was not underway, in an attempt to stay “below the radar”. This tactic allows the malware operator to ensure that no
command and control traffic will be sent out from the infected system, thus preventing detection via network
monitoring.

This tactic, however plausible, would not apply to the KeyBoy samples we analyzed, as the C2 configuration relied
upon hard coded IP addresses and did not directly reference the tibetvoices[.]com domain. It is possible that a
different campaign was launched which used this domain, but we were unable to find any evidence of such a
campaign.

Our analysis provides a cursory look at some of the capabilities and implementation details of the KeyBoy backdoor
as used during a malware operation targeting Tibetan Parliamentarians. These versions of KeyBoy differed from the
one first described by Rapid7 in several ways, many of which will be described in the sections to follow.

During our research into this operation we were able to uncover two additional samples of KeyBoy which were likely
used in previous malware campaigns. These samples were contained in exploit documents containing distinct lure
content, one having a Tibetan nexus, the other an Indian nexus.

9/25

http://blogs.cisco.com/security/scope-of-keyboy-targeted-malware-attacks

In Part 2 we present a brief overview of the observable evolution of KeyBoy based upon all of the samples we
obtained.

Part 2: KeyBoy – Tracking Evolution
Periodic updates are common in the world of software development. Features are added and removed, bugs are
patched, and code is written to execute more efficiently. The same holds true for malicious software, but with the
additional requirement that the development cycle must always satisfy the operational need for covertness. To be
effective, malicious software designed for surveillance must remain undetected. Malware developers are in a
constant struggle to avoid the security controls that protect target systems.

We believe the 2013, 2015, and 2016 KeyBoy samples provide evidence of a development effort focused on
changing components that would be used by researchers to develop detection signatures. This section outlines how
we came to this conclusion.

In building our KeyBoy chronology, we collected several samples and examined three data points from each:

The compile time of the KeyBoy binary

A string observed in the KeyBoy binary we refer to as the ‘version identifier’

Elapsed time between compile time and the time of first exposure

Analysis of these data points gave us a moderate to high level of confidence that the binary compile times provided
a reliable estimate of the true development timeline.

An Evolving Implant

In an effort to understand its evolution, we compared the code of several versions of KeyBoy as identified by their
‘version identifier’ strings, shown in Table 4:

Version Identifier Notes

Proxy 20130401 Reported by Rapid7 in relation to an Indian nexus

Proxy 20130401 Reported by Rapid7 in relation to a Vietnamese nexus

P_20150313 Discovered via hunting; carried Indian lure content

20151108 Discovered via hunting; carried Tibetan lure content

20160509 First sample of the Parliamentarian operation from August 2016

20160509 An alternate sample, using different configuration data

agewkassif Second sample of the Parliamentarian operation from October 2016

Table 4: Version identifier strings analyzed

The ‘version identifier’ is a particular string that appeared in every KeyBoy sample we studied. It is transmitted to the
command and control server as part of the login data packet, and, in recent versions, this identifier is written to the
Windows registry in a key named ‘Ver’. With the exception of the newest (chronologically speaking) KeyBoy version
we discovered, this identifier always contained a date-like component which matched the compile date of the

10/25

Figure 5: The timeline of KeyBoy’s evolution

KeyBoy binary in every case. In the newest sample, the developers replaced this date-like string with a seemingly
random set of letters.

A timeline depicting these KeyBoy versions, along with some important characteristics, is shown in Figure 5.

Noteworthy Modifications

This section describes some of the most significant changes observed across the KeyBoy versions. Each of these
components would have been an ideal target for signature-based identification, using either static string or network
packet-based detection mechanisms.

Header Code Evolution

Of the changes we identified one stands out as being an immediate target for an effective antivirus signature – the
evolution of header codes used during communication between the implant and command and control server. As
shown in Table 5, these codes changed substantially after the 2013 KeyBoy samples were examined and publically
documented by Rapid7. It is reasonable to hypothesize that this significant change in format was in response to the
publication of Rapid7’s research.

2013 Early 2015 Late 2015 2016

$login$ #l# *a* *l*

$sysinfo$ #s# *s* *a*

$shell$ #e# *d* *s*

11/25

$fileManager$ #f# *f* *d*

$fileDownload$ #D# *g* *f*

$fileUpload$ #U# *h* *g*

h

Table 5: Header codes used by KeyBoy during C2 communication

In addition, modifying these codes produced a downstream change in the appearance of the network
communication traffic produced by an active KeyBoy infection. This change would likely have rendered existing
network based signatures ineffective.

Configuration File Changes

Another major change we first observed in version P_20150313 is the complete redesign of the algorithm used to
encode the KeyBoy configuration file. In the 2013 samples described by Rapid7, this configuration file was encoded
using a simplified static-key based algorithm. This newer encoding algorithm is significantly more involved, removing
the use of a static encryption key in favour of a dynamically constructed lookup table. We provide a detailed
explanation of this new algorithm in Appendix A.

Persistence Changes

The method used by the implant for maintaining persistence was also changed several times. The earlier versions
used a Windows service to ensure the malware stayed persistent, moving to a more commonly seen tactic of setting
the Run key in the Windows registry in the early 2015 sample. This method changed again in late 2015 when the
implant migrated from the Run key to using a less frequently observed registry key: Winlogon\Shell. This key
stores the list of executables which are to be run once a Windows GUI session is created, and typically holds only
the standard user shell, explorer.exe.

String Obfuscation

In another modification, first observed in the most recent October 11 Parliamentarian operation (version
agewkassif), the developer(s) of KeyBoy began using a string obfuscation routine in order to hide many of the
critical values referenced within the malware. This introduction of string obfuscation also suggests a development
change aimed at evading detection. The header codes, filename references, and all of the operator commands were
obfuscated and only decoded during execution of the KeyBoy DLL. Figure 6 shows a sampling of these strings,
after decoding.

Evidence of Modularity

Finally, there were numerous changes observed that could suggest that KeyBoy was being deployed using a
modular or component based mechanism. The GetUp export which is linked to the browser credential theft
capability seems to be present in some samples and not others, even for versions within the same development
stage. As well, the inconsistent use of a dropper binary during infection is further evidence supporting the modular
component theory.

Additional Details

12/25

Figure 6: Header code and command strings after being decoded at run-time

Beyond the main modifications outlined above, numerous smaller changes were also observed, many of which are
described in Table 6 below.

Version
Identifier

Key Changes

Proxy
20130401 Persistence handled via Windows service

One sample contained the ‘GetUP’ export, the other did not

Used full word header codes encapsulated by $ symbols, such as $login$

P_20150313
Adopts new algorithm for config file encoding

Retained browser credential theft module

Moved to persistence via Run key

Header codes shift to #-encapsulation

Deployed without use of dropper binary

20151108
Continues use of new config encoding algorithm

Migrated to use of WinLogon key for persistence

Installation now conducted via VBS scripts

Adopted multi-byte strings internally and in C2 communication

Header codes move to *-encapsulation

64 bit version distributed inside 32 bit payload

No evidence of browser credential module

Deployed using dropper binary

20160509
Continues use of new config encoding algorithm

Added AutoUpdate/Upload & Execute function

Deployed using dropper binary

Header codes retain *-encapsulation, new ‘keep-alive’ code, *l*

Execution via DLL search-order hijacking of legitimate Windows application

VBS script traces still present, but no longer used

No 64bit version embedded

13/25

agewkassif
Functionally identical to 20160509 sample

Continues use of new config encoding algorithm

Removed date string from version identifier

Added static string obfuscation code. Strings used for C2 commands, header codes, and
more are now decoded at runtime

Table 6: Changes observed between successive versions of KeyBoy

Additional technical details relating to several of the KeyBoy samples described in this section are provided in
Appendix B.

Connecting KeyBoy to Other Operations

In their Operation Tropic Trooper report, Trend Micro documented the behaviour and functionality of an espionage
toolkit with several design similarities to those observed in the various components of KeyBoy. Trend Micro
specifically noted that the 2013 versions of KeyBoy used the same algorithm for encoding their configuration files as
was observed in the Operation Tropic Trooper malware.

This connection may offer another explanation for the significant change in the configuration file encoding algorithm
we described in relation to KeyBoy. If KeyBoy is a single component of a larger espionage toolkit, the developers
may have realized that this older, static-key based, configuration encoding algorithm was inadvertently providing a
link between disparate components of their malware suite.

A Note on Samples

We were not able to locate a large sample set for KeyBoy. Though we discussed the development timeline, we have
limited insight into the victims targeted by each of these samples. We cannot conclude that all are being deployed
by the same group. We provide YARA signatures and encourage anyone who can provide additional samples or
context to contact us.

Recent Tibetan Protests
The harm of malware operations against the Tibetan community is well-documented, and this latest campaign is no
exception. Examining the lure content sent to the Tibetan Parliamentarians sheds light on the oppression faced by
the Tibetan community. On October 19, over 180 Tibetan groups protested the ongoing demolitions of the Larung
Gar Buddhist Academy, the largest Tibetan Buddhist institute in the world.

The demolitions stem from an order issued by Chinese authorities in June 2016, according to a joint statement
issued by Tibet groups on the date of protest. According to the same joint statement, the order from Chinese
authorities said the community was in need of “ideological guidance” from the Chinese state. In conjunction with the
demolitions, residents are being forcefully removed from Larung Gar. To date, the forced removals have led to to the
suicide of three resident nuns.

The Communist Party of China views the Tibetan movement as a threat to its rule, alongside Uyghur, Falun Gong,
advocates for an independent Taiwan and Hong Kong, and members of the democracy movement. Surveilling the
highest governing body of the Central Tibetan Administration aligns with the overall interests of the government of
China. However, connecting the malware development ecosystem and the flow of stolen information to a state-actor

14/25

http://www.trendmicro.com/cloud-content/us/pdfs/security-intelligence/white-papers/wp-operation-tropic-trooper.pdf
https://github.com/citizenlab/malware-indicators/blob/master/201611_KeyBoy/keyboy.yar
https://targetedthreats.net/
https://freetibet.org/news-media/na/over-180-tibet-groups-condemn-larung-gar-demolitions-joint-statement
http://tchrd.org/nuns-continue-suicide-protest-against-demolition-of-buddhist-institute/

is an elusive task. With the data available we are unable to conclusively connect the Parliamentarian Operation to
any specific actor or nation-state.

Conclusions
Recent Citizen Lab reports have documented a trend away from the use of attachment-based malware operations
targeting the Tibetan Diaspora. These changes may reflect malware operators shifting tactics in response to
changes in the community, including education campaigns encouraging Tibetans not to use email attachments, or
perhaps also by more sophisticated attachment scanning by popular email providers.

The operation against the Tibetan Parliamentarians illustrates the continued use of malicious attachments in the
form of documents bearing exploits. These exploits, while older, were used to deliver a malware payload which
shows signs of a systematic technical adaptation designed to reduce the likelihood of signature based detection.

The developers of KeyBoy have made the minimum necessary technical changes required to avoid detection by
signature-based antivirus, and yet retained “old” exploits because they likely continue to work their targets.

For a community lacking an adequate level of human and financial resources, deployment of commercial (i.e.: non-
free) antivirus solutions, updated releases of common office productivity software, and even software patches may
be out of reach. Under such conditions, the use of exploits against older, patched, vulnerabilities becomes yet
another iteration of an actor using “just enough” sophistication to successfully exploit a target.

The operation against the Parliamentarians yields a clear example of this tactic. When the August operation failed to
fully compromise the target group, the operators redeployed in October using a slightly newer, but still well-known
and patched, exploit.

As we observe the evolution of strategies levied against the Tibetan Diaspora, the constant cat-and-mouse game
embroiling this community becomes evident. While some behavioural adaptations have shown promise in reducing
the threat, the operation against the Tibetan Parliament underscores the need for continued diligence and security
awareness.

Acknowledgments
Special thanks to Tibet Action Institute. Additional thanks to Jakub Dalek, PassiveTotal, VirusTotal, and TNG.

Appendix A: Decoding KeyBoy Config
Recent versions of KeyBoy maintain encoded configuration data inside a file stored on disk. In the 20160509
sample used in the Tibetan Parliament campaign, this file was named wab32res.dat. The configuration file
contains a 16 byte header followed by a number of bytes which are encoded using a novel algorithm. The 16 byte
header stores an ascii character representation of the hexadecimal values corresponding to the size (in bytes) of the
decoded config data, followed by the number of bytes containing encoded configuration data.

The sample under examination contained the following header, and Figure 7 shows the raw configuration file:

Size of config (in bytes) once decoded Number of bytes in encoded config

0x00 0x00 0x00 0x5B 0x00 0x00 0x00 0x4B

15/25

https://citizenlab.org/2016/03/shifting-tactics/
https://www.cybersuperhero.net/safer-file-sharing/
https://www.johnscottrailton.com/security-for-the-high-risk-user/

Figure 7: Configuration file for sample under examination

Figure 8: Construction of the base lookup table

The configuration file used by this malware is encoded using what appears to be a custom schema. While some

earlier versions of this backdoor used more simplified encoding techniques for the configuration data, newer
versions have adopted a more involved algorithm.

At the heart of the decoding function is the use of a dynamically constructed lookup table containing sequences of
bytes which represent the ASCII characters for the cleartext configuration data.

At the outset of the decoding function, a base lookup table is created
containing 256 entries. This initial table can be thought of as an identity
matrix, where, for each index, the lookup table contains the index as
the stored value (see: Figure 8). For example:

LookupTable[0x0] → 0x0

LookupTable[0x1] → 0x1

⋮ ⋮

LookupTable[0xFF] → 0xFF

During the decoding of the configuration file, this table is expanded
dynamically. Each iteration of the algorithm will populate the lookup
table sequentially, beginning with index 0x102 (since the table index
0x101 is reserved).

Algorithm Walkthrough

The algorithm has three basic steps:

1. Obtain an index by decoding a value from the configuration file

2. Find the value in the lookup table corresponding to this index, and place this result in the memory buffer
holding decoded configuration data

3. Generate a new value and insert it into the lookup table at the next available index

Step 1

This step requires the algorithm to obtain an index value from the configuration file. In order to obtain this index, a
decoding function evaluates the data in the configuration file not as successive bytes, but as a series of integers
calculated by considering consecutive sequences of 9-bit binary values.

Figure 9 provides a visual representation of this process. We can see that the first few indices being calculated by
16/25

https://citizenlab.org/wp-content/uploads/2016/11/figure_8_parliament.png

Figure 9: Step 1 in KeyBoy decoding algorithm. Indices are obtained by viewing the data in 9-bit ‘windows’

this decoder are hexadecimal values 0x100, 0x39, 0x38, and 0x37. The first value, 0x100, is a ‘marker’ which
denotes the beginning of the configuration data. The values 0x39, 0x38, and 0x37 are the first three indices used to
obtain data from the lookup table.

Step 2

As mentioned above, the first 256 entries in the lookup table are created as an identity matrix, and thus the result of
lookups for 0x39,0x38,0x37 would be:

LookupTable[0x39] = 0x39 => “9”
(ascii)
LookupTable[0x38] = 0x38 => “8”
(ascii)
LookupTable[0x37] = 0x37 => “7”
(ascii)

These values are then stored in memory as decoded bytes of configuration data.

Step 3

After each iteration of calculating an index (step 1) and then obtaining the corresponding value from the lookup table
(step 2), the algorithm will create a new entry in the lookup table at the next available index. The format of this new
lookup table entry is simply the concatenation of the results of the previous lookup with the first byte of the current
lookup (see: Figure 10).

17/25

Figure 10: Steps 2 & 3 in the KeyBoy configuration decoding algorithm

So, again using the same example bytes along with Figures 9 and 10 above, if the current iteration of the algorithm

decoded the value 0x34 in step 1, and thus retrieved the value 0x34 = ‘4’ in step 2, the newly formed lookup table
entry would be:

LookupTable[0x106] = [0x35,0x34] =>
“54”

Thus, if at some future point in the decoding process the index 0x106 was obtained in step 1, the output to the
configuration data would be the two bytes [0x35,0x34] which have ascii representation “54”. This provides a method
of data compression to the configuration file.

A Python script was created for the purpose of automating this configuration file decoding process. The output of
this script when run against the configuration file used by the first of the two Parliamentarian operation samples
yielded the following data:

18/25

Identity Code: 9876543210
C2 Host/IP #1: 45.125.12.147
C2 Host/IP #2:
103.40.102.233
C2 Host/IP #3: 45.125.12.147
C2 Port #1: 443
C2 Port #2: 443
C2 Port #3: 443
Password: tibetwoman
Campaign ID: NNNN

Appendix B: KeyBoy Samples

Version: P_20150313

Exploit Document: 05b5cf94f07fee666eb086c91182ad25
Payload: 0c7e55509e0b6d4277b3facf864af018
DLL Exports
Embedding 0x1000bfb0
GetUP 0x1000c940
SSSS 0x1000bc60
StartWork 0x1000c570
SvcMain 0x1000c430

Installation

This sample was discovered inside a malicious PowerPoint slide show which carried lure content consistent with an
Indian-nexus, and which was uploaded to VirusTotal in April 2015 using the filename athirappalli.pps.
Athirappilly is a village in India known for its wildlife and waterfalls. The visual contents of the slide show are images
of waterfalls, presumably from this village. This malicious .pps file was weaponized using (closely related to CVE-
2014-4114 aka Sandworm, which we have previously observed this exploit used against the Tibetan community) to
execute the following embedded DLL:

Name: SystemCertificates.ocx

Size:
495616
bytes

Compile Time:
13 Mar 2015 03:05:34
UTC

MD5: 0c7e55509e0b6d4277b3facf864af018
SHA256: 5395f709ef1ca64c57be367f9795b66b5775b6e73f57089386a85925cc0ec596

Persistence

This DLL maintains persistence by setting the following registry entry in the
HKCU\Software\Microsoft\Windows\CurrentVersion\Run key: SystemCertificates → "cmd /c
start

Run
dll32.exe %APPDATA%\Microsoft\SystemCertificates\SystemCertificates.ocx,
SSSS

This registry key is set via the Sandworm exploit, as the execution of an .inf file containing the following

19/25

https://en.wikipedia.org/wiki/Athirappilly
https://citizenlab.org/2015/06/targeted-attacks-against-tibetan-and-hong-kong-groups-exploiting-cve-2014-4114/

instructions are triggered:

[DefaultInstall]
CopyFiles =
RxCopy
AddReg = RxStart

[RxCopy]
..\..\Roaming\Microsoft\SystemCertificates\SystemCertificates.ocx, contact.pdf
[RxStart]
HKCU,Software\Microsoft\Windows\CurrentVersion\Run,SystemCertificates,,"cmd /c start
Rundll32.exe %APPDATA%\Microsoft\SystemCertificates\SystemCertificates.ocx, SSSS"

In comparison with the prior generation of KeyBoy examined by Rapid7, this mechanism represents a change to
registry based persistence from the previously used Windows service.

Configuration

Using the algorithm presented in Appendix A, we were able to decode the configuration file used by this sample.
Once decoded, the following information was obtained:

Identity Code: IJUDHSDJFKJDE
C2 Host/IP #1: www.about.jkub[.]com
C2 Host/IP #2:
www.eleven.mypop3[.]org
C2 Host/IP #3:
www.backus.myftp[.]name
C2 Port #1:80
C2 Port #2:80
C2 Port #3:443
Password:wariii
Campaign ID:war

Infrastructure

C2 Host: www.about.jkub[.]com Desc: Dynamic DNS provided by changeip.com

Host First Seen: Last Seen:

175.213.49[.]6 2016-10-25 Current as of publication

45.32.47[.]148 2016-09-26 2016-10-24

157.7.84[.]81 2015-04-07 2015-04-21

20/25

C2 Host: www.eleven.mypop3[.]org Desc: Dynamic DNS provided by changeip.com

Host First Seen: Last Seen:

175.213.49[.]6 2016-10-25 Current as of publication

45.32.47[.]148 2016-09-26 2016-10-24

C2 Host: www.backus.myftp[.]name Desc: Dynamic DNS

Host First Seen: Last Seen:

192.241.149[.]43 2015-05-05 Current as of publication

Version: 20151108

Exploit Document: 8846d109b457a2ee44ddbf54d1cf7944
Dropper: 8846d109b457a2ee44ddbf54d1cf7944
Payload: c5b5f01ba24d6c02636388809f44472e
Embedded 64bit: 371bc132499f455f06fa80696db0df27
Payload DLL Exports
Install 0x100085a0
SSSS 0x100081e0
StartWork 0x100086a0
SvcMain 0x10008fb0
cfsUpdate 0x10008cb0

Installation

This .rtf document, also exploiting CVE-2012-0158, was submitted to VirusTotal in March 2016. The exploit
triggers the execution of an embedded dropper, similar to the method observed in our initial sample described in
Part 1.

This dropper creates three files on disk, each in the %localappdata% folder:

1. cfs.dat – KeyBoy configuration file

2. cfsupdate.dal – KeyBoy payload DLL

3. desk.vbs – Windows script used for installation

The Windows script file, desk.vbs, contained the following content:

21/25

https://virustotal.com/en/file/ba442907f3218c8664bbecb47f915c4469340219e0f05af8f2d108d72659ff0f/analysis/

The dropper executes this script file which subsequently launches the KeyBoy backdoor and sets persistence as
described below.

Also noteworthy in this sample was the fact that this payload inspected the architecture of the victim PC to
determine if it was 64 bit capable. If so, a 64 bit version of the payload was decoded from the data section of the
cfsupdate.dat file using an XOR operation having key 0x90. This is very similar to the method described by Trend
Micro in their report on the TROJ_YAHOYAH malware.

Interestingly, the 64-bit module was packed using a known freeware binary packer. This is in contrast to the 32-bit
versions of KeyBoy, none of which contained any binary protections whatsoever. Upon unpacking, the 64-bit version
of this KeyBoy code was functionally identical to the 32-bit version.

Leftover Code

Further illustrating the continued development and connections between samples are the leftover remnants from
20151108 existing in the 20160509 Parliamentarian sample. The Parliamentarian dropper contained references to
the Desk.vbs script described above, yet this file and related content was not deployed or otherwise used in the
20160509 version.

Persistence

Persistence is achieved through the WinLogon\Shell registry key, and is installed by the dropper’s execution of the
Install export from the KeyBoy DLL. This export creates the file %localappdata%\Desktop.ini as shown below,
and installs it by launching the Windows regini.exe command:

HKEY_CURRENT_USER\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Winlogon
shell = explorer.exe,C:\Windows\system32\rundll32.exe "%LOCALAPPDATA%\cfs.dal"
cfsUpdate

Configuration

The configuration file used by this version of KeyBoy is written to disk as%localappdata%\cfs.dat by the
dropper, similar to the behaviour of our 20160509 sample. This configuration file uses the newer encoding method
outlined above and in Appendix A. Once decoded, the following information was obtained:

22/25

http://www.trendmicro.com/cloud-content/us/pdfs/security-intelligence/white-papers/wp-operation-tropic-trooper.pdf

Identity Code: 9876543210
C2 Host/IP #1:
103.242.134[.]243
C2 Host/IP #2:
103.242.134[.]243
C2 Host/IP #3:
103.242.134[.]243
C2 Port #1: 443
C2 Port #2: 1234
C2 Port #3: 1234
Password: password8888
Campaign ID: MyUser

Possible Targeting

This malicious document embedded an empty decoy document to hide the exploitation of the vulnerability. We found
however another interesting sample with the exact same payload but with a decoy document presenting a petition to
release a Tibetan activist:

Infrastructure

This sample communicates with the following command and control server:

C2 Host: 103.242.134[.]243
City: Hanshan
Country: China

Version: 20160509 (alternate)

Exploit Document: beadf21b923600554b0ce54df42e78f5
Dropper: 0b4d45db323f68b465ae052d3a872068

23/25

https://malwr.com/analysis/MmZjNjMyZjYxNWRiNDJhYzg0YzY5ZTQxYjYxNWM2NDE/

Payload: 495adb1b9777002ecfe22aaf52fcee93
Payload DLL Exports
SSSS 0x100080b0
SvcMain 0x10008b80
cfsUpdate 0x10008880

During our research we encountered another sample of the 20160509 version of KeyBoy. This sample was also
found to be deployed using the CVE-2012-0158 vulnerability. The malware payload was identical to our first
Parliamentary sample outlined in Part 1, however the configuration file in this alternate sample was different.

Configuration

Identity Code: 9876543210
C2 Host/IP #1:
116.193.154[.]69
C2 Host/IP #2:
116.193.154[.]69
C2 Host/IP #3:
116.193.154[.]69
C2 Port #1:443
C2 Port #2:80
C2 Port #3:443
Password:8888
Campaign ID:8888

Possible Targeting

The exploit document carrying this alternate KeyBoy configuration also used a decoy document which was
displayed to the user after the exploit launched. This decoy carries content with a Tibetan nexus.

Infrastructure

C2 Host: 116.193.154[.]69
CNAME: 116-193-154-
69.pacswitch.net

Appendix D: IOCs and Links
KeyBoy binaries
agewkassif: 087bffa8a570079948310dc9731c5709
20160509: 495adb1b9777002ecfe22aaf52fcee93
P_20150313: 0c7e55509e0b6d4277b3facf864af018
20151108 (32bit):
c5b5f01ba24d6c02636388809f44472e
20151108 (64bit):
371bc132499f455f06fa80696db0df27

Droppers

24/25

0b4d45db323f68b465ae052d3a872068
23d284245e53ae4fe05c517d807ffccf
98977426d544bd145979f65f0322ae30

Exploit Documents

8307e444cad98b1b59568ad2eba5f201 (used in August Parliamentary campaign)
913b82ff8f090670fc6387e3a7bea12d (used in October Parliamentary
campaign)
05b5cf94f07fee666eb086c91182ad25
8846d109b457a2ee44ddbf54d1cf7944
beadf21b923600554b0ce54df42e78f5

C2 Hosts

www.about.jkub[.]com
www.eleven.mypop3[.]org
www.backus.myftp[.]name
tibetvoices[.]com
103.242.134[.]243
116.193.154[.]69
103.40.102[.]233
45.125.12[.]147

Resources
Keyboy Network Communication Encoding Details

Configuration File Decoder

C2 Decoder

YARA Signatures

Indicators of Compromise

25/25

https://citizenlab.org/wp-content/uploads/2016/11/keyboy-network-comm.pdf
https://github.com/citizenlab/malware-indicators/blob/master/201611_KeyBoy/kb_configDecode.py
https://github.com/citizenlab/malware-indicators/blob/master/201611_KeyBoy/kb_c2Decode.py
https://github.com/citizenlab/malware-indicators/tree/master/201611_KeyBoy
https://github.com/citizenlab/malware-indicators/tree/master/201611_KeyBoy

	It’s Parliamentary: KeyBoy and the targeting of the Tibetan Community
	Key Findings
	Introduction
	Part 1: The Parliamentarian Operation
	Attempt 1
	The Infection Chain

	Attempt 2
	The Infection Chain

	A Note on Vulnerabilities
	The Malware
	The Infrastructure

	Part 2: KeyBoy – Tracking Evolution
	An Evolving Implant
	Noteworthy Modifications
	Header Code Evolution
	Configuration File Changes
	Persistence Changes
	String Obfuscation
	Evidence of Modularity
	Additional Details

	Connecting KeyBoy to Other Operations
	A Note on Samples

	Recent Tibetan Protests
	Conclusions
	Acknowledgments
	Appendix A: Decoding KeyBoy Config
	Algorithm Walkthrough
	Step 1
	Step 2
	Step 3

	Appendix B: KeyBoy Samples
	Version: P_20150313
	Installation
	Persistence
	Configuration
	Infrastructure

	Version: 20151108
	Installation
	Leftover Code
	Persistence
	Configuration
	Possible Targeting
	Infrastructure

	Version: 20160509 (alternate)
	Configuration
	Possible Targeting
	Infrastructure

	Appendix D: IOCs and Links
	Resources

