
Environmental Key Generation towards Clueless
Agents

James Riordan? Bruce Schneier
School of Mathematics Counterpane Systems
University of Minnesota 101 E Minnehaha Parkway
Minneapolis, MN 55455 Minneapolis, MN 55419, USA
riordan@math.umn.edu schneier@counterpane.com

Abstract. In this paper, we introduce a collection of cryptographic key
constructions built from environmental data that are resistant to adver-
sarial analysis and deceit. We expound upon their properties and discuss
some possible applications; the primary envisioned use of these construc-
tions is in the creation of mobile agents whose analysis does not reveal
their exact purpose.

1 Introduction

Traditional cryptographic systems rely upon knowledge of a secret key to deci-
pher messages. One of the weaknesses induced by this reliance stems from the
static nature of the secret keys: they do not depend upon temporal, spatial, or
operational conditions. By contrast, the secrecy requirements of information are
often strongly linked to these conditions. This disparity is, perhaps, most easily
seen and most problematic in mobile agents.

Mobile agents, by nature, function in and move through a wide variety of en-
vironments. Security properties of these environments vary greatly which creates
problems when the mobile agent needs to carry security sensitive, or otherwise
private, material. If the agent passes through an insecure network it may be
analyzed so that any information carried by the agent becomes available to the
attacker.

This information is often private in nature, and cannot easily be disguised.
For example, an agent written to conduct a patent search will reveal the nature
of the information desired. This information may, in turn, reveal the intentions
of the requester of that patent search.

The problem is somewhat similar to the one faced by designers of smart cards
which keep secrets from the card’s carrier. To solve that problem, smart card
designers have developed a number of techniques to make the hardware either
tamper-resistant or tamper-evident thereby protecting the secret. Unfortunately
these techniques are not applicable to mobile agents due to the fact that software,
unlike hardware, is completely and trivially observable.
? The first author is now with the IBM Zurich Research Laboratory in Switzerland



To address this class of problem we introduce the notion of environmental
key generation: keying material that is constructed from certain classes of envi-
ronmental data. Using these keys, agents could receive encrypted messages that
they could only decrypt if some environmental conditions were true. Agents with
data or executable code encrypted using such keys could remain unaware of their
purpose until some environmental condition is met.1

Environmental key generation is similar to the idea of ephemeral keys: keys
which are randomly created at the time of use and destroyed immediately after-
ward. Public-key systems for encrypting telephone conversations—the STU-III
[Mye94], the AT&T TSD [ATT92], the Station-to-Station protocol [DOW92]—
make use of this idea. The communication model is different, however. Ephemeral
keys are used when two parties want to communicate securely at a specific time,
even though there is no secure channel available and the parties have not previ-
ously negotiated a shared secret key. Environmental key generation can be used
when the sender wishes to communicate with the receiver, such that the receiver
could only receive the message if some environmental conditions are true. Envi-
ronmental key generation can even be used in circumstances where the receiver
is not aware of the specific environmental conditions that the sender wants his
communication to depend on.

The difficulty with constructing an environmental key generation protocol is
that the threat model assumes that an attacker has complete control over the en-
vironment. All information available to the program is available to the attacker,
all inputs to the program are supplied by the attacker and the program state
itself is completely determined by the attacker. As such, the constructions must
resist direct analysis and dictionary attacks in the form of Cartesian deception
(in which the attacker lies about the environment).

Ultimately, if the attacker has access to both the agent and the activation
environment (the environment in which the agent can construct its keys) then
he will have access to all secret information as well. This is often not a problem.

In this paper, we propose three basic approaches toward securely generating
cryptographic keys from environmental observations. The first involves direct
manipulation of the environment in a specific and cryptographically unspoofable
manner. The second involves reliance upon a partially trusted server. The third
uses the obfuscation of the nature or value of the environmental data being
sought through the use of one-way functions.

2 Clueless Agents

In the basic construction, an agent has a cipher-text message (a data set, a series
of instructions, etc.) and a method for searching through the environment for
the data needed to generate the decryption key. When the proper environmental
1 These agents might reasonable be likened to the sleeper agents of “The Manchurian

Candidate” and other Cold War era spy films.

2



information is located, the key is generated, the cipher-text is decrypted, and
the resulting plain-text it acted upon. Without the environmentally supplied
input, the agent cannot decrypt its own message (i.e. it is clueless), and can be
made cryptographically resistant to analysis aimed at determining the agent’s
function.

Let N be an integer corresponding to an environmental observation, H a one
way function, M the hash H of the observation N needed for activation, ⊕ the
bitwise exclusive-or operator, comma the catenation operator, R a nonce, & the
bitwise and operator, and K a key. The value M is carried by the agent.

One way functions can be used to conduct tests and construct the keys in a
way that examination of the agent does not reveal the required environmental
information. A number of such constructions are possible:

– if H(N) = M then let K := N
– if H(H(N)) = M then let K := H(N)
– if H(Ni) = Mi then let K := H(N1, ..., Ni)
– if H(N) = M then let K := H(R1, N)⊕R2

The constructions differ in types of data which are most naturally provided
as input or in the programmer’s ability to determine the output (as needed by
a threshold scheme 6.2); the important feature of each is knowledge of M does
not provide knowledge of K.

This general sort of construction is not uncommon. The if clause of the first
construction is used in most static encrypted password authentication schemes
(e.g. Unix). As with static password schemes, dictionary attacks present a prob-
lem. The fact that an agent may pass through or even execute in a hostile en-
vironment compounds this problem greatly (as would publishing your password
file). None the less, several useful and cryptographically viable constructions are
possible.

3 Basic Constructions

The very simplest clueless agents look for their activation keys on a fixed data
channel. Example channels include:

– Usenet news groups. A key could be embedded in any of several places in
a (possibly anonymous) posting to a particular newsgroup. It could be the
hash of a particular message, or the hash of a certain part of the message.

– Web pages. Likewise, a key could be explicitly or steganographically embed-
ded in a web page or image.

– Mail messages. The message could contain a particular string that would
serve as a key, or the key could be a hash of a message.

– File systems. A key could be located in a file, the hash of the file or the hash
of a particular file name.

3



– Local network resources. A key could be generated as the hash of a local DNS
block transfer or as a result of a broadcast ping packet. Threshold schemes
would be particularly valuable with
schemes like this.

If, for example, the agent knows that its activation key will be posted to a
particular newsgroup, it would continuously scan the newsgroup looking for a
message N such that H(H(N)) = M . An attacker would know that N would be
posted to the newsgroup, but would need to see the message N before he could
construct the key, (H(N)), and thus figure out the agent’s purpose.

The nature of the data channel determines the utility and properties of the
construction based upon that channel. This nature includes:

– Who can directly or indirectly observe the channel?
– Who can manipulate parts or the whole of the channel?
– Along what paths does the channel flow?
– How do observations of the channel vary with the observer?

This abstract notion is best explained by a few diverse examples.

3.1 Example: Blind Search

We take the data channel to be an online database containing a list of patents
with an online mechanism for executing search agents. The channel does not
have a particularly interesting nature but yet generates an interesting agent.

We suppose that Alice has the an idea that she would like to patent. She
wishes to conduct a patent search yet does not wish to describe her idea to the
owners of the database search engine. This desire can be realized through the
use of a clueless agent.

To make matters concrete, we assume that Alice’s idea is to build a smoke
detector with a “snooze alarm” so that she can temporarily de-activate the alarm
without unplugging it.2

She begins by computing:

1. N := a random nonce
2. K := H(“smoke detector with snooze alarm”),
3. M := EK(“report findings to alice@weaseldyne.com”), and
4. O := H(N⊕“smoke detector with snooze alarm”).

She then writes an agent which scans through the database taking hashes of
five word sequences
2 This would be a very useful item for the kitchen; smoke alarm manufacturers take

note.

4



– for five word sequence (x) in the database do
– if H(N ⊕ (x)) = O then execute= DH(x)(M)

The agent can now search through the database for references to “smoke detec-
tor with snooze alarm” without actually carrying any information from which
“smoke detector with snooze alarm” could be derived.

In this example, if the owner of the database is watching all search agents
in an attempt to steal idea, he will only observe a description of Alice’s idea if
he already has a description of the idea. Methods of rendering this scheme less
sensitive to different wordings are discussed in Section 6.

3.2 Example: Intrusion Detection

One of the most problematic aspects of intrusion detection is that wide scale
deployment of a particular method tends to limit its effectiveness. If an attacker
has detailed knowledge of the detections system installed at a particular site,
he is better able to avoid its triggers. As such, it would be better to deploy an
intrusion detection system whose triggers are not easily analyzable. Environmen-
tal key generation could be used to encrypt sections of the intrusion detection’s
executable code until such time as a particular attack is executed.

While in this case the attacker could easily stage a dictionary attack by mim-
icking the LAN’s behavior, such a simulation would require extensive knowledge
of the LAN. Acquisition of that knowledge would likely to trigger the detection
system.

3.3 Example: Network-Based Operation

It is often desirable to have an agent which can only run in certain environments.
The agent may be collecting auditing data on certain types of machines or cer-
tain points in the network. It may need to carry out an electronic commerce
transaction, but only from within the network of a certain vendor.

An interesting, although malicious, application of this sort of construction
would the creation of a directed virus. Such a virus could carry a special set
of special instructions which could only be run in a certain environment. The
novelty of this construction is that examination of the virus without explicit
knowledge of the activation environment would not reveal its “special instruc-
tions”.

We suppose that Alice wishes to write a virus which should carry out the
instructions if it finds itself inside weaseldyne.com so that it would be infeasi-
ble to determine what the special instructions are without knowing it is keyed
for weaseldyne.com. Alice finds the name of a machine on the inside of weasel-
dyne.com’s network. She does so through some combination of examining mailing
list archives, social engineering, and assumptions about naming conventions (e.g.
there is often a theme).

5



We will assume that the name of the machine is pooky.weaseldyne.com. She
computes:

1. K = H(“pooky.weaseldyne.com′′)
2. M = EK(“report findings to alice@competitor.com′′)

She then writes a virus which, when activated, requests local DNS information
and applies H to each entry looking for its key.

In this example, staging a dictionary attack is already quite difficult. Methods
of making it yet more difficult are discussed in section 6.

4 Time Constructions

The time-based constructions allow key generation based on the time. These
constructions rely upon the presence of a minimally trusted third party to pre-
vent a date based dictionary attack. The third party is minimally trusted in the
sense that it does not need to know either of the two parties nor does it need to
know the nature of the the material for which it generates keys. These protocols
have three distinct stages:

1. The programmer-server interaction, where the programmer gets an encryp-
tion key from the server.

2. The programmer-agent interaction, where the programmer gives the agent
the encrypted message, some data required (but not sufficient) to decrypt
the cipher-text, and information as to where to go to get the additional data
required to decrypt the cipher-text.

3. The agent-server interaction, where the agent gets the data needed to con-
struct the decryption key and decrypt the cipher-text.

Note that in several cases the first or last aspects are trivial and can be satisfied
by publications by the sever.

The forward-time constructions permit key generation only after a given time
while the backward-time permit key generation only before it. These construc-
tions can be nested to permit key generation only during a certain time interval.

The main weakness of these constructions is that the server could collude
with an attacker to analyze the agent. This type weakness can easily be abated
using the methods discussed in section 6.

4.1 Forward-Time Hash Function

The first time-based construction uses a one-way function, such as SHA-1 [NIST93]
or RIPEMD-160 [DBP96], as its sole cryptographic primitive. Let S be a secret
belonging to the server.

6



1. The programmer sends the target time, T ∗, and a nonce, R, to the server.
2. The server sets T to the current time and returns to the programmer T and
H(H(S, T ∗),H(R, T )).

3. The programmer sets P = H(R, T ) and K = H(H(S, T ∗),H(R, T )). The
programmer uses K to encrypt the message to the agent, and gives the
agent a copy of P . He then lets the agent loose in the world.

4. The agent continuously requests the current time’s secret from the server.
5. The server returns Si = H(S, Ti). (Alternatively, the server could simply

continuously broadcast Si and the agent could simply watch the broadcast
stream.)

6. The agent tries to use K = H(Si, P ) to decrypt its instructions. It will
succeed precisely when Si = H(S, T ∗) which is when Ti = T ∗.

This construction has several properties worth listing:

– The use of the current time in the construction of P prevents an analyst
from using the server to stage a dictionary attack.

– The form of the daily secret could easily be made hierarchical so that the
secret for one day could be used to compute previous daily secrets.

– The use of a nonce, R, reduces the feasibility of a forward time dictionary
attack against the server in addition to obscuring the request date of a
particular key.

– Should this construction be used maliciously so that the courts order the
server to participate in a particular analysis, the server could use P to com-
pute an individual key without giving away all keys for that day.

4.2 Forward-Time Public Key

The second time-based construction uses public-key encryption, such as RSA
[RSA78] or ElGamal [ElG84]. For each time Ti, the server has a method of
generating a public-key/private-key key pair, (Di, Ei). The server can either
store these key pairs, or regenerate them as required.

1. The programmer sends a target time T ∗ to the server.
2. The server returns the public key, D∗, for that time.
3. The programmer uses D∗ to encrypt the message to the agent. He then lets

the agent loose in the world.
4. The agent continuously requests the current time’s private key from the

server.
5. The server returns Ei. (Again, the server could continuously broadcast Ei).
6. The agent tries to use Ei to decrypt its instructions. It will succeed precisely

when Ei = E∗, which is when Ti = T ∗.

This protocol has the advantage that the programmer need not interact with
the server in Steps (1) and (2). The server could simply post the Di values for

7



values of i stretching several years in the future, and the programmer could
just choose the one he needs. In this application, the server could be put in
a secure location—in orbit on a satellite, for example—and be reasonably safe
from compromise.

4.3 Backward-Time Hash Function

The backward time construction also uses one-way functions as its sole crypto-
graphic primitive. Again S is a secret belonging to the server.

1. The programmer sends the target time T ∗ and a nonce R to the server.
2. The server returns H(S,R, T ∗) if and only if T ∗ is in the future.
3. The programmer sets K to the returned value and gives the agent a copy of
R and T ∗.

4. At time T , the agent sends the target time T ∗ and a nonce R to the server.
It will receive the valid key K in return if and only if T ∗ is later than T .

Backward time constructions in which the target time T ∗ is unknown to the
agent are also possible and are explained in section 6.

5 General Server Constructions

The general server construct uses one-way functions and a symmetric encryption
algorithm. Again S is a secret belonging to the server.

1. The programmer sends the server a program P and the hash of a particular
possible output H(N) of the program P .

2. The server returns ES(P ) and H(S, P,H(N)).
3. The programmer sets K = H(S, P,H(N)) and uses it to encrypt the message

to the agent. The programmer then gives ES(P ) to the agent.
4. The agent gives ES(P ) to the server.
5. The server decrypts the program P = DS(ES(P )), executes it, and sets M

equal to the hash of its output. It then returns H(S, P,M) to the agent.
6. The agent tries to use the returned value as its key. It will succeed precisely

when the output of the run program matches the programmer’s original
expectations.

his generic construction requires a safe execution environment, as that provided
by Java in web browsers, with the additional constraint that the environment
does not contain the secret S.

While each of the previously discussed constructs can be built using this
method, they loose several of the anonymity features, and require explicit agent-
server interaction.

8



6 Further Constructions

These basic constructions can be assembled into higher level constructions.

6.1 Reduced dictionary

One way of making dictionary attacks [Kle90] infeasible is forcing the attacker to
use much too large a dictionary. Let S be a large collection of data and Sl ⊂ S be
a much smaller subset of S determined by the execution environment. Suppose
that we know x1, . . . xn ∈ Sl. Due to the size disparity between S and Sl it is
feasible to search through all n-tuples in Sl such that H(·, . . . , ·) = H(x1, . . . , xn)
while the analogous search in S is not possible.

A concrete example of this is to let S be the complete collection of canonical
DNS names3 of all hosts and Sl be the sub-collection of names from hosts inside
a domain behind a firewall. Searching through all name triples in Sl would be
quite easy while searching through all triples in S would be impossible.

This construction would be useful in the virus example of Section 3.3.

6.2 Thresholding

We note that we can easily create a threshold system using the ideas of secret
sharing. Suppose that S is a set of observations of cardinality n and that we wish
to be able to construct a key K if m of them are present. We let T (m,n) be a
secret sharing scheme with shares s1, . . . , sn for share holders 1, . . . , n. Then for
each xi ∈ S we tell the agent that share holder i has name H(N, xi) and that
his share is generated by the function H(·)⊕H(xi)⊕ si.

6.3 Nesting

These constructions can be nested: one environmental key can decrypt a section
of the agent, which would then yield another encrypted section requiring yet
another environmental key. These nestings can be used to create more complex
environmental constructions:

For example:

– Forward-time + Backward-time = time interval
– Forward-time + Basic = Forward time, but only if a specific event has oc-

curred.

Agents can slough off previous information and thus can only be analyzed at
times of metamorphosis. In other words, after an agent has triggered based on
3 roughly the full name a host including domain information

9



an environmental condition, an attacker could not analyze the agent to deter-
mine what the condition was. Moreover, the attacker could not tell where the
post-transformation agent was a product of the pre-transformation agent. This
properties gives rise to many useful anonymity constructions.

7 Conclusions

As applications that allow mobile code become more prevalent, people will want
to limit what an attacker can learn about themselves. The notion of clueless
agents presented in this paper will have all sorts of applications: blind search
engines (patents and product ideas), Manchurian mobile agents, expiration dates
by backward-time constructs, intrusion detection systems which are difficult to
bypass (they can watch for exploit without revealing nature of the vulnerability
they are guarding), logic bombs, directed viruses (both good and bad), remote
alarms, etc. The notion of a software construction that hides its true nature is a
powerful one, and we expect many other applications to appear as the technology
matures.

References

[ATT92] AT&T, Telephone Security Device 3600–User’s Manual, AT&T, 1992.
[DOW92] W. Diffie, P.C. can Oorschot, and M.J. Weiner, “Authentication and Au-

thenticated Key Exchanges,” Designs, Codes, and Cryptography, v. 2,
1992, pp. 107–125.

[DBP96] H. Dobbertin, A. Bosselaers, and B. Preneel, “RIPEMD-160: A Strength-
ened Version of RIEPMD,” Fast Software Encryption, Third Interna-
tional Workshop, Springer-Verlag, 1996, pp. 71–82.

[ElG84] T. ElGamal, A Public-Key Cryptosystem and a Signature Scheme Based
on Discrete Logarithms, IEEE Transactions on Information Theory, IT-31
(1985) 469-472.

[Kle90] D.V. Klein, “Foiling the Cracker: A Security of, and Implications to,
Password Security,” Proceedings of the USENIX UNIX Security Work-
shop, Aug 1990, pp. 5–14.

[Mye94] E.D. Myers, “STU-III—Multilevel Secure Computer Interface,” Proceed-
ings of the Tenth Annual Computer Security Applications Conference,
IEEE Computer Society Press, 1994, pp. 170–179.

[NIST93] National Institute of Standards and Technology, NIST FIPS PUB 180,
“Secure Hash Standard,” U.S. Department of Commerce, May 1993.

[RSA78] R. Rivest, A. Shamir, and L. Adleman, “A Method for Obtaining Digi-
tal Signatures and Public-Key Cryptosystems,” Communications of the
ACM, v. 21, n. 2, Feb 1978, pp. 120-126.

This article was processed using the LATEX macro package with LLNCS style

10


