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Key Findings

Check Point Research (CPR) is monitoring an ongoing Iranian espionage campaign by
Scarred Manticore, an actor affiliated with the Ministry of Intelligence and Security
(MOIS). 
The attacks rely on LIONTAIL, an advanced passive malware framework installed on
Windows servers. For stealth purposes, LIONTIAL implants utilize direct calls to
Windows HTTP stack driver HTTP.sys to load memory-residents payloads.
As part of mutual efforts with Sygnia‘s Incident Response team, multiple forensics tools
and techniques were leveraged to uncover additional stages of the intrusions and the
LIONTAIL framework.
The current campaign peaked in mid-2023, going under the radar for at least a year.
The campaign targets high-profile organizations in the Middle East with a focus on
government, military, and telecommunications sectors, in addition to IT service
providers, financial organizations and NGOs.
Scarred Manticore has been pursuing high-value targets for years, utilizing a variety
of IIS-based backdoors to attack Windows servers. These include a variety of custom
web shells, custom DLL backdoors, and driver-based implants.
While the main motivation behind Scarred Manticore’s operation is espionage, some of
the tools described in this report have been associated with the MOIS-sponsored
destructive attack against Albanian government infrastructure (referred to as DEV-
0861).

Introduction

Check Point Research, in collaboration with Sygnia’s Incident Response Team, has been
tracking and responding to the activities of Scarred Manticore, an Iranian nation-state threat
actor that primarily targets government and telecommunication sectors in the Middle East.
Scarred Manticore, linked to the prolific Iranian actor OilRig (a.k.a APT34, EUROPIUM,
Hazel Sandstorm), has persistently pursued high-profile organizations, leveraging access to
systematically exfiltrate data using tailor-made tools.

In the latest campaign, the threat actor leveraged the LIONTAIL framework, a sophisticated
set of custom loaders and memory resident shellcode payloads. LIONSTAIL’s implants utilize
undocumented functionalities of the HTTP.sys driver to extract payloads from incoming HTTP

https://research.checkpoint.com/2023/from-albania-to-the-middle-east-the-scarred-manticore-is-listening/
https://www.sygnia.co/
https://www.sygnia.co/
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traffic. Multiple observed variants of LIONTAIL-associated malware suggest Scarred
Manticore generates a tailor-made implant for each compromised server, allowing the
malicious activities to blend into and be undiscernible from legitimate network traffic.

We currently track this activity as Scarred Manticore, an Iranian threat actor that is most
closely aligned with DEV-0861. Although the LIONTAIL framework itself appears to be
unique and bears no clear code overlaps with any known malware family, other tools used in
those attacks overlap with previously reported activities. Most notably, some of those were
eventually linked back to historic OilRig or OilRig-affiliated clusters. However, we do not have
sufficient data to properly attribute the Scarred Manticore to OilRig, even though we do
believe they’re likely related.

The evolution in the tools and capabilities of Scarred Manticore demonstrates the progress
the Iranian actors have undergone over the last few years. The techniques utilized in recent
Scarred Manticore operations are notably more sophisticated compared to previous activities
CPR has tied to Iran.

In this article, we provide a technical analysis of the latest tools and the evolution of Scarred
Manticore’s activity over time. This report details our understanding of Scarred Manticore,
most notably its novel malware framework LIONTAIL, but also provides an overview of other
toolsets we believe are used by the same actor, some of which were publicly exposed in the
past. This includes, but is not limited to, tools used in the intrusion into the Albanian
government infrastructure, web shells observed in high-profile attacks in the Middle East,
and recently reported WINTAPIX driver-based implants.

While we finalized this blog post, a technical analysis of part of this activity was published by
fellow researchers from Cisco Talos. While it overlaps with our findings to some extent, our
report provides additional extended information, in-depth insights, and a broader
retrospective regarding the threat actor behind this operation.

LIONTAIL Framework

LIONTAIL is a malware framework that includes a set of custom shellcode loaders and
memory resident shellcode payloads. One of its components is the LIONTAIL backdoor,
written in C. It is a lightweight but rather sophisticated passive backdoor installed on
Windows servers that enables attackers to execute commands remotely through HTTP
requests. The backdoor sets up listeners for the list of URLs provided in its configuration and
executes payloads from requests sent by attackers to those URLs.

The LIONTAIL backdoor components are the main implants utilized in the latest Scarred
Manticore intrusions. Utilizing access from a publicly facing server, the threat actor chains a
set of passive implants to access internal resources. The internal instances of the LIONTAIL

http://microsoft.com/en-us/security/blog/2022/09/08/microsoft-investigates-iranian-attacks-against-the-albanian-government/
https://blog.talosintelligence.com/introducing-shrouded-snooper/
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backdoors we’ve seen so far either listen on HTTP(s), similar to the internet-facing instances,
or in some cases use named pipes to facilitate remote code execution.

Figure 1 – Overview of the LIONTAIL malware framework.

LIONTAIL Loaders

Installation

We observed 2 methods of backdoor installation on the compromised Windows servers:
standalone executables, and DLLs loaded through search order hijacking by Windows
services or legitimate processes.

When installed as a DLL, the malware exploits the absence of some DLLs on Windows
Server OS distributions: the backdoor is dropped to the system
folder C:\windows\system32 as wlanapi.dll or wlbsctrl.dll. By default, neither of
these exist on Windows Server installations. Depending on the Windows Server version, the
malicious DLL is then loaded either directly by other processes, such as Explorer.exe, or the
threat actors enable specific services, disabled by default, that require those DLLs.

In the case of wlbsctrl.dll, the DLL is loaded at the start of the IKE and AuthIP IPsec
Keying Modules service. For wlanapi.dll, the actors enable Extensible Authentication
Protocol:

sc.exe config Eaphost start=auto

sc.exe start Eaphost

In instances where LIONTAIL is deployed as an executable, a noteworthy characteristic
observed in some is the attempt to disguise the executable as Cyvera Console, a
component of Cortex XDR.
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Configuration

The malware starts by performing a one-byte XOR decryption of a structure containing the
malware configuration, which is represented with the following structure:

QWORD var_0

QWORD var_8

QWORD magic_number

DWORD num_of_end_string

DWORD num_of_listen_urls

STRING end_string

STRING[] listen_urls

The field listen_urls defines particular URL prefixes to which the malware listens for
incoming requests.

All of the samples’ URL lists include the  http://+:80/Temporary_Listen_Addresses/ URL
prefix, a default WCF URL reservation that allows any user to receive messages from this
URL. Other samples include multiple URLs on ports 80, 443, and 444 (on Exchange servers)
mimicking existing services, such as:



https://+:443/autodiscover/autodiscovers/ 



https://+:443/ews/exchanges/ 


https://+:444/ews/ews/

Many LIONTAIL samples contain tailor-made configurations, which add multiple other
custom URLs that match existing web folders on the compromised server. As the URLs for
the existing folders are already taken by the actual IIS service, the generated payloads
contain additional random dictionary words in the path. These ensure the malware
communication blends into legitimate traffic, helping to make it more inconspicuous.

The host element of all prefixes in the configuration consists of a single plus sign (+), a
“strong wildcard” that matches all possible host names. A strong wildcard is useful when an
application needs to serve requests addressed to one or more relative URLs, regardless of
how those requests arrive on the machine or what site (host or IP address) they specify in
their Host headers.

To understand how the malware configures listeners on those prefixes and how the approach
changes with time, we pause for a short introduction to the Windows HTTP stack.

Windows HTTP Stack components

https://learn.microsoft.com/en-us/windows/win32/http/urlprefix-strings
https://learn.microsoft.com/en-us/dotnet/framework/wcf/feature-details/how-to-replace-the-wcf-url-reservation-with-a-restricted-reservation
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A port-sharing mechanism, which allows multiple HTTP services to share the same TCP port
and IP address, was introduced in Windows Server 2003. This mechanism is encapsulated
within HTTP.sys, a kernel-mode driver that assumes the responsibility of processing HTTP
requests, listens to incoming HTTP requests, and directs them to the relevant user-mode
processes or services for further handling.

On top of the driver layer, Windows provides the HTTP Server API, a user-mode component
that provides the interface for interacting with HTTP.sys. In addition, the Internet Information
Services (IIS) under the hood relies on HTTP API to interact with the HTTP.sys driver. In a
similar fashion, the HttpListener class within the .NET framework is a simple wrapper
around the HTTP Server API.

Figure 2 – Schema of HTTP stack components on Windows Servers (source).

The process of receiving and processing requests for specific URL prefixes by an application
(or, in our case, malware) can be outlined as follows:

1. The malware registers one or more URL prefixes with HTTP.sys by any of the means
provided by the Windows operating system.

2. When an HTTP request is received, HTTP.sys identifies the application associated with
the request’s prefix and forwards the request to the malware if it’s responsible for that
prefix.

3. The malware’s request handler then receives the request intercepted by HTTP.sys and
generates a response for it.

C&C Communication

After extracting the configuration, the malware uses the same one-byte XOR to decrypt a
shellcode responsible for establishing the C&C communication channel by listening to the
provided URL prefixes list. While the concept of passive backdoors on web-facing Windows
servers is not new and was observed in the wild hijacking the same Windows
DLL wblsctrl.dll as early as 2019 (by Chinese-linked Operation ShadowHammer), the

https://learn.microsoft.com/en-us/windows/win32/Http/http-api-start-page
https://learn.microsoft.com/en-us/dotnet/api/system.net.httplistener?view=net-8.0
https://pingec.si/blog/articles/HttpListener-port-sharing-with-IIS-or-another-process/
https://cyberweek.ae/materials/2019/D1%20COMMSEC%20-%20Discover%20Invisible%20Fileless%20Webshell%20in%20the%20APT%20Attack%20-%20Tim%20Yeh%20%26%20Dove%20Chiu.pdf
https://securelist.com/operation-shadowhammer/89992/
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LIONTAIL developers elevated their approach. Instead of using the HTTP API, the malware
uses IOCTLs to interact directly with the underlying HTTP.sys driver. This approach is
stealthier as it doesn’t involve IIS or HTTP API, which are usually closely monitored by
security solutions, but is not a straightforward task given that the IOCTLs for HTTP.sys are
undocumented and require additional research efforts by the threat actors.

First, the shellcode registers the URL prefixes with HTTP.sys using the following IOCTLs:

0x128000 – UlCreateServerSessionIoctl – Creates an HTTP/2.0 session.
0x128010 – UlCreateUrlGroupIoctl – Creates a new UrlGroup. UrlGroups are
configuration containers for a set of URLs created under the server session and inherit
its configuration settings.
0x12801d – UlSetUrlGroupIoctl – Associates the UrlGroup with the request queue by
setting HttpServerBindingProperty.
0x128020 – UlAddUrlToUrlGroupIoctl – Adds the array of listen_urls to the newly
created UrlGroup.
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Figure 3 – HTTP.sys IOCTL table.

After registering the URL prefixes, the backdoor initiates a loop responsible for handling the
incoming requests. The loop continues until it gets the request from a URL equal to
the end_string provided in the backdoor’s configuration.

The backdoor receives requests from HTTP.sys using 0x124036 –
 UlReceiveHttpRequestIoctl IOCTL.

Depending on the version of the compromised server, the body of the request is received
using 0x12403B – UlReceiveEntityBodyIoctl or (if higher than 20348) 0x12403A –
 UlReceiveEntityBodyFastIo. It is then base64-decoded and decrypted by XORing the
whole data with the first byte of the data. This is a common method of encryption observed in
multiple malware families, including but not limited to DEV-0861’s web-deployed Reverse
proxy.

https://www.cisa.gov/news-events/cybersecurity-advisories/aa22-264a
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Figure 4 – C&C decryption scheme from the LIONTAIL payload.

The decrypted payload has the following structure:

QWORD shellcode_size

_BYTE[] shellcode

QWORD shellcode_output (should be 0 in the incoming msg)

QWORD shellcode_output_size (should be 0 in the incoming msg)

QWORD MAGIC_NUM (has to be 0x18)

_BYTE[] argument

The malware creates a new thread and runs the shellcode in memory. For some reason, it
uses shellcode_output and shellcode_output_size in the request message as pointers to
the respective data in memory.

To encrypt the response, the malware chooses a random byte, XOR-encodes the data using
it as a key, prepends the key to the result, and then base64-encodes the entire result before
sending it back to the C&C server using the IOCTL 0x12403F – UlSendHttpResponseIoctl.

LIONTAIL web shell

In addition to PE implant, Scarred Manticore uses a web shell-based version of the
LIONTAIL shellcode loader. The web shell is obfuscated in a similar manner to other Scarred
Manticore .NET payloads and web shells.
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Figure 5 – The main function of the LIONTAIL web shell (formatted, with obfuscations preserved).

The web shell gets requests with 2 parameters:

The shellcode to execute.
The argument for the shellcode to use.

Both parameters are encrypted the same way as other communication: XOR with the first
byte followed by base64 encoding.

The structure of shellcodes and of arguments sent to the web shell-based shellcode loader is
identical to those used in the LIONTAIL backdoor, which suggests that the artifacts observed
are part of a bigger framework that allows the dynamic building of loaders and payloads
depending on the actor’s access and needs.

LIONTAIL version using named pipes

During our research, we also found loaders that have a similar internal structure to the
LIONTAIL samples. Instead of listening on URL prefixes, this version gets its payloads from a
named pipe and likely is designated to be installed on internal servers with no access to the
public web. The configuration of the malware is a bit different:

QWORD var_0
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QWORD var_8

QWORD var_10

DWORD var_18

DWORD dwOpenMode

DWORD dwPipeMode

DWORD nMaxInstances

DWORD nOutBufferSize

DWORD nInBufferSize

DWORD nDefaultTimeOut

STRING pipe_name

The main shellcode starts with converting the string security descriptor "D:
(A;;FA;;;WD)” into a valid, functional security descriptor. As the string starts with “D”, it
indicates a DACL (discretionary access control list) entry, which typically has the following
format: entry_type:inheritance_flags(ACE_type; ACE_flags; rights; object_GUID;
inherit_object_GUID; account_SID). In this case, the security descriptor allows (A) File All
Access  (FA) to everyone (WD).

The security descriptor is then used to create a named pipe based on the values provided in
the configuration. In the samples we observed, the name of the pipe used is \\.\pipe\test-
pipe.

It’s noteworthy that, unlike the HTTP version, the malware doesn’t employ any more
advanced techniques for connecting to the named pipe, reading from it, and writing to it.
Instead, it relies on standard kernel32.dll APIs such as CreateNamedPipe,
and ReadFileWriteFile.

The communication of named pipes-based LIONTAIL is identical to the HTTP version, with
the same encryption mechanism and the same structure of the payload which runs as a
shellcode in memory.

LIONTAIL in-memory components

Types of payloads

https://learn.microsoft.com/en-us/windows/win32/api/sddl/nf-sddl-convertstringsecuritydescriptortosecuritydescriptora
https://learn.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-createnamedpipea
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After the LIONTAIL loader decrypts the payload and its argument received from the
attackers’ C&C server, it starts with parsing the argument. It is a structure that describes a
type of payload for the shellcode to execute and it is built differently depending on the type of
payload:

TYPE = 1 – Execute another shellcode:

DWORD type // 1

QWORD shellcode_size

_BYTE[] Shellcode

TYPE = 2 – Execute the specified API function:

DWORD type // 2

CHAR[] library_name

CHAR[] api_name

The argument for the API execution has the following structure:

DWORD need_to_be_freed_flag

QWORD argument_size

_BYTE[] argument

Next stages

To make things more complicated, Scarred Manticore wraps the final payload in nested
shellcodes. For example, one of the shellcodes received from the attackers runs another
almost identical shellcode, which in turn runs a final shellcode responsible for machine
fingerprinting.

The data gathered by this payload is collected by running specific Windows APIs or
enumerating the registry keys, and includes these components:

Computer Name (using GetComputerNameW API) and Domain Name
(using GetEnvironmentVariableA API)
Flag if the system is 64-bit (using GetNativeSystemInfo API, the check is done with
wProcessorArchitecture == 9)
Number of processors (dwNumberOfProcessors using GetNativeSystemInfo API)
Physical RAM (GetPhysicallyInstalledSystemMemory)
Data from CurrentVersion registry key (Type, Name length, Name, Data length, Data)
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Data fromSecureBoot\State registry key (the same data)
Data from System\Bios registry key (the same data)

The final structure, which contains all the gathered information, also has a place for error
codes for the threat actor to use to figure out why some of the APIs they use don’t work as
expected:

DWORD last_error (GetComputerNameW)

DWORD last_error (GetPhysicallyInstalledSystemMemory)

DWORD last_error (GetEnvironmentVariableA)

DWORD last_error (NtOpenKey CurrentVersion)

DWORD last_error (NtQueryKey CurrentVersion)

DWORD num_of_values (CurrentVersion)

DWORD last_error (NtOpenKey SecureBoot\State)

DWORD last_error (NtQueryKey SecureBoot\State)

DWORD num_of_values (SecureBoot\State)

DWORD last_error (NtOpenKey System\Bios)

DWORD last_error (NtQueryKey System\Bios)

DWORD num_of_values (System\Bios)

QWORD num_of_proccesors

QWORD total_RAM

QWORD tick_count

QWORD is_64_bit

_CHAR[0X10] computer_name

_CHAR[0X10] domain_name

_BYTE[] CurrentVersion_data

_BYTE[] SecureBootState_data

_BYTE[] SystemBios_data
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Additional Tools

In addition to using LIONTAIL, Scarred Manticore was observed leveraging other custom
components.

LIONHEAD web forwarder

On some of the compromised exchange servers, the actors deployed LIONHEAD, a tiny web
forwarder. LIONHEAD is also installed as a service using the same phantom DLL hijacking
technique as LIONTAIL and utilizes similar mechanisms to forward the traffic directly to
Exchange Web Services (EWS) endpoints.

LIONHEAD’s configuration is different from LIONTAIL:

DWORD timeout 0x493E0

DWORD forward_port 444

STRING end_string '<redacted>'

STRING forward_server 'localhost'

STRING forward_path '/ews/exchange.asmx'

STRING[] listen_urls 'https://+:443/<redacted>/'

The backdoor registers the listen_urls prefixes in the same way as LIONTAIL and listens
for requests. For each request, the backdoor copies the content type, cookie, and body and
forwards it to the <forward_server>/<forward_path>:<forward port> specified in the
configuration. Next, the backdoor gets a response from forward_server and sends it back to
the URL that received the original request.

This forwarder might be used to bypass the restrictions on external connections to EWS,
hide the real consumer of EWS data being external, and consequently conceal data
exfiltration.

Web shells

Scarred Manticore deploys multiple web shells, including those
previously attributed indirectly to OilRig. Some of these web shells stand out due to their
obfuscations, naming conventions and artifacts. The web shells retain class and method
obfuscation and a similar string encryption algorithm (XOR with one byte, the key is derived
from the first byte or from the first 2 bytes) to many other web shells and .NET-based tools
used by Scarred Manticore in their attacks over the past few years.

https://www.secureworks.com/blog/ongoing-campaign-leveraging-exchange-vulnerability-potentially-linked-to-iran
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One of those shells is a heavily obfuscated and slightly modified version of an open-source
XML/XSL transform web shell, Xsl Exec Shell. This web shell also contains two obfuscated
functions that return the string “~/1.aspx”. These functions are never called and likely are
remnants from other versions, as we observed them in tools used previously by Scarred
Manticore, such as FOXSHELL, which is discussed later:

Figure 6 – Unused strings remained from the FOXSHELL web shell versions.

Targeting

Based on our visibility into the latest wave of attacks that utilize LIONTAIL, the observed
victims are located across the Middle East region, including Saudi Arabia, the United Arab
Emirates, Jordan, Kuwait, Oman, Iraq, and Israel. The majority of the impacted entities
belong to government, telecommunications, military, and financial sectors, as well as IT
services providers. However, we also observed the infection on the Exchange servers
belonging to a regional affiliate of a global non-profit humanitarian network.

The geographic region and the targeted profile are aligned with Iranian interests and in line
with the typical victim profile that MOIS-affiliated clusters usually target in espionage
operations.

https://evi1cg.me/archives/Xsl_Exec_Webshell.html


15/31

Figure 7 – Targeted countries.

Previously, DEV-0861, a cluster we believed aligns with Scarred Manticore, was
publicly exposed for the initial access to and data exfiltration from the Albanian government
networks, as well as email exfiltration from multiple organizations in the Middle Eastern
countries such as Kuwait, Saudi Arabia, Turkey, UAE, and Jordan.

Attribution and Historical Activity

Since at least 2019, Scarred Manticore deployed unique tools on compromised Internet-
facing Windows servers in the Middle East region. During these years, their toolset went
through significant development. It began as open-source-based web-deployed proxies and

https://www.microsoft.com/en-us/security/blog/2022/09/08/microsoft-investigates-iranian-attacks-against-the-albanian-government/


16/31

over time evolved to become a diverse and powerful toolset that utilizes both custom-written
and open-source components.

Figure 8 – Overview of code and capabilities evolution of multiple malware versions used by Scarred
Manticore.

Tunna-based web shell

One of the earliest samples related to the threat actor’s activity is based on a web shell
from Tunna, an open-source tool designed to tunnel any TCP communication over HTTP.
The Tunna web shell allows to connect from the outside to any service on the remote host,
including those that are blocked on the firewall, as all the external communication to the web
shell is done via HTTP. The IP and the port of the remote host are sent to the web shell in
the configuration stage, and in many cases, Tunna is mostly used to proxy RDP connections.

The web shell used by the threat actor has the internal version Tunna v1.1g (only version
1.1a is available on Github). The most significant change from the open-source version is the
encryption of requests and responses by XORing the data with the pre-defined
string szEncryptionKey and appending the constant string K_SUFFIX at the end:

https://github.com/SECFORCE/Tunna/tree/master
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Figure 9 – Encryption function in “Tunna 1.1g” proxy used by the threat actors.

Figure 10 – Decryption and encryption of data by Tunna proxy.

FOXSHELL: XORO version

Over time, the code was refactored and lost its resemblance to Tunna. We track this and all
further versions as FOXSHELL.
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The biggest changes resulted from organizing multiple entities into classes using an
objective-oriented approach. The following class structure persists in most of the FOXSHELL
versions:

Figure 11 – Classes within FOXSHELL.

All the functionality responsible for encrypting the traffic moved to a
separate EncryptionModule class. This class loads a .NET DLL embedded in a base64-
encoded string inside the body of FOXSHELL and invokes
its encrypt and decrypt methods:
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Figure 12 – Base64-encoded EncryptionDll inside the web shell.

Figure 13 – EncryptionModule class responsible for the encrypt and decrypt method invocation.

The embedded encryption module’s name is XORO.dll, and its
class Encryption.XORO implements decrypt and encrypt methods the same way as the
Tunna-based web shell, using the same hardcoded values:
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Figure 14 – Encryption constants and decryption function inside XORO.dll.

All requests to the web shell are also encapsulated within a class called Package, which
handles different PackageTypes: Data, Config, OK, Dispose, or Error. The PackageType is
defined by the first byte of the package, and depending on the type of Package, the web
shell parses the package and applies the configuration (opens a new socket to the remote
machine specified in the configuration and applies a new EncryptionDll if provided), or
disposes of the existing socket, or proxies the connection if the package is type Data:
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Figure 15 – Package handling in FOXSHELL.

FOXSHELL: Bsae64 version (not a typo)

This version of the web shell is still unobfuscated, and its internal version is specified in the
code:

const string Version = "1.5"

The web shell also contains the default EncryptionDll embedded inside. The module’s name
is Base64.dll, and the encryption class, which is misspelled as Bsae64, exposes the encrypt
and decrypt methods. However, both are just simple base64 encoding:
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Figure 16 – Encrypt and decrypt methods in Base64.dll.

Although this simple encoding could be done in the code of the web shell itself, the existence
of other embedded DLLs, such as XORO.dll (described previously), and the ability to provide
yet another EncryptionDll on the configuration stage, implies that the attackers prefer to
control which specific type of encryption they want to use by default in certain environments.

Other changes in this version are the renaming of the PackageType Config to RDPconfig,
and ConfigPackage to RDPConfigPackage, indicating the actors are focused on proxying
RDP connections. The code of these classes remains the same:

Figure 17 – RDP Configuration class.
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Finally, another condition in the code handles the case of the web shell receiving a non-
empty parameter WV-RESET, which calls a function to shut down the proxy socket and sends
an OK response back to the attackers:

Figure 18 – “Close proxy” WV-RESET parameter.

Web shell within a web shell: compiled FOXSHELL

The versions that were described above, targeted entities in Middle Eastern countries, such
as Saudi Arabia, Qatar, and the United Arab Emirates. This version, in addition to being
leveraged against Middle Eastern governmental entities, was part of the attack against the
Albanian government in May 2021. Through the exploitation of an Internet-facing Microsoft
SharePoint server, the actors deployed ClientBin.aspx on the compromised server to proxy
external connections and thus facilitate lateral movement throughout the victim’s
environment.

The details of the samples may vary but in all of them, the FOXHELL is compiled as DLL and
embedded inside the base web shell in base64. The compiled DLL is loaded
with System.Reflection.Assembly.Load, and then the ProcessRequest method from it is
invoked. The DLL is written in .NET and has the name pattern App_Web_<random>.dll,
which indicates an ASP.NET dynamically compiled DLL.

Figure 19 – A web shell loading App_Web_*.dll.

The App_Web* DLL is affected by the class and method obfuscation, and all the strings are
encrypted with a combination of Base64, XOR with the first byte, and AES:

https://www.cisa.gov/news-events/cybersecurity-advisories/aa22-264a
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Figure 20 – The inchpublic function, responsible for string encryption, showcases obfuscations of methods
and classes.

When the web shell is compiled into DLL, it contains the initialization stub, which ensures
that the web shell listens on the correct URI. In this case, the initialization happens in the
following piece of code:

Figure 21 – Initialization stub in the web shell App_Web_*.dll.

Or, after deobfuscation:

public concertthis_medal() {

base.AppRelativeVirtualPath = "~/1.aspx"
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if (!concertthis_medal.__initialized) {

concertthis_medal.__fileDependencies = base.GetWrappedFileDependencies(new
string{"~/1.aspx"});

concertthis_medal.__initialized = true; }

This initialization sets the FOXSHELL to listen to the requests on the relative path ~/1.aspx,
which we observed as an unused artifact in other web shells related to attacks involving
LIONTAIL.

Internally, the DLL has the same “1.5” version of FOXSHELL, which includes the WV-
RESET parameter to stop the proxy and the same default Bsae64 Encryption DLL as in
previous versions.

Standalone backdoor based on IIS ServerManager and HTTPListener

Since mid-2020, in addition to the FOXSHELL as a means to proxy the traffic, we also
observed a rather sophisticated standalone passive backdoor, written in .NET and meant to
be deployed on IIS servers. It is obfuscated with similar techniques as FOXSHELL and
masquerades as System.Drawing.Design.dll. The SDD backdoor was
previously analyzed by a Saudi researcher but was never attributed to a specific threat actor
or campaign.

C&C Communication

The SSD backdoor sets up C&C communication through an HTTP listener on the infected
machine. It is achieved using two classes:

ServerManager – A part of the System.Web.Administration namespace in .NET used
for managing and configuring Internet Information Services (IIS) on a Windows server,
such as get configuration, create, modify, or delete IIS sites, applications, and
application pools.
HTTPListener – A class in the .NET Framework used for creating custom HTTP
servers, independent of IIS and based on HTTP API.

ServerManager is used to extract the sites hosted by the IIS server and build the HashSet of
URL prefixes to listen on:

https://darksys0x.net/Sdd-backdoor/
https://learn.microsoft.com/en-us/dotnet/api/microsoft.web.administration.servermanager?view=iis-dotnet
https://learn.microsoft.com/en-us/dotnet/api/system.net.httplistener?view=net-7.0
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Figure 22 – Obfuscated code of angleoppose_river function that builds HashSet of URL prefixes

based on sites and bindings configured on the IIS server (Illdefy array provides the relative URls).

In this specific case, the only relative URI configured in the malware sample is
Temporary_Listen_Addresses. The malware then uses the HttpListener class to start
listening on the specified URL prefixes:

Figure 23 – The HttpListener start code.

C&C command execution

The backdoor has several capabilities: execute commands using cmd.exe, upload and
download files, execute processes with specified arguments, and run additional .NET
assemblies.
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Figure 24 – Request handler of the SDD backdoor.

First, if the POST request body contains data, the malware parses it and handles the
message as one of the 4 commands it supports. Otherwise, if the request contains a
parameter Vet, the malware simply decodes its value from base64 and executes it with cmd
/c. If none of these is true, then the malware handles the heartbeat mechanism: if the
request URL contains the string wOxhuoSBgpGcnLQZxipa in lowercase, then the malware
sends back UsEPTIkCRUwarKZfRnyjcG13DFA along with a 200 OK response.

The data from the POST request is encrypted using Base64 and simple XOR-based
encryption:

Figure 25 – Command decryption algorithm.

After decrypting the data of the message, the malware parses it according to the following
order:

DWORD command_type

DWORD command_name_length

STRING command_name



28/31

STRING data

Figure 26 – Switch that handles possible SDD backdoor command types.

The possible commands, as named by the threat actors, include:

“Command” – Executes a process with a specified argument. In this case, the data is
parsed to extract the process name and its argument.
“Upload” – Uploads a file to the specified path in the infected system.
“Download” – Sends a specified file to the threat actors.
“Rundll” – Loads assembly and runs it with specified parameter (if exists).

The response data is built the same way as the request (returns command type, command
name, and output) and then encrypted with the same XOR-based algorithm as the request.

WINTAPIX driver

Recently, Fortinet revealed a wave of attacks against Middle Eastern targets (mostly Saudi
Arabia, but also Jordan, Qatar, and the United Arab Emirates) that involve kernel mode
drivers that the researchers named WINTAPIX. Although the exact infection chain to install
the drivers is unknown, they target only IIS servers as they use the IIS ServerManager
object. The high-level execution flow is the following:

1. WINTAPIX driver is loaded in the kernel.
2. WINTAPIX driver enumerates user-mode processes to find a suitable process with

local system privileges.
3. WINTAPIX driver injects an embedded shellcode into a previously found process. The

shellcode is generated using the open-source Donut project, which allows the creation
of a position-independent shellcode capable of loading and executing .NET assemblies
from memory.

4. The injected shellcode loads and executes an encrypted .NET payload.

https://www.fortinet.com/blog/threat-research/wintapix-kernal-driver-middle-east-countries
https://github.com/TheWover/donut
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The final payload is obfuscated with a commercial obfuscator in addition to already familiar
class, method, and string obfuscations, and it combines the functionality of the SDD
backdoor and FOXSHELL proxy. To achieve both, it listens on two sets of URL prefixes,
using ServerManager and HTTPListener similarly to the SSD backdoor.

The FOXSHELL version used within the driver payload is set to 1.7. The main enhancement
introduced in this version is the Event Log bypass using a known technique of suspending
EventLog Service threads. The default EncryptionDll hardcoded in the driver is the same
Bsae64.dll, and the core proxy structure remains largely unaltered when compared to
FOXSHELL version 1.5.

Figure 27 – Version hardcoded in the .NET payload.

Figure 28 – FOXSHELL 1.7 class structure.

As an extensive analysis of the WINTAPIX driver and its version SRVNET2 was already
provided, here we only highlight the main overlaps between those and other discussed tools
that strengthen their affiliation:

The same code base as the SDD backdoor, including the heartbeat based on the same
string values wOxhuoSBgpGcnLQZxipa and UsEPTIkCRUwarKZfRnyjcG13DFA.
The same supported backdoor command types and encryption with the same key.
The same codebase as FOXSHELL, structure, and functionality.
The same obfuscation and encryption methods.

Outlook

LIONTAIL framework components share similar obfuscation and string artifacts with
FOXSHELL, SDD backdoor, and WINTAPIX drivers. Currently, we are not aware of any other
threat actors utilizing these tools, and we attribute them all to Scarred Manticore based on
multiple code overlaps and shared victimology.

https://github.com/hack2fun/EventLogBypass
https://darksys0x.net/Analysis-and-Reversing-of-srvnet2sys/
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Conclusion

For the last few years, Scarred Manticore has been observed carrying out multiple stealthy
operations in Middle Eastern countries, including gaining access to telecommunications and
government organizations in the region, and maintaining and leveraging this access for
months to systematically exfiltrate data from the victims’ systems. Examining the history of
their activities, it becomes evident how far the threat actor has come in improving their
attacks and enhancing their approach which relies on passive implants.

While LIONTAIL represents a logical progression in the evolution of FOXSHELL and still
bears some distinctive characteristics that allow us to attribute attacks involving LIONTAIL to
Scarred Manticore, it stands out from other observed variants. The LIONTAIL framework
does not use common, usually monitored methods for implementing listeners: it no longer
depends on Internet Information Services (IIS), its modules, or any other options and
libraries provided by the .NET framework to manage IIS programmatically. Instead, it utilizes
the lowest level of Windows HTTP Stack by interacting directly with the HTTP.sys driver. In
addition, it apparently allows the threat actors to customize the implants, their configuration
parameters, and loaders’ file delivery type. All those have enhanced the stealth ability of the
implants, enabling them to evade detection for an extended period.

We expect that Scarred Manticore operations will persist and may spread into other regions
as per Iranian long-term interests. While most of the recent activity of Scarred Manticore is
primarily focused on maintaining covert access and data extraction, the troubling example of
the attack on the Albanian government networks serves as a reminder that nation-state
actors may collaborate and share access with their counterparts in intelligence agencies.

Check Point Customers Remain Protected

Check Point Customers remain protected against attacks detailed in this report, while using
IPS, Check Point Harmony Endpoint and Threat Emulation.

IPS:

Backdoor.WIN32.Liontail.A/B

Threat Emulation:

APT.Wins.Liontail.C/D

IOCs

https://www.checkpoint.com/quantum/intrusion-prevention-system-ips/
https://www.checkpoint.com/harmony/advanced-endpoint-protection/
https://www.checkpoint.com/infinity/zero-day-protection/
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