Analyzing Ramnit used in Seamless campaign

nao-sec.org/2018/01/analyzing-ramnit-used-in-seamless.html

2018-01-01

First

Seamless campaign which is a Drive-by Download attack campaign uses Ramnit banking trojan. Many articles about Seamless campaign are published. For example, <u>Cisco Umbrella</u>, <u>Malware-Traffic-Analysis</u> and <u>traffic.moe</u>. Seamless has been using Ramnit since it began to

be observed. Once run, Ramnit injects code into the web page to steal information such as credit cards. Ramnit is a previously reported banking trojan, but since I didn't know much about it, so I investigated about it.

Seamless Campaign Traffic

First, about Seamless campaign. Seamless campaign consists of the following traffic.

z	Prot	Re	Host	URL	Body	Comments
42	HTTP	200	5.63.154.8	/trus/	1,426	Seamless Pre-Gate
8.1	HTTP	200	cdnjs.cloudflare.com	/ajax/lbs/jstimezonedetect/1.0	12,076	jstimezonedetect
44	HTTP	200	5.63.154.8	/trus/	1,426	Get HTTP Response Header
35	HTTP	200	5.63.154.8	/trus/	171	Redirector (POST)
\$6	HTTP	200	conkey-teapected.c	/voluum/407f56f4-lb01-4443-bc	632	Redirector
427	HTTP	200	redrect.conkey-tea	/redrect?target=BASE64aHR0c	346	Redirector
0	HTTP	200	178.21.10.68	/444.php	689	Seamless Gate
09	HTTP	200	5.23.48.146	/7MzQzHDYv&o3YyFKMyAc3Rv	49,697	RIG_EK (Landing Page)
2 10	HTTP	200	5.23.48.146	/?MzHxMTExBarvWxEPGvshruc	13,948	RIG_EK (Flash Exploit)

When reaching Seamless's Pre-Gate from the ad network, Pre-Gate gets the user's time zone information and sends it to the server. If the user belongs to the target time zone, Pre-Gate redirects the user to Gate via several redirectors. The user reads the landing page of the RIG Exploit Kit at Gate, which attacks and sends Ramnit.

Seamless is sensitive to the user's geolocation. Pre-Gate exists for each target country. For example, Pre-Gate for USA redirect to Gate for USA and Ramnit for USA is sent.

Ramnit Traffic

Ramnit uses the original protocol when communicating with C2. Following this protocol, I try to extract the configs and modules from the traffic of Ramnit and C2.

This protocol uses port 443. But, not https. A simple mechanism is on tcp. Packet consists of multiple commands and data. The structure is as follows.

magic number is a fixed value. Packets start with this bytes. length is the length of command and data. In other words, strlen(command + data). command is 1 byte. There are various kinds of this.

Data has three structures.

The encryption key of RC4 seems to be stable. In my environment `fenquyidh` is the key.

Let's look at the data using actual traffic. If you have Ramnit traffic, use it. If you do not have it, look for Ramnit and move it, or look for pcap etc. For example, if you look at the #Ramnit tag on Twitter, you will find many Tweets. You will surely get Ramnit or its traffic.

Ramnit is banking trojan. It depends on the target country/region. For example, Ramnit used in attack campaign targeting Japan doesn't work with IP addresses of countries other than Japan. The configs and modules that Ramnit acquires from C2 also change. This time, let's see the traffic of Ramnit for Japan. If you are not able to get the traffic of Ramnit for Japan, please refer to this link. It seems that someone kindly released pcap ;)

https://gist.github.com/anonymous/2d7eef0c0ffba19338afd74823d7a8c9

Let's open pcap and look at the first packet.

When parsing this according to the protocol, it becomes as follows.

This data is encoded with RC4. So I decode it. RC 4 is a simple algorithm, write the code.

The results are as follows. Ramnit is sending two MD5 values to C2. Registration is done to bot by this.

string(32) "d5ad437b032fd239616c1d0d97a6b6eb" string(32) "e4b7a6323fab5960363d771a124b6079"

This is what automates these processes.

https://github.com/nao-sec/ramnit_traffic_parser

This script uses tshark. If not installed, please install and set environment variables. Now, let's run the script.

Files are created in the output directory. Let's look at `064_21.bin`.

This file says "Antivirus Trusted Module v2.0 (AVG, Avast, Nod32, Norton, Bitdefender)". You can see that there is MZ header below 0x120 and it is a PE file. Cutting out 0x120 or later result in the following.

It is unpacked because packed by UPX.

Looking at this DLL with IDA, you can see that it is a program that interferes with Anti-Virus software.

Several DLL modules (067_21.bin, 070_21.bin, 073_21.bin) are downloaded like this.

Next, let's see 106_15.bin. This file seems to be zip. Looking inside it was IE's cookies. There was a DLL module that zipped the cookie, so it might be related.

Finally, look at 139_13.bin. This is the config of the injecting code for the web page.

Looking at this configuration, URLs of many credit card companies and related companies exist. It was localized for Japan.

Ramnit Modules

I analyzed the modules that Ramnit downloads. All modules had data added at the beginning of the PE format.

00000000:	64f3	81c5	4176	5472	7573	7400	0000	0000	dAvTrust
00000010:	0000	0000	0000	0000	416e	7469	7669	7275	Antiviru
00000020:	7320	5472	7573	7465	6420	4d6f	6475	6c65	s Trusted Module
00000030:					5647		4176	6173	v2.0 (AVG, Avas
00000040:	742c	204e	6f64	3332	2c20	4e6f	7274	6f6e	t, Nod32, Norton
00000050:	2c20	4269	7464	6566	656e	6465	7229	0000	, Bitdefender)
00000060:	0000	0000	0000	0000	0000	0000	0000	0000	
00000070:	0000	0000	0000	0000	0000	0000	0000	0000	
00000080:	0000	0000	0000	0000	0000	0000	0000	0000	
00000090:									
000000a0:	0000	0000	0000	0000	0000	0000	0000	0000	
000000b0:	0000	0000	0000	0000	0000	0000	0000	0000	
000000c0:	0000	0000	0000	0000	0000	0000	0000	0000	
:000000d0	0000	0000	0000	0000	0000	0000	0000	0000	
000000e0:	0000	0000	0000	0000	0000	0000	0000	0000	
000000f0:	0000				0000		0000	0000	
00000100:					0000		0000		
<u>0</u> 0000110:									XX'St.}.
00000120:									MZ
00000130:									@
00000140:					0000			0000	
00000150:									
00000160:					21b8				IL.!Th
00000170:									is program canno
00000180:					2069			5320	t be run in DOS
00000190:									mode\$
000001a0:					42b9			7781	B.w.B.w.B.w.
000001b0:					ссаб			7781	e.@.wd.6.w.
000001c0:					0000		0000	0000	RichB.w
000001d0:	0000	00000	0000	0000	5045	0000	4c01	0300	PEL

Also, its PE file is a DLL, packed with UPX.

🗾 🚄 🖂									
; BOOLsto public D11E D11EntryPoin	ntryPoi	nt	yPoint (HINSTA	NCE him	stDLL,	DWORD	fdwRea	son, LPVOID lpReserved)
var_A0= byte hinstDLL= d	- eptr -	0A0h							
fdwReason= lpReserved=	iword p	tr 8	Ch						
	ptr [1000D5		wReason], 1					
000002c0:	0000	0000	0000	0000	0000	0000	0000	0055	U
000002d0:	5058	3000	0000	0000	9000	0000	1000	0000	PX0
000002e0:	0000	0000	0400	0000	0000	0000	0000	0000	
00002f0:	0000	0080	0000	e055	5058	3100	0000	0000	UPX1
00000300:	4000	0000	a000	0000	3600	0000	0400	0000	@6
0000310:	0000	0000	0000	0000	0000	0040	0000	OBEE	u
00000010.	0000	0000	0000	0000	0000	00-0	0000	6022	

At the beginning of the module there is a comment like a description of the role. Most of them are similar to the information already analyzed by analysts.

- <u>https://www.cert.pl/en/news/single/ramnit-in-depth-analysis/</u>
- <u>http://www.vkremez.com/2017/08/8-10-2017-rig-exploit-kit-leads-to.html</u>
- <u>https://www.s21sec.com/en/blog/2017/07/ramnit-and-its-pony-module/</u>

For Japan

[module 1]

- AvTrust
- Antivirus Trusted Module v2.0 (AVG, Avast, Nod32, Norton, Bitdefender)

Add to antivirus software exception list

[module 2]

- CookieGrabber
- Cookie Grabber v0.2 (no mask)

Compress and send cookies of browsers (firefox, chorome, opera, IE) to zip.

[module 3]

- Hooker
- IE & Chrome & FF injector

[module 4] Browser communication hook

- VNC IFSB
- VNC IFSB x64-x86

I think it is similar to this code. <u>https://github.com/gbrindisi/malware/blob/master/windows/gozi-isfb/AcDII/activdII.c</u>

[module 5]

- FFCH
- FF&Chrome reinstall x64-x86 [silent]

For USA

module 1~4 is the same. module5 had the following functions instead.

- FtpGrabber2
- Ftp Grabber v2.0

And In US IP, AZORult has been downloaded.

https://www.hybrid-

analysis.com/sample/37b66f9117a2140fa11badad967c09142860d04af9a3564bfe58527d7d7 e9270

IOCs

https://github.com/nao-sec/ioc/blob/master/nao_sec/5a34bc94-1eb8-4213-9ab8-34dbc0a8010a.json

Finally

The Ramnit has not changed very much for a long time. It was consistent with Symantec's contents published in 2014.

https://www.symantec.com/content/dam/symantec/docs/security-center/white-papers/w32ramnit-analysis-15-en.pdf

The configuration changes depending on the IP address, but the same module was downloaded.

Ramnit traffic is interesting ;)