claroty. COM /team82/research/an-oil-and-gas-weak-spot-flow-computers

An Oil and Gas Weak Spot: Flow Computers

Executive Summary

¢ Flow computers calculate oil and gas volume and flow rates; these measurements are critical not only to
process safety, but are also used as inputs in other areas, including billing.

 Team82 is disclosing details on a path-traversal vulnerability in ABB TotalFlow flow computers and controllers.

An attacker could exploit a vulnerable system to inject and execute arbitrary code.

e CVE-2022-0902 (CVSS v3: 8.1) was addressed in a firmware update.

Affected products include:
o ABB’s RMC-100 (Standard)
o RMC-100-LITE
o XIO
o XFCG5
o XRCG5
o uFLOG5
o UDC products.

* ABB'’s security advisory can be found here.

Introduction

Flow computers are specialized computers that calculate volume and flow rates for oil and gas that are critical to
electric power manufacturing and distribution. These machines take liquid or gas measurements that are not only vital
to process safety, but are also used as inputs by other processes—alarms, logs, configurations—and therefore
require accuracy to ensure reliability. These capabilities are described in the American Gas Association’s AGA Report
No. 9.

One other important aspect to the role of flow computers within a utility is billing. The most noteworthy and related
security incident was the ransomware attack against Colonial Pipeline, which impacted enterprise systems, and
forced the company to shut down production because it could not bill customers. Disrupting the operation of flow
computers is a subtle attack vector that could similarly impact not only IT, but also OT systems; this led us to research
the security of these machines.

Team82 focused on ABB flow computers because of their use within many large oil and gas utilities worldwide. We
looked for vulnerabilities that could give an attacker the ability to influence measurements by remotely running code
of their choice on the device.

1/12

https://claroty.com/team82/research/an-oil-and-gas-weak-spot-flow-computers
https://claroty.com/team82/disclosure-dashboard/cve-2022-0902
https://library.e.abb.com/public/b17396142a3d4d14ae29e351ccc974ec/Cyber%20Security%20Advisory%20CVE-2022-0902%20-%20Path%20Traversal%20Vulnerability%20in%20Totalflow%20TCP%20protocol.pdf
https://www.techstreet.com/aga/standards/aga-xq2105?gateway_code=aga&product_id=2244306
https://claroty.com/blog/lessons-from-the-colonial-pipeline-attack

As a result, Team82 found a high-severity path-traversal vulnerability (CVE-2022-0902) in ABB’s TotalFlow Flow
Computers and Remote Controllers. Attackers can exploit this flaw to gain root access on an ABB flow computer,
read and write files, and remotely execute code.

ABB has made a firmware update available that resolves the vulnerability in a number of product versions; it also

recommends network segmentation as a mitigation. More information, including affected product versions, is found in
ABB’s advisory.

How Flow Computers Work

Flow measurement computations, especially gas flow, demand a substantial amount of processing power and thus
are often calculated by a low-power CPU rather than a microcontroller.

12.92

FIMBtu/hr

Examples of different flow computers.

2/12

https://library.e.abb.com/public/b17396142a3d4d14ae29e351ccc974ec/Cyber%20Security%20Advisory%20CVE-2022-0902%20-%20Path%20Traversal%20Vulnerability%20in%20Totalflow%20TCP%20protocol.pdf

Flow meters read raw data from attached sensors that measure the volume of a substance in a number of ways,
depending on what’s being measured (gas or a liquid). Different examples of flow meters include: electromagnetic,
vortex, differential pressure, thermal, coriolis, and others.

Electromagnetic

Examples of different types of flow meters (Source: ABB)

The following diagram describes how a flow computer usually measures gas flow:

3/12

Flow signal to
Flow indicator or
Flow Controller etc.

Flow
Computer

Absolute Differential
Pressure Pressure
Transmitter Transmitter

Absolute
Temperature
Transmitter

castiow PP

Three types of sensors are used to calculate gas flow using a differential pressure technique: absolute pressure
transmitters, differential pressure transmitters, and absolute temperature transmitters. Raw data is sent to the flow
computer, which measures gas flow.

Researching ABB’s yFLO G5 Flow Computer

The target of our research was ABB’s pFLO G5 flow computers. This device can receive raw sensor data from other
flow meters, perform flow calculations (following the AGA and ISO standards) and show/propagate the output.

WMFLOGS in its enclosure. (Source: ABB)

4/12

https://library.e.abb.com/public/c2799eebc2a9475583abf752731c0f09/DS_2102800-EN_C.pdf
https://www.aga.org/research/reports/orifice-metering-of-natural-gas-and-other-related-hydrocarbon-fluids/
https://www.iso.org/

The pFLO G5 is a single board computer with 10 ports (Ethernet, USB ,etc.), CPU, and other peripherals. The CPU is
an ARMv8 processor, which is a 32-bit architecture. The device runs Linux as an operating system, which was good
news for us, because this increased our chances to emulate the device in the lab.

From a security perspective, the uyFLO G5 features three main mechanisms:

1. Security switch: A physical switch attached to the board that will enable/disable the use of the security
passcode.

2. Security passcode: Two four-digit passcodes; one for reading data, and another authorizing writing of data.

3. RBAC: Role-based access control which assigns roles and permission to read and write specific attributes; this
option is implemented only on the client side.

Client Application

The flow computer can be remotely configured with a designated configuration program, below.

il = o) by

B Wl @

[f, PCCU32 - [Entry] [r=lE] .

5] Operate View Window Help -7 =

= TOTALFLOW
=- Communications

Current |Log Period Data I Diaily I Events | Chart |

Totalflow/TCP
- Totalflow/USB
Totalflo - /COMO:

Battery 12.13VDC

. TF Remote - COML: TOTALFLOW Charger 12.12VDC

7- 170 Interface 2104492002
Measurement

- Setup Volume Flow Rate 0 MCFiDay

Si”;i':'éutputs Today's Volume 0 MCF Energy Rate 0 MMBTU/Day

RS and Mo Flow Yesterday's Volume 0 MCF Today's Energy 0 MMBTU

- Adv Setup Accumulated Volume 0 MCF Yesterday's Energy 0 MMBTU
- Display Last Calc Period Volume 0 SCF

Diff. Pressure 0 InH20
Static Pressure 0 PSIA

[~] Moriitor Close Help ZHelp & |

Ready #Polls: 14 #Ermors: 0 Connected to TOTALFLOW Login:

Interface of ABB’s PCCU Client showing measurement data.

The interesting thing to note is that configuration is done via a proprietary protocol designed by the ABB called
TotalFlow. This protocol can be used on top of a serial or Ethernet (TCP) connection. Most of the communication
between the client and the device—retrieval of the gas flow calculations, set and get device settings, import and
export of the configuration files—is done over the TotalFlow protocol (TCP/9999).

Our goal in this research is to achieve remote code execution on the device. The proprietary protocol seemed to be a
good attack vector to start with because undocumented protocols are usually less reviewed by security researchers.

Understanding ABB’s TotalFlow Protocol

As we began our examination of the proprietary TotalFlow protocol, we knew two things: TotalFlow is 1) used to
configure the device and send the flow measurements to the client, and 2), it listens on TCP port 9999.

Our goal is to be able to send and receive messages of our choice to test the implementation of the protocol. For this,
we need to understand the protocol structure and build a simple client that constructs the payload. Luckily for us, the
firmware is available online and is not encrypted, therefore we could easily extract it in order to analyze the
application.

First, we wanted to find the binary that implements the protocol. Often the implementation of the protocol will reside at
the main executable file or one that is directly linked to it.

Because our target is a Linux-based embedded device, the main binary will be executed at system’s init. The good
place to search for this is the init.d/inittab:

5/12

null::respawn:/devLoader.exe

inittab content.

The init revealed the name of the binary: devLoader.exe (exe is a probably legacy name from when the device ran on
Windows CE), which allowed us to reverse engineer it. The binaries within the firmware were stripped, but we had a

lot of error-related logging strings, below, which was great for our research because it makes our life easier in finding

interesting functions.

+ binaries strings -n 20 flash | grep -ie "Aerror' | sort | unig | head -n 20
ERROR: Failed to load back up process. Warm configuration wont be backup up.

Error creating recursive lock instance for slot=%d
Error in saving RMC persistence files rmcAppDataObjIds.dat and rmcAppDataDefUUIDs.dat
CDATA section
PCDATA section

Error parsing
Error parsing
Error parsing
Error parsing
Error parsing
Error parsing
Error parsing
Error parsing

comment

document declaration/processing instruction
document type declaration
element attribute
end element tag
start element tag
Error processing xfRecord %¥hhu.%hhu.%hu=>%hhu.%hhu.%hu for %d regs
Error reading RMC App Def UWUIDs file at ¥s
Error reading RMC App Obj ID file at ¥s
Error reading detailed config file at ¥s
Error reading device config file at ¥s
Error reading from file/stream
Error unlocking mutext for '¥s' on count problem processing
Error unlocking mutext for '¥s' on count problem processing, ¥s: %¥d
Error writing RMC App Def WID file into RMC filesystem

A sample of error strings found within TotalFlow binaries.

There are few techniques we can start with to search for the relevant code for incoming packet handling.

1. Look for matching strings from the client application and the firmware, below:

[P, PCCU32 - [Entry]

X Operate View Window Help

e o &k =% Wy @

= TOTALFLOW
& Communications
Totalflow/TCP
Totalflow/USB
Totalflow/COMO:

Bluetooth
- VO Interface
- Flow Measurement
(- AGA3-1
& AGAT-1
- Display
- Trend System

Taken

Ready

Station Setup | Applications | App Licensing | Battery Information [Resources | System Log | Seaurity Log [Regstry|

iption

Value

3 004

Station ID

TOTALFLOW'

Totalflow/Remote 1 =

Location

Measurement and Control |

090

Date/Time

09.0

Set Device with PCCU Dat|

006

— Security —

Security Code Level 1

007

Security Code Level 2

073

Security Switch Status

— Sleep Mode —

0102
0103

Remote Comm Cutoff Vol

Sleep Mode Entry Voltage|

088

Sleep Mode Hold-off Time|

09.11

Wake Up Time

07.14

Wake Up Time Mode

07.10

— Lithium Battery Status
Lithium Battery Status

from_|

077

documentation

— Low Charger Alarm En|

1w Charnar Alarm

Moritor

0612772016 11:13:51

OSAL_driverOpen(2, ©
*(_DWORD *)(v3 + 4
*(_DWORD *)(v3 + 4
*(_BYTE *)(v3 +

E (MBYIERS) (V3R
*(_BYTE *)(v3 +
*(_BYTE *)(v3 +
*(_BYTE *)(v3 +
*(_BYTE *)(v3 +
*(_BYTE *)(v3 +
*(_BYTE *)(v3 +
*(_BYTE *)(v3 +
memset((void *)(
memset((void *)(v3
sub_2136C(v3);
memset((void
strcpy((char
strcpy((char
strcpy((char
strcpy((char
*(_DWORD *)(v3 + 2

, V3 +

Since there was a lot of memory initialization, it was likely we had found a constructor, which gave us a place to start.

1. Another good place is CRC checks. Embedded devices, especially ones that receive data from serial ports, use
a CRC checksum to validate the accuracy of the received payload. Finding the place where CRC checks are
validated is interesting because this will point to the payload that was received from the client. CRC checksum
often uses hardcoded lookup tables which are easy to find within the binary.

2. Last but not least are the error strings; if you are fortunate, you will be able to find the relevant code just by
looking at those. Sadly, in this case, we weren’t so fortunate.

Now that we have a basic understanding of what we need to look for and where to find it, our next step is to create a
setup of the device so we can dynamically debug it.

Emulating a Flow Computer on RaspberryPI

Although quite often we purchase devices we research, this time it was not an option. When the application of interest
is within the user space and the device runs a familiar operating system on familiar architecture, it is often possible to

6/12

emulate the relevant part.

Therefore, we took one of our Raspberry Pis, copied the firmware’s file system to it, and chrooted the directory.

Team82 used a Raspberry Pi to load ABB firmware and emulate a flow computer

The main disadvantage of emulating the device is that at some point the application will want to communicate with
peripherals. Unfortunately, our Raspberry Pi doesn’t have orifice plates attached to it, so any communication with
them needs to be patched (changed within the binary).

The procedure to patch the application is straightforward:
1. Run the binary
2. Wait for the binary to crash (due to emulation/setup issues)
3. Patch the function that causes the problem (e.g. skip a check)
4. Back to Step No. 1

In this research, seven functions were patched across two binaries; these functions communicate with the sensors
and other hardware peripherals, which obviously do not exist in our simulated Raspberry Pi environment. Four hours
later, we were good to go to the next step.

Debugging the TotalFlow Protocol

Now that we have a working setup, we were ready to analyze communication between the device and the client
application. With a debugger, we can stop at the interesting functions that we have found by reverse engineering the
binary and completing our understanding of the protocol.

We downloaded the client application (PCCU) from the ABB website and installed it on a Windows machine. We
connected the application to the flow computer by providing the IP address of the Raspberry Pi:

7/12

[y, pccuz2 -] X
Operate View Help
S E e R YW e
e Y e 3 | e Y 5 e R P DR
W7 System Setup
Setup Diectory Paths Msc Macro Setup
Communications Toobar Butons
PCCU Connect Method SiComeet =
() Senal port @ TCPAP O ActiveSyne (NGC)) Bluetooth 7| Disconnect
[]NGC Operate:
Connection parameters Level 1-2 Securty Code: [0000 ety
Network ID or IP- [100.100.100.100] o
[Calibrate
D D D D Packet Size (7| Colect
I Fie Transfer
Valve Control
Block Sie []Remote Protoca
L Remote Communications
ntial Timeout: (15000 2] TFModbus
[£]32 Bt X-Series Loader
Timeout (ms): 3000 7| NGC Startup Wizard
2 astcp Fie ites
hive Ltilities
MEASURE ™" [Confuration Fie
2 I_P ManageE(d
Show Comm Stats on Status B [Template Edtor
(20 how Comm Satson Staus Bar Temmide £ .
D D D D ek
(@) None O Entry O Collect O Inttial Connect
[]Use defait Role Based Access Control credentials
Default Role Based Access Control Usemame
Defauit Role Based Access Control Password
Close Helo
(=] 0 onnectec
Read Not C ct

The user interface for ABB’s client application, PCCU.

F 01 54 4T 54 41 4c 40 . -TOTALF :
€4t 5720 f 01 54 4f 54 41 4c 46 <+ - -TOTALF HEADERSIString
hc af 57|20 91 54 4 g
k4 57)20 R Tye

vy ve d2
00 3e

20 39 ...9.) Secret code
00 ab I

00 49 K .)

00 69 I ..] CRC Cecks

00 a7 cees .. .

00 49 . e e .

00 b7 | e I Sizelindicatory
00 40 [B L s

00 b4 . .

=l .) DATA

00 c2 . o .

00 da

o2 1d Magic

A packet sent from client to device when first connected.

TotalFlow is a relatively simple protocol: Every setting within the device has its own TAG that is defined by a tuple
called Registers (APP, ARRAY, INDEX).

For example, in the image below we see that the “SSH Service” setting is accessible by the (0.7.27) Register.

Description Value

0.0.15 | Network ID g5uflo

— Services —

0.7.27 | SSHISFTP Service (Port: 9696) Disabled

0.7.29 | Totalflow Service Enabled

A sample of network settings from the PCCU client application.

The RegisterGet and RegisterSet functions, below, are responsible for changing/returning the Register’s value:

int fastcall CtfPr 2k "Get (CLFPr P, el unsigned int inde; 0. *ptr_fot_result)
{
int result;

fProtocol *app, unsigned int array, unsigned int index,

The following is the payload that will enable SSH - as we set the triple tuple of the SSH settings to be enabled - app:
0 array: 07 index: 0x1b (27).

8/12

4>-p
TCITJ\ LFLOW X-
*TOTA LFLOW X-

o -TCITJ\ LFLOW X-:

Now that we understood the protocol structure, we could write a simple python client with interesting functionalities
such as read-write Registers, enable SSH, and more:

uFLOG5 mini client

optional arguments:
=h, —-help show this help message and exit
—read
—write
—src_file_name SRC_FILE_NAME
——dest_file_name DEST_FILE_NAME
—write_to_file
——restart_device
——enable_ssh
—-get_sec_code_hash

In order to do this, we need to be authenticated by providing the correct security code.
Authentication Bypass

Note the security code (the red rectangle) is a CRC-16 of the four-digit security passcode. Since the device sends an
error message on incorrect code and there is no rate limit mitigation available on the device, we can easily bypass
the authentication mechanism by enumerating all possibilities.

Security Code
CRC-16

+ +TOTALF
LOW X: -+ - +TOTALF
LOW X:-- --TOTALF

+ fda 0@ 0L v ve
08 09 00 3e 3d E] 99 ff

CRC-16 is a two-byte value, which has a maximum of 216 possibilities. We can brute force all of the possible values
in a range 0-65,535, which can take about four minutes. We can also optimize it by calculating, prior to the attack, the
values from CRC-16 (0000) to CRC-16 (9999) and thus reducing the number of possibilities to 10,000.

Finding a Vulnerability

Now that we have an authentication bypass, it is time to look at functionalities available to authenticated users.
Remember we said the configuration can be uploaded and downloaded? This is a good place to look for bugs
because file operations are not always done securely.

This is what the file download procedure looks like in Wireshark:

9/12

[, PCCU32 - [Save and Restore] - O X

EiCIE R A

B Operate View Window Help

i 3 o E s

- 8 X

= TOTALFLOWE
G- tfCold

. tfData

... Comm-1

-Comm-2
-Comm-3
- Shared
-tfbackup
45D Card

File System Free Space: 1922129320

File Name Size

Last Modified Attr

appOptions.cfg

16510

07/21/21 05:48:51

appProfile.cfg

1

07/21/21 09:48:51

appRemote0ptions.cfg 1018 03M0V22 13:45:44
appStatus.cfg 254 07/21/21 09:48:53
appTable.cfg 16754 07/28/21 14:31:36
devicename 1 03M0/22 13:45:42
Event.log 170000 07/21/21 09:48:53
Security.log 10010 031022 13:45:51

Startup.log
s

____System.‘d at

Create

Delete
Rename
Upload File
Upload Folder

Download File

Download Folder

Save Station Files

Restore Station Files

03M10/22 13:45:51
0310022 13:45:42

Save Station Files

Restare Station Files

#Polls:

4 ZErrors: 0 Connected

5T}
-y

[I~ s B
1@ &

[(5]

R LA
nof

S W

3

33

We can see that the request contains a file name in the tfData directory. Lets check for a path traversal vulnerability
by requesting the /etc/shadow file.

80000000 ff 01 54 4f 54 41 4c 46
20000010 ff @1 54 4f 54 41 4c 46
00000020 ff 01 54 4f 54 41 4c 46
00000030 d3 d9 ce c3 15 00 ea ff
00000040 20 00 @0 00 00 02 00 00
00000050 00 bl ff @1 0a 00 00 Ob
00000060 2e 2e 2f 65 74 63 2f 73
00000070 00 00 @0 00 00 00 00 00
00000080 00 00 @0 @0 00 00 00 00
00000090 00 00 @0 00 00 00 00 00
000000A0 00 18 45 00 00

=+ uflo_client git:(mas

4c 4f 57 20 58 00 be 7a
4c 4f 57 20 58 00 be 7a
4c 4f 57 20 58 00 be 7a
02 03 @1 c5 18 00 04 00
00 00 00 00 @0 2b b0 4e
00 74 66 44 61 74 61 2f
68 61 64 6f 77 00 00 00
00 00 00 00 20 00 00 00
00 00 00 00 20 00 00 00
00 00 00 00 20 00 00 00

ile_name tfData/../etc/shadow
[X] Reading '"tfData/../etc/shadow'...
[X] Got 479 bytes of tfData/../etc/shadow (decompressed)

b'root:6kv55iwIRT1IM:16563:0:99999:7:::\nbin:*:10933:0:99999:7: : :\ndaemo
n:*:10933:0:99999:7: ::\nadm:*:10933:0:99999:7:::\nlp:*:10933:0:99999:7::

««TOTALF LOW X..

Get{content{of,

tfData/®etc/shadow,

:\nsync:*:10933:0:99999:7: : :\nshutdown:*:10933:
3:0:99999:7:::\nuucp:*:10933:0:99999:7:: :\noperator:*:10933:0:99999:7:::
\ntotalflow:1R2B1g7b2%3wrDwaC9eghg8/ujGV4Gel:16351:0:99999:7: : : \nnobod
y:*¥:10933:0:99999:7: : :\ndefault::10933:0:99999:7: : :\nmqtt: kIJmlfWoHFuTFg:

/etc/shadow content

Nice. It works.

Remote Code Execution

Now that we have an arbitrary read and write, it is simple to get code execution.

) x python3 ./uflog5_client.py --read --dest_f

99999:7:::\nhalt:*:1093

10/12

We chose the simplest approach, reading /etc/shadow and using hashcat cracking the root account password (which
turned out to be root:root). Then we changed the SSH configuration file to enable root to connect using password.
Then all that was left to do was to turn on the SSH daemon (using the TotalFlow protocol) and to connect to it.

p 000/057

Team82's proof of concept in action.
The Vulnerability
CVE-2022-0902
CWE-22 Path Traversal Vulnerability
Affected Products: ABB Flow Computers and Remote Controllers’ Totalflow TCP protocol
CVSS v3 score: 8.1

This path traversal vulnerability can enable an attacker to take over flow computers and remotely disrupt the flow
computers’ ability to accurately measure oil and gas flow. These specialized computers calculate these
measurements that are used as inputs in a number of functions, including configurations and customer billing.

11/12

https://claroty.com/team82/disclosure-dashboard/cve-2022-0902

A successful exploit of this issue could impede a company’s ability to bill customers, forcing a disruption of services,
similar to the consequences suffered by Colonial Pipeline following its 2021 ransomware attack.

Team82 disclosed this vulnerability to ABB, which issued an update that addresses the issue. ABB also advises
network segmentation as a mitigation strategy; further information is available in ABB’s advisory.

12/12

