
CrowdStrike White Paper

ICEAPPLE: A NOVEL INTERNET INFORMATION
SERVICES (IIS) POST-EXPLOITATION FRAMEWORK

CrowdStrike White Paper

ICEAPPLE:
A NOVEL INTERNET
INFORMATION
SERVICES (IIS)
POST-EXPLOITATION
FRAMEWORK
Understanding the threat to your IIS servers

CrowdStrike White Paper 2

ICEAPPLE: A NOVEL INTERNET INFORMATION
SERVICES (IIS) POST-EXPLOITATION FRAMEWORK

INTRODUCTION
The CrowdStrike Falcon OverWatch™ threat hunting team has uncovered a new and

highly sophisticated Internet Information Services (IIS) post-exploitation framework that

CrowdStrike refers to as IceApple. OverWatch’s observations, explored in detail in this paper,

suggest that IceApple has been developed by an adversary with detailed knowledge of the

inner workings of IIS.

Since OverWatch's discovery of IceApple in late 2021, the framework has been observed in

multiple victim environments and in geographically distinct locations, with intrusions spanning

the technology, academic and government sectors. OverWatch’s investigations have identified

at least 18 modules, each adding capabilities to the IceApple framework. OverWatch’s

observations suggest that this framework is still in active development.

IceApple uses an in-memory-only framework that highlights the adversary’s priority of

maintaining a low forensic footprint on the infected host. This is typical of long-running

objectives aimed at intelligence collection and aligns with a targeted, state-sponsored mission.

Though the observed targeted intrusions align with China-nexus, state-sponsored collection

requirements, CrowdStrike Intelligence has not attributed IceApple to a named threat actor as

of April 2022.

This paper explores how OverWatch made its discovery, detailing both the threat hunting

workflows and tooling capabilities that helped uncover the exploitation framework and track its

evolution.

Next, this paper examines how the IceApple framework is being used in the wild, providing a

high-level summary of its capabilities. It then provides a deep dive on the unique modules and

how they work.

The paper concludes with recommendations for defenders on mitigating risks to their IIS

servers. The CrowdStrike Falcon® platform detects all currently known IceApple module loads,

while OverWatch actively hunts new IceApple modules.

BACKGROUND INFORMATION
Internet Information Services (IIS) is Microsoft’s extensible web server software. Its modular

architecture enables developers to build components that extend or replace existing server

functionality. IIS components can be either native dynamic-link libraries (DLLs) typically written

in C++, or managed modules written in C#.

PERSISTENT IIS COMMAND EXECUTION
Adversaries are known to leverage two primary techniques for achieving persistence

on compromised IIS servers: web shells1 and malicious IIS components.2 In OverWatch’s

1 For more information, see the MITRE ATT&CK® entry, Server Software Component: Web Shell, at:
 https://attack.mitre.org/techniques/T1505/003/
2 For more information, see the MITRE ATT&CK entry, Server Software Component: IIS Components, at: https://attack.
mitre.org/techniques/T1505/004/

https://attack.mitre.org/techniques/T1505/003/
https://attack.mitre.org/techniques/T1505/004/
https://attack.mitre.org/techniques/T1505/004/
https://attack.mitre.org/techniques/T1505/004/

CrowdStrike White Paper 3

experience — regardless of which technique an adversary uses — the persistent component

deployed possesses capabilities to load additional functionality to help an adversary

achieve their objectives. These additional functionalities are usually loaded reflectively via

precompiled .NET assemblies.3

.NET ASSEMBLIES

.NET assemblies form the cornerstone of Microsoft’s .NET framework — a cross-platform

software development framework. An assembly can function as either a standalone

application in the form of an EXE file or as a library for use in other applications as a DLL.

Applications can dynamically load .NET assemblies at runtime from the Global Assembly

Cache (GAC),4 from the local filesystem or from a byte array containing the full contents of

a compiled assembly.

WHAT THIS MEANS FOR THREAT HUNTERS
Because .NET assemblies can be a powerful and potentially stealthy way for adversaries to

pursue their mission objectives, detections for reflective .NET assembly loads are actively

being developed by OverWatch threat hunters. These detections successfully uncovered the

IceApple post-exploitation framework being used in the wild.

HOW IS ICEAPPLE BEING USED?
OverWatch observed different IceApple modules being deployed in customer environments,

which varied depending on how far the compromise of an environment had progressed.

When used shortly after an adversary gained initial access, IceApple was observed being

rapidly deployed to multiple hosts to facilitate credential harvesting from local and remote

host registries, credential logging on OWA servers, reconnaissance, and data exfiltration.

OverWatch then observed adversaries returning to networks daily to continue their activity.

When used after an adversary had prolonged access to an environment, IceApple was

observed being deployed to assist with credential harvesting and basic local reconnaissance.

OverWatch observed adversaries in these instances returning every 10 to 14 days, likely as a

means of ensuring access was maintained.

HOW DID OVERWATCH DISCOVER ICEAPPLE?
THE INITIAL TRIGGER
In late 2021, one of OverWatch’s in-development detections for reflective .NET assembly

loads was triggered on a customer’s Microsoft Exchange OWA server. OverWatch initially

detected four .NET assemblies being reflectively loaded into the “MSExchangeOWAAppPool”

3 For more information, see the MITRE ATT&CK entry, Reflective Code Loading, at: https://attack.mitre.org/techniques/
T1620/
4 For more information on the Global Assembly Cache, see: https://docs.microsoft.com/en-us/dotnet/framework/app-
domains/gac

CrowdStrike White Paper

https://attack.mitre.org/techniques/T1620/
https://attack.mitre.org/techniques/T1620/
https://docs.microsoft.com/en-us/dotnet/framework/app-domains/gac
https://docs.microsoft.com/en-us/dotnet/framework/app-domains/gac

CrowdStrike White Paper 4

application pool on two Microsoft Exchange servers with the following names:

 App_Web_6nj14khm, Version=0.0.0.0, Culture=neutral,
PublicKeyToken=null

 App_Web_06y3iviz, Version=0.0.0.0, Culture=neutral,
PublicKeyToken=null

 App_Web_sbp8l0mc, Version=0.0.0.0, Culture=neutral,
PublicKeyToken=null

 App_Web_ic8e5fk4, Version=0.0.0.0, Culture=neutral,
PublicKeyToken=null

At first glance, these assemblies appear to be expected IIS temporary files generated as

part of the process of converting Active Server Page Extended (ASPX) source files into .NET

assemblies for IIS to load.

However, on closer analysis, OverWatch deemed the activity suspicious for three reasons:

1. IIS does not reflectively load its generated temporary .NET assemblies from byte arrays.

2. Microsoft Exchange does not reflectively load its .NET assemblies from byte arrays.

3. The last eight characters of IIS temporary file names are randomly generated; however, the

same four .NET assembly names were seen on both hosts multiple times.

Figure 1. Temporary .NET assemblies generated by IIS and their randomly generated internal

assembly’s name

DIGGING DEEPER
OverWatch worked with the customer to turn on the Script-Based Execution
Monitoring prevention policy setting to enable the CrowdStrike Falcon sensor to

extract the content of reflectively loaded .NET assemblies across the customer’s endpoints,

increasing visibility.

After making these changes, OverWatch’s reflectively loaded .NET assembly detection

triggered again for the same four .NET assemblies (referenced above) being loaded on the

original hosts. With Script-Based Execution Monitoring enabled, OverWatch

was able to retrieve and analyze the contents of the .NET assemblies.

LEVERAGING THE POWER OF THE FALCON PLATFORM
An analyst is only as good as their tools. Before diving into the contents of the loaded

assemblies, it is important to look at what the Falcon sensor captures in regard to reflectively

loaded .NET assemblies and how OverWatch uses this information to provide its customers

with up-to-date intelligence on in-progress compromises.

CrowdStrike White Paper

CrowdStrike White Paper 5CrowdStrike White Paper

The Falcon sensor gives customers two key events for analyzing reflectively loaded .NET

assemblies: ReflectiveDotnetModuleLoad,which provides the name of the .NET

assembly loaded, and ScriptControlScanTelemetry,5 which provides the bytes of the

.NET assembly loaded.

The AssemblyName field from the ReflectiveDotnetModuleLoad event is very useful

for developing detections for common .NET tools that are downloaded from GitHub and

then compiled and used in an attack without changing the assembly’s name. For example,

if two different adversaries download and compile Rubeus,6 the resulting DLL’s hashes will

be different; however, their assembly names will still be Rubeus, Version=1.0.0.0,
Culture=neutral, PublicKeyToken=null. Detections based on .NET assembly

names, much like detections based on hashes, are very brittle, as with minimal effort

Rubeus, Version=1.0.0.0, Culture=neutral, PublicKeyToken=null
can become TotallyLegit, Version=1.3.3.7, Culture=neutral,
PublicKeyToken=null and bypass detection.

The ScriptContentBytes field from the ScriptControlScanTelemetry event

contains the ASCII representation of the bytes being reflectively loaded. This ASCII string

of hex data can be taken from Falcon Insight™ endpoint detection and response (EDR) and

easily converted to the raw bytes of the .NET assembly, using open source tools like Cyber

Chef.7 That converted data can then be loaded into a .NET decompiler, like dnSpy,8 and further

analyzed.

Figure 2. Falcon Insight showing the IceApple Loader module being loaded

5 ScriptControlScanTelemetry events will only be generated if “Script-Based Execution Monitoring” is enabled in the
Falcon UI.
6 https://github.com/GhostPack/Rubeus
7 https://github.com/gchq/CyberChef
8 https://github.com/dnSpy/dnSpy

https://github.com/GhostPack/Rubeus
https://github.com/gchq/CyberChef
https://github.com/dnSpy/dnSpy

CrowdStrike White Paper 6

When developing detections for reflectively loaded .NET activity, OverWatch typically

uses a combination of regular expressions on assembly names as well as the presence of

a reflective .NET load occurring under an application or IIS application pool that does not

typically perform this sort of operation. Analysis of ScriptContentBytes (payload

bytes) is reserved for confirmation of maliciousness following the initial detection.

A CLOSER LOOK AT ICEAPPLE
Next, let’s explore the 18 IceApple modules that OverWatch has observed to date. These

modules support a wide range of capabilities, including:

 Listing directories

 Writing data to a file

 Deleting files and directories

 Retrieving the configuration of installed network adapters

 Making HTTP requests with the hard-coded user agent Microsoft Office/16.0 (Windows

NT 10.0; Microsoft Outlook 16.0.4551; Pro)

 Retrieving IIS server variables

 Dumping credentials stored in registry keys on the infected host or a remote host

 Executing queries against Active Directory

 “Normal” exfiltrating of files

 Special exfiltration of files — including large files and several files at a time — via

a separate HTTP listener

 Capturing OWA credentials

Loader

Figure 3. Tasking deserialization and processing flowchart

CrowdStrike White Paper

REQUEST

Returned to adversary

Loader

Deserialize task Process task

Result retriever

Serialized
tasks

Compressed, encrypted
encoded task output

More tasks? Yes

No

CrowdStrike White Paper 7CrowdStrike White Paper

MODULE 1: APP_WEB_IC8E5FK4 — LOADER
Loader is the core of the IceApple framework and is the second most complex assembly

detailed in this paper. OverWatch believes this assembly is loaded via a webshell, which

reflectively loads Loader and calls its single function, C(). The C() function performs

the remainder of the functionality in this assembly.

Loader has several processes that it undertakes for each request.

Initialization

Loader starts its execution by initializing several variables that are used in processing

requests:

Figure 4. Hard-coded values — the variable names have been modified to reflect their purpose

 keyName:The key name to use when storing and retrieving application-level variables

 prehooks:The key name for a secondary application-level storage location

(OverWatch has not observed this value being used)

 typeName:The internal type name for all .NET assemblies to be reflectively loaded;

this is used to prevent Loader from having to try and determine the assembly type

information at runtime

 aesKey:A Base64-encoded AES key used to decrypt tasking

 validationString:Used to validate inbound parameter names

Next, Loader creates a key/value store containing all of the information needed by future

modules. This key/value store, which OverWatch renamed to config in Figure 5, is the

only parameter passed to any of the modules observed during our investigation.

Figure 5. Creation of a key/value store for processing modules

The key/value store comprises:

 GS:Contains the global store, a key/value store for caching loaded modules for future

use

 PH:Contains the prehooks key/value store

 HC:Contains the current HTTP context for this request, which can be used to retrieve

a large amount of information about the request including header, parameters, cookies

and request contents

CrowdStrike White Paper 8CrowdStrike White Paper

 RS:Contains a list of byte arrays. All uses of this value suggest that modules use RS as a

result store for their output. As such, RS will be referred to as the result store. The result

store is cleared at the beginning of each request, meaning any results not retrieved at the

end of the previous request will be lost.

 ED:The purpose of this value is unknown.

 AB:This value is populated with the decrypted parameters for a module prior to it being

called.

Extract and Decrypt Tasking

Loader loops over all parameters and performs several checks on their values, including

verifying that the value is longer than five characters and that the first five characters exist

in the validationString variable discussed in the initialization section above. The

value of all parameters that meet these criteria are appended together before moving onto

the next step.

Figure 6. Documented parameter extraction code

With the values of all parameters processed, Loader Base64-decodes then AES-

decrypts (using the previously mentioned hard-coded AES key and the first 16 bytes of the

Base64-decoded value as an initialization vector [IV]). Next, Loader Gzip-decompresses

the extracted parameters. This process results in a value that contains all tasking and

parameters serialized with a custom algorithm, discussed next.

DEFENSE EVASION

Performing parameter

extraction this way means

the adversary doesn’t

require a password

parameter like conventional

CHOPPER-style webshells

do. This means that all

parameter names can be

random or chosen to blend

in with the target application.

CrowdStrike White Paper 9CrowdStrike White Paper

Figure 7. Parameter extraction and processing flowchart

Deserialization and Execution

The final stages that Loader completes are deserialization and execution of the serialized

tasking. The serialized value can (and generally does) contain multiple tasks.

The serialization method used appears to be custom — albeit basic — and consists of a

repeated pattern of 4 bytes containing the length in bytes of the proceeding value. For

example, the following shows how the value “OverWatch” would be serialized:

Figure 8. Example serialization of the value “OverWatch”

Using this method, Loader deserializes tasks with the following format:

Figure 9. Task format

 keyName and tag are joined to form a unique key, which is used to cache loaded

assemblies for additional requests.

 assemblyBytes contains raw bytes to be reflectively loaded via Assembly.
Load().

 assemblyParams contains a byte array, which is stored in the AB value of the config
key/value store. This value contains the parameters for the module being loaded and

could contain anything from a string to a byte array. Extracting of parameters from this

value is performed by each module.

REQUEST

Append value [6:] to
encodedParams

Base64 decode AES decode
Gzip

decompress

All values

encodedParams Serialized output

More
values?

Value >5
characters?

Is value [0:5] in
encodedParams?

Yes Yes Yes

No

No

No

CrowdStrike White Paper 10

After deserializing a task, Loader uses the values keyName and tag to see if the module

needed for this task is already loaded and stored in the GlobalStore.

If the assembly is not found, then Loader reflectively loads the raw bytes from
assemblyBytes in the task and stores the resulting assembly in the GlobalStore for

future use. Regardless of whether the assembly was found in the GlobalStore or newly

loaded, Loader then executes the Equals() method of the target assembly, passing
config as a parameter.

Once a task has been processed, Loader proceeds to deserialize and execute the next task

until all tasks are complete.

It is worth noting that the only time Loader will produce an output is if an exception is

thrown outside of a task. All outputs from tasks are processed and returned by the
App_Web_paeld9n9 Result Retriever module detailed in the Module 2 section.

UNDERSTANDING THE MODULE STRUCTURE
Before discussing the rest of the modules observed by OverWatch, it is helpful to

understand the structure and initialization common to all modules.

Figure 10. An example of a module’s initialization

All modules observed consist of a class named C under a namespace of N; however, the
typeName field discussed in the Loader module suggests this could be easily changed.

Each module overrides the Equals function of the Object class, with Object
being the base .NET class all other classes are derived from. The Equals function takes

a single parameter of type Object (effectively allowing any value which subclasses

Object to be passed in).

The use of the Equals function to execute code within a reflectively loaded .NET

assembly is novel and allows Loader to call this function within any module without having to

know anything about the structure of the module, its internal functions or what parameters

it takes.9

9 For more information, see the relevant documentation at:
https://docs.microsoft.com/en-us/dotnet/api/system.object.equals

https://docs.microsoft.com/en-us/dotnet/api/system.object.equals

CrowdStrike White Paper 11

The passed-in parameter of type Object is first cast to a Hashtable to recover the

config key/value store described above. Next, the value of RS (or the result

store) is extracted from config and converted to a List of byte arrays. The result store

may already contain results from a previously executed task.

The value of AB is extracted from config as a byte array. As mentioned, AB contains

the parameters for the current module and may have a different meaning for each module.

In this example, AB represents a UTF-8 encoded string that is delimited with a pipe (“|”)

character.

MODULE 2: APP_WEB_PAELD9N9 — RESULT RETRIEVER
The Result Retriever module is responsible for the serialization, compression, encryption

and transmission of the results of all other modules.

Results are serialized using the method described in Loader before being Gzip-

compressed, AES-encrypted and Base64-encoded. Results are then sent as a response to

the original tasking request, which suggests that Result Retriever is called as the final task

for each series of requests. Results are returned via one of three methods based on the

amount of data being returned.

Methods

Method 1 — Cookie: Response data is sent as the value for a custom cookie, the name of

which is controlled by the adversary.

Method 2 — Header: Response data is sent as the value for a custom header, the name of

which is controlled by the adversary.

Method 3 — Body: Response data is sent in the body of the request, wrapped in an

adversary-specified template.

Parameters

Result Retriever accepts a pipe-delimited string that is split into an array where each field

has the following purpose:

Index Purpose

0 Base64-encoded AES key

1 HTTP response code to send with response

2 A URL to redirect to if the HTTP response code is 3xx

3 The maximum response size supported by Response Method 1

4 The name of the cookie to send the response in for Response Method 1

5 The maximum response size supported by Response Method 2

6 The name of the header to send the response in for Response Method 2

7 The body of the response to send when using Response Method 1 or 2

8 The body of the response to send when using Response Method 3; must contain the value
“{{{DATA}}}”, which will be replaced with the encoded response data to return

9 A value to be prepended to the Base64-encoded results for all response methods

10 A value to be appended to the Base64-encoded results for all response methods

CrowdStrike White Paper 12

MODULE 3: APP_WEB_06Y3IVIZ — A PREVIOUS VERSION OF MODULE 2
OverWatch observed a previous version of the Result Retriever module with the assembly

name App_Web_06y3iviz, which used hard-coded values rather than accepting the

above parameters.

Of note, Method 1 responses were sent via a cookie named X-BackEndCookies with

the value As7 prepended to the value returned. In addition, the status code is always

302 with a redirect header to the OWA login page. Method 2 is not present in the previous

version. Method 3 embeds the response in a fake stack trace and redirects to the OWA

error page.

Figure 11. Previous version of Result Retriever

CrowdStrike White Paper 13

MODULE 4: APP_WEB_YBRA1DR2 — DIRECTORY LISTER
The Directory Lister module lists information about a list of files and directories including:

 Creation time

 Last write time

 Name

 Size

Directory Lister differs from other IceApple modules in that it performs parameter extraction

in the Equals function before calling a second function named Run, which contains the

module's functionality.

Parameters

Accepts a pipe-delimited list of files and directories to list.

MODULE 5: APP_WEB_8MYTEDC8 — ANOTHER VERSION OF MODULE 4
OverWatch observed an older version of Directory Lister with the assembly name

App_Web_8mytedc8 that uses the Equals function for both parameter extraction

and module functionality. App_Web_8mytedc8 is functionally identical to Directory Lister.

MODULE 6: APP_WEB_HP8VZZB4 — FILE WRITER
The File Writer module writes a byte array to a file.

Parameters

The passed-in parameter contains a serialized filename followed by raw bytes to be written

to the target file.

Index Purpose

0 Filename

1 Bytes to write

MODULE 7: APP_WEB_CFZLQTLR — FILE AND DIRECTORY DELETER
The File and Directory Deleter module deletes files and folders.

Parameters

A pipe-delimited string of paths to delete.

MODULE 8: APP_WEB_67VHAQFF — IFCONFIG
The ifconfig module iterates over all network interfaces on the host and retrieves the

following information:

 Name

 Description

CrowdStrike White Paper 14

 MAC address

 DNS suffix

 DNS servers

 Gateways

 IPv4 addresses

 Subnet masks

MODULE 9: APP_WEB_S8X7GRB2 — HTTP GET
HTTP Get (internally named httpget based on error strings) allows the adversary

to make basic HTTP requests with no custom parameters or headers except for the

hard-coded User Agent value of Microsoft Office/16.0 (Windows NT 10.0;
Microsoft Outlook 16.0.4551; Pro). After completing a request, HTTP Get

pulls information such as the response code, response headers and response content, and

reconstructs the response as a string suitable for retrieval by the adversary.

Parameters

A single UTF8-encoded string containing the URL to request.

MODULE 10: APP_WEB_F46V5OKG — SERVER VARIABLE DUMPER
The Server Variable Dumper module iterates over all server variables present for the current

request and returns them to the adversary.

MODULE 11: APP_WEB_6NJ14KHM — CREDENTIAL DUMPER
The Credential Dumper module allows the adversary to dump the contents of registry keys

that contain encrypted credentials, as well as the keying material required to decrypt them.

These keys can be dumped from a local or remote host.

The following keys contain encrypted password hashes as well as the keying material

needed to calculate the bootkey (i.e., decryption key) needed to decrypt these password

hashes:

HKLM\SYSTEM\CurrentControlSet\Control\Lsa\JD
HKLM\SYSTEM\CurrentControlSet\Control\Lsa\Skew1
HKLM\SYSTEM\CurrentControlSet\Control\Lsa\GBG
HKLM\SYSTEM\CurrentControlSet\Control\Lsa\Data
HKLM\SAM\SAM\Domains\Account\F
HKLM\SAM\SAM\Domains\Account\Users*\V
HKLM\SECURITY\Cache*

The following keys are associated with Local Security Authority (LSA) secrets:

HKLM\SECURITY\Policy\PolEKList\default
HKLM\SECURITY\Policy\Secrets*\CurrVal
HKLM\SECURITY\Policy\Secrets*\OldVal

The type of keys dumped are controlled by parameters 1-N.

CrowdStrike White Paper 15

Parameters

Credential Dumper accepts a pipe-delimited string that is split into an array where each field

has the following purpose:

Index Purpose

0 Host to dump (localhost or a remote host name)

1-N Strings from the following set: “secrets”, “cache”, “samaccount”

MODULE 12: APP_WEB_AI57ZS2M — ANOTHER VERSION OF MODULE 11
OverWatch observed another version of Credential Dumper with the assembly name

App_Web_ai57zs2m that has minor differences. App_Web_ai57zs2m does not

include an Equals function, instead placing the logic in the assemblies’ constructor.

While this assembly would still work with Loader, it could not be recalled from the Global

Store as its Equals function has not been overwritten.

This version of the assembly also does not utilize the result retrieval method of other payloads

observed in this framework. Instead, results are Base64-encoded and wrapped in “junk”

(unused) JavaScript and written to four locations under the Microsoft Exchange install location:

 \ClientAccess\Owa\auth\addrbook.cs

 \ClientAccess\Owa\auth\addrbook.js

 \FrontEnd\HttpProxy\owa\auth\Current\scripts\premium\
addrbook.cs

 \FrontEnd\HttpProxy\owa\auth\Current\scripts\premium\
addrbook.js

MODULE 13: APP_WEB_SBP8L0MC — ACTIVE DIRECTORY QUERIER
The Active Directory Querier module provides an interface for an adversary to perform

authenticated requests against an Active Directory server.

Parameters

Active Directory Querier accepts a byte array containing several strings serialized using the

previously described method. The order and purpose of the serialized strings is set out below:

Index Purpose

0 The Active Directory directory to open

1 Username

2 Password

3 Authentication type10

4 Search filter

5 Search scope11

6 A pipe-delimited list of properties to return

10 For more information, see the relevant documentation at: https://docs.microsoft.com/en-us/dotnet/api/system.
directoryservices.authenticationtypes
11 For more information, see the relevant documentation at: https://docs.microsoft.com/en-us/dotnet/api/system.
directoryservices.searchscope

https://docs.microsoft.com/en-us/dotnet/api/system.directoryservices.authenticationtypes
https://docs.microsoft.com/en-us/dotnet/api/system.directoryservices.authenticationtypes
https://docs.microsoft.com/en-us/dotnet/api/system.directoryservices.searchscope
https://docs.microsoft.com/en-us/dotnet/api/system.directoryservices.searchscope

CrowdStrike White Paper 16

MODULE 14: APP_WEB_ZM5IVGUM — QUERY2FILE
The query2file module is another version of Active Directory Querier, which is functionally

the same as Module 13; however, query2file appears to have been slightly reworked to

support long-running queries.

When called, query2file creates a string called threadControlEnvPrefix with the

format LDAP_QUERY2FILE_{0}_ where {0} is replaced with the current time in UTC,

formatted with the string yyMMddHHmmss. threadControlEnvPrefix is prepended to

several environment variables used to control and check the status of running searches.

query2file starts a new thread that performs all other actions while the main thread returns

the managed thread ID and the value of threadControlEnvPrefix via the previously

discussed result retrieval means.

In addition to the seven parameters described, query2file accepts a file path to output

results, which can be either a regular file path or a special path beginning with memfs://,

the use of which will cause results to be stored in a memfs entry in the Global Store.

MODULE 15: APP_WEB_NITM6AXL — FILE EXFILTRATOR
The File Exfiltrator module allows for a single file to be exfiltrated from the target host. The

output of this module consists of the target host’s hostname and the target file's contents,

serialized using the previously discussed method.

Parameters

A single UTF8-encoded string containing the path of the file to exfiltrate.

MODULE 16: APP_WEB_UGRFVUDI — MULTI FILE EXFILTRATOR
The Multi File Exfiltrator module allows for multiple files to be encrypted, compressed and

exfiltrated. This module functions slightly differently than other modules. When run, Multi File

Exfiltrator creates a HttpListener, which allows it to handle requests to URLs matching an

adversary-specified pattern on the target server. All other usage of this module is triggered

via requests to this listener.

When a new request is received, the registered handler first checks if the requested URL

ends with /stop. If it does, Multi File Exfiltrator stops the HttpListener, preventing further

handling of requests.

Next, the module extracts all headers, request parameters and key value pairs defined

in the request input. It sorts them alphabetically based on their key and identifies “valid”

parameters by looking for the presence of the first five characters of each key’s associated

value in the hardcoded string KAJdPY30h1e7jSKpcDUivBkZiGUAH3zL, much like

Loader’s parameter validation method.

These parameters are concatenated, Base64-decoded, Gzip-decompressed and

deserialized to recover the name of the file to exfiltrate. Finally, the contents of the target file

are read, XOR’ed with the key 3hu5njdushydf7^ATSD&y3gbhyrbgyusag%^A&Dt,

Gzip-compressed and written back as an HTTP response.

CrowdStrike White Paper 17

MODULE 17: APP_WEB_XW4CRB70 — IIS MODULE LISTER
IIS Module Lister and OWA Credential Logger (see Module 18 below) have always been

observed together. OverWatch suspects that IIS Module Lister is used to dump some values

needed to load OWA Credential Logger and to verify that OWA Credential Logger successfully

registered an event handler, which is described below.

IIS Module Lister uses reflection to gain access to several internal fields within the “System.Web”

assembly, through which it can extract the details of all registered IIS modules, including the

events within the IIS request processing pipeline they are registered to receive callbacks for.

Figure 12. An example of IIS Module Lister’s output

Finally, three numbers are output, which OverWatch believes are the three numbers OWA

Credential Logger takes as its parameters.

Figure 13. An example of the three numbers returned by IIS Module Lister

MODULE 18: APP_WEB_3OQT6248 — OWA CREDENTIAL LOGGER
The OWA Credential Logger module shows the depth of this adversary’s knowledge of IIS and

is the most complex IceApple module observed by OverWatch to date. Its purpose is to look

for and log OWA credentials.

This module monitors for request handlers that are waiting to be used and preemptively injects

an event handler into them. This allows the adversary to run some code whenever a request

is accepted. When a request is received, OWA Credential Logger checks to see if it is an OWA

CrowdStrike White Paper 18

authentication request and if so, logs the credentials.

When run, OWA Credential Logger starts a new processing thread before returning a

success message. The processing thread initially uses reflection to acquire two key

references from System.Web.HttpApplicationFactory:

 _theApplicationFactory: A static variable used to hold the instance of

HttpApplicationFactory, which manages the creation and deletion of all

HttpApplication objects needed to handle requests under this IIS worker instance

 _freeList: A collection of HttpApplication objects that have been recycled and

are ready for reuse

With the references acquired, the processing thread starts a loop that executes every

three seconds as long as the environment variable MODULESTEPS_OWALOGIN_THREAD_STOP

does not exist. On each iteration of the loop, the HttpApplication values in _freeList
are iterated over, and for each one, a new EventHandler is inserted for the adversary’s

desired event if one is not already present.12

Whenever the registered event handler fires, it checks that:

 The requested path is /owa/auth.owa.

 The username field is set.

 The password field is set.

If the three conditions above are met, then the values of username and password are

written to C:\\Windows\\Temp\\TS_MSOL1.tmp.

Parameters

OWA Credential Logger accepts a pipe-delimited string consisting of three numbers where

each number is used as an offset into an array acquired through reflection to determine if an

event handler should be added.

12 For more information, see the relevant documentation at:
 https://docs.microsoft.com/en-us/dotnet/api/system.web.httpapplication#remarks

READER NOTE

It is important to note that all of the fields discussed in this section are internal to
Microsoft .NET assemblies and are not intended to be used by third-party developers.
Therefore, there is no documentation of these fields' purpose.

OverWatch has inferred the purpose of the fields discussed in this section based on
the context in which they are used and the result achieved by the adversary; however,
OverWatch cannot comment on Microsoft’s intended use of these fields.

The detailed description that follows requires a sound understanding of C# coding
terminology.

https://docs.microsoft.com/en-us/dotnet/api/system.web.httpapplication#remarks

CrowdStrike White Paper 19

TIMELINE
The following timeline shows the build timestamps for each of the 18 modules discussed in

this paper. This shows the progression of the IceApple framework over the past year and

suggests that IceApple remains under active development.

Figure 14. Timeline of IceApple module development

• 05/19/2021 14:53:36 UTC App_Web_ic8e5fk4.dll - Loader

• 06/14/2021 07:55:52 UTC App_Web_06y3iviz.dll - File Writer
• 06/14/2021 07:56:22 UTC App_Web_hp8vzzb4.dll - Active Directory Querier
• 06/14/2021 07:56:30 UTC App_Web_sbp8l0mc.dll - ifconfig
• 06/14/2021 07:56:37 UTC App_Web_67vhaqff.dll - Result Retriever v1

• 08/01/2021 08:04:41 UTC App_Web_xw4crb70.dll - OWA Credential Logger

• 08/01/2021 09:11:18 UTC App_Web_3oqt6248.dll - IIS Module Lister

• 09/27/2021 03:21:29 UTC App_Web_f46v5okg.dll - Server Variable Dumper

• 10/01/2021 07:44:40 UTC App_Web_6nj14khm.dll - Credential Dumper
• 10/10/2021 10:31:41 UTC App_Web_cfzlqtlr.dll - File and Directory Deleter
• 10/12/2021 09:33:16 UTC App_Web_s8x7grb2.dll - HTTP Get
• 10/17/2021 08:36:23 UTC App_Web_ugrfvudi.dll - Multi File Exfiltrator
• 10/27/2021 04:41:39 UTC App_Web_zm5ivgum.dll - query2file

• 02/10/2022 02:47:48 UTC App_Web_8mytedc8.dll - Directory Lister
• 02/11/2022 09:08:00 UTC App_Web_paeld9n9.dll - Result Retriever v2
• 02/18/2022 03:13:00 UTC App_Web_nitm6axl.dll - File Exfiltrator

• 03/10/2022 08:31:21 UTC App_Web_ai57zs2m.dll - Credential Dumper v2

• 04/22/2022 10:27:01 UTC App_Web_ybra1dr2.dll - Directory Lister v2

May 2021

June 2021

August 2021

September 2021

October 2021

February 2022

March 2022

April 2022

CrowdStrike White Paper 20

THE BEST DEFENSE IS A GOOD DEFENSE
At its core, IceApple is a post-exploitation framework focused on increasing an adversary’s

visibility of a target through acquisition of credentials and exfiltration of data. None of the

modules observed by OverWatch provides exploitation or lateral movement capabilities.

As such, the best defense is to protect web applications from malicious access through

sound processes to maintain good baseline security, effective technology to prevent known

threats, and proactive human-led hunting to identify unknown and emerging threats.

OverWatch has only observed IceApple being loaded into application pools associated with

Microsoft Exchange; however, it is capable of running under any IIS web application.

Therefore, ensuring all web applications are regularly and fully patched is critical to preventing

IceApple from ending up in your environment. Technology is also an important part of the

equation, and the Falcon platform detects all currently known IceApple module loads.

Finally, threat hunting is a crucial piece of the defensive puzzle when it comes to novel and

stealthy adversary tools like IceApple. Hunters draw on their extensive experience of what

“normal” looks like in enterprise environments, knowledge of adversary behavior, and up-

to-the-minute threat intelligence to preempt possible threats. This feeds the development

and testing of hypotheses that enhance the hunt and curtail adversary attempts to evade

technology-based defenses.

CONCLUSION
IceApple is a highly sophisticated IIS post-exploitation framework — however, it is by

no means the only one. OverWatch regularly identifies new reflectively loaded .NET

assemblies of various levels of sophistication, ranging from basic wrappers around

Windows utilities such as WMI to highly modularized and well-engineered frameworks with

multiple levels of encryption protecting data in transit and between modules. While many of

the assemblies observed by OverWatch are only seen in a customer’s environment once

and then never again, a few — such as IceApple — continue to be reused on target networks

while showing signs that they are in active development.

CrowdStrike White Paper 21

INDICATORS OF COMPROMISE

SHA256 Assembly Name Module

3514c8f0b6992a4b3746d874013789b8bd3e9ff4a44f0
0f5d076320e6a403136

App_Web_ic8e5fk4, Version=0.0.0.0,
Culture=neutral, PublicKeyToken=null

Module 1: Loader

b6379b98f0993c652fd0c5907395123cfb14fa30818d3
153b7655def8329c4c1

App_Web_paeld9n9, Version=0.0.0.0,
Culture=neutral, PublicKeyToken=null

Module 2: Result Retriever

517d08ffdb2889e11a86b7a011de385dc43623f80f6fdf4
3e55b683c08206228

App_Web_06y3iviz, Version=0.0.0.0,
Culture=neutral, PublicKeyToken=null

Module 3: Result Retriever Variant

3e72696d5618f013cd8fd686c11f9778ac55ce1ca61f5dd
6c5b86b917495bde2

App_Web_8mytedc8, Version=0.0.0.0,
Culture=neutral, PublicKeyToken=null

Module 4: Directory Lister

cf9b151e116ee1429d2fcd3553c90d98a73a4d769f97675
9e60d8113a7d8229c

App_Web_ybra1dr2, Version=0.0.0.0,
Culture=neutral, PublicKeyToken=null

Module 5: Directory Lister Variant

648592597b561c775feb8909148b91bd2e8452ab3b2c1
e98ead2c4f9caf2e3ff

App_Web_hp8vzzb4, Version=0.0.0.0,
Culture=neutral, PublicKeyToken=null

Module 6: File Writer

131c7d2ec3c7dba738466a586aca4bd80af540832b124
3ace184918db65ee7e5

App_Web_cfzlqtlr, Version=0.0.0.0,
Culture=neutral, PublicKeyToken=null

Module 7: File and Directory Deleter

075a8456f3d74da6f830bcae39990f43e4aef63c0a69e
a2f5a5e1eb8ba51b51e

App_Web_67vhaqff, Version=0.0.0.0,
Culture=neutral, PublicKeyToken=null

Module 8: ifconfig

e199faf72661b7e822da2d02aec59227a2d413d02bd288
a3b26e5465d59fda5b

App_Web_s8x7grb2, Version=0.0.0.0,
Culture=neutral, PublicKeyToken=null

Module 9: HTTP Get

c5ff6b1b201d6289ab718575d0175b322653b3fe92c4ba
046fc6e785f83404ed

App_Web_f46v5okg, Version=0.0.0.0,
Culture=neutral, PublicKeyToken=null

Module 10: Server Variable Dumper

29fe8f7cdeb8b2a4c0d9e7410cd4cbe1873a22eada4a59
2b9df6f2ee6c335ff9

App_Web_6nj14khm, Version=0.0.0.0,
Culture=neutral, PublicKeyToken=null

Module 11: Credential Dumper

189dfd287b0ff6b5161a89343fcde57f509dfa99f44277ad-
6cfb9ccbdfbf436a

App_Web_ai57zs2m, Version=0.0.0.0,
Culture=neutral, PublicKeyToken=null

Module 12: Credential Dumper
Variant

9c36f62e2f347e709223f38450f8fcd075b-
273f164219e6fc6db112fdb26db4d

App_Web_sbp8l0mc, Version=0.0.0.0,
Culture=neutral, PublicKeyToken=null

Module 13: Active Directory Querier

2e45ad3689e9b13d40880b142925a4922e77c-
769c9f2809e702d6a4f5485384a

App_Web_zm5ivgum, Version=0.0.0.0,
Culture=neutral, PublicKeyToken=null

Module 14: query2file

91505feb5369978eecba4c92a07f0aaddbddda238e-
da207dd08e81a6839750e6

App_Web_nitm6axl, Version=0.0.0.0,
Culture=neutral, PublicKeyToken=null

Module 15: File Exfiltrator

16cc7ab162aacb38cd0dbf3ad9a9ba836649e3fb7afdb-
189c6d529dd0d9a2bc6

App_Web_ugrfvudi, Version=0.0.0.0,
Culture=neutral, PublicKeyToken=null

Module 16: Multi File Exfiltrator

1629c7a876fb7c63a49a9d182d0c4b993cc3e-
91d4e6c9a2d207a94c2ac810cdd

App_Web_xw4crb70, Version=0.0.0.0,
Culture=neutral, PublicKeyToken=null

Module 17: IIS Module Lister

818e045ad6d365a2560cae35f6cf04e0713586bdfff6f-
341c2ac19539e58c665

App_Web_3oqt6248, Version=0.0.0.0,
Culture=neutral, PublicKeyToken=null

Module 18: OWA Credential Logger

CrowdStrike White Paper 22

ABOUT CROWDSTRIKE
CrowdStrike, a global cybersecurity leader, has redefined modern security with the world’s most

advanced cloud-native platform for protecting critical areas of enterprise risk — endpoints and cloud

workloads, identity and data.

Powered by the CrowdStrike Security Cloud and world-class AI, the CrowdStrike Falcon® platform

leverages real-time indicators of attack, threat intelligence, evolving adversary tradecraft and

enriched telemetry from across the enterprise to deliver hyper-accurate detections, automated

protection and remediation, elite threat hunting and prioritized observability of vulnerabilities.

Purpose-built in the cloud with a single lightweight-agent architecture, the Falcon platform delivers

rapid and scalable deployment, superior protection and performance, reduced complexity and

immediate time-to-value.

CrowdStrike: We stop breaches.

Learn more: https://www.crowdstrike.com/

Follow us: Blog | Twitter | LinkedIn | Facebook | Instagram

Start a free trial today: https://www.crowdstrike.com/free-trial-guide/

© 2022 CrowdStrike, Inc. All rights reserved.

CrowdStrike White Paper

https://www.crowdstrike.com/
https://www.crowdstrike.com/
https://www.crowdstrike.com/blog/
https://twitter.com/CrowdStrike
https://www.linkedin.com/company/crowdstrike
https://www.facebook.com/CrowdStrike
https://www.instagram.com/crowdstrike/
https://www.crowdstrike.com/free-trial-guide/

	Button 2:

