
Highly Resilient Peer-to-Peer Botnets Are Here: An Analysis of Gameover Zeus

Dennis Andriesse1, Christian Rossow1, Brett Stone-Gross2, Daniel Plohmann3, and Herbert Bos1

1VU University Amsterdam, The Netherlands, {d.a.andriesse,c.rossow,h.j.bos}@vu.nl
2Dell SecureWorks, bstonegross@secureworks.com

3Fraunhofer FKIE, Bonn, Germany, daniel.plohmann@fkie.fraunhofer.de

Abstract

Zeus is a family of credential-stealing trojans which

originally appeared in 2007. The first two variants of Zeus

are based on centralized command servers. These com-

mand servers are now routinely tracked and blocked by the

security community. In an apparent effort to withstand these

routine countermeasures, the second version of Zeus was

forked into a peer-to-peer variant in September 2011. Com-

pared to earlier versions of Zeus, this peer-to-peer variant

is fundamentally more difficult to disable. Through a de-

tailed analysis of this new Zeus variant, we demonstrate

the high resilience of state of the art peer-to-peer botnets

in general, and of peer-to-peer Zeus in particular.

1 Introduction

Since its first appearance in 2007, Zeus has grown into one

of the most popular families of credential-stealing trojans.

Due to its popularity, previous versions of Zeus have been

extensively investigated by the security community [6, 18].

The internals of the first two versions of Zeus, which are

based on centralized Command and Control (C2) servers,

are well understood, and C2 servers used by these variants

are routinely tracked and blocked.1

In May 2011, the source code of the second centralized

version of Zeus leaked into the public domain. This has

led to the development of several centralized trojans based

on Zeus, such as ICE IX [16], and the more successful

Citadel [14]. In September 2011, a peer-to-peer (P2P) mu-

tation of centralized Zeus appeared, known as P2P Zeus or

GameOver. Due to its lack of centralized C2 servers, P2P

Zeus is not susceptible to traditional anti-Zeus countermea-

sures, and is much more resilient against takedown efforts

than centralized Zeus variants. In this paper, we perform a

detailed analysis of the P2P Zeus protocol to highlight how

it achieves its resilience. Our insights also shed light on the

resilience potential of peer-to-peer botnets in general.

Centralized Zeus variants are sold as builder kits in the

underground community, allowing each user to build a pri-

vate Zeus botnet. Interestingly, this is no longer supported

in P2P Zeus, which is based on a single coherent P2P net-

work. The main P2P network is divided into several virtual

sub-botnets by a hardcoded sub-botnet identifier in each bot

binary. While the Zeus P2P network is maintained and pe-

riodically updated as a whole, the sub-botnets are indepen-

dently controlled by several botmasters. Bot enumeration

results from our previous work indicate that the Zeus P2P

network contains at least 200.000 bots [11].

The Zeus P2P network serves two main purposes. (1)

Bots exchange binary and configuration updates with each

other. (2) Bots exchange lists of proxy bots, which are des-

ignated bots where stolen data can be dropped and com-

mands can be retrieved. Additionally, bots exchange neigh-

bor lists (peer lists) with each other to maintain a coherent

network. As a backup channel, P2P Zeus also uses a Do-

main Name Generation Algorithm (DGA) [1], in case con-

tact with the regular P2P network is lost.

Our results are based on Zeus samples collected from the

Sandnet analysis environment [13] between February 2012

and July 2013. When we began our analysis, no detailed

information on the Zeus P2P protocol was available from

related work. We verified the correctness of our results

through prototype poisoning and crawling attacks against

Zeus, which are described in our previous work [11].

Our contributions are as follows.

1. We reverse engineer and detail the entire Zeus P2P

protocol and topology, highlighting features that in-

crease the botnet’s resilience to takedown attempts.

2. We show that P2P Zeus has evolved into a complex

bot with attack capabilities that go beyond typical

banking trojans. Particularly, we find that P2P Zeus

is used for activities as diverse as DDoS attacks, mal-

ware dropping, Bitcoin theft, and theft of Skype and

banking credentials.

3. Reports from academia and industry have long

warned of the high resilience potential of peer-to-peer

botnets [4, 5, 7, 19, 20]. Through our analysis of the

communication protocol and resilience mechanisms

of P2P Zeus, we show that highly resilient P2P bot-

nets are now a very real threat.

1http://zeustracker.abuse.ch

2 Network Topology

The Zeus network is organized into three disjoint layers, as

shown in Figure 1. At the bottom of the hierarchy is the

P2P layer, which contains the bots. Periodically, a subset

of the bots is assigned the status of proxy bot. This ap-

pears to be done manually by the botmasters, by pushing a

cryptographically signed proxy announcement message into

the network. The details of this mechanism are explained in

Section 3. The proxy bots are used by harvester bots to fetch

commands and drop stolen data. Aside from their special

function, proxy bots behave like harvester bots.

The proxy bots act as intermediaries between the P2P

layer and a higher layer, which we call the C2 proxy

layer. The C2 proxy layer contains several dedicated HTTP

servers (not bots), which form an additional layer between

the proxy bots and the true root of the C2 communication.

Periodically, the proxy bots interact with the C2 proxy layer

to update their command repository, and to forward the

stolen data collected from the bots upward in the hierarchy.

P2P Layer

C2 Proxy Layer

C2 Layer

Figure 1: Topology of P2P Zeus. Shaded nodes represent proxy

bots. The dotted line shows the information flow between a har-

vester bot and the C2 layer.

Finally, at the top of the hierarchy is the C2 layer, which

is the source of commands and the end destination of stolen

data. Commands propagate downward from the C2 layer,

through the C2 proxy layer to the proxy bots, where they

are fetched by harvester bots. Similarly, data stolen by har-

vester bots is collected by the proxy bots, and periodically

propagated up until it ultimately reaches the C2 layer.

As mentioned in Section 1, the main P2P network is di-

vided into several virtual sub-botnets by a hardcoded sub-

botnet identifier in each bot binary. Since each of these

sub-botnets is independently controlled, the C2 layer may

contain multiple command sources and data sinks.

3 P2P Protocol

This section describes our analysis results on the Zeus

P2P communication protocol. The results are based on Zeus

variants we tracked between February 2012 and July 2013.

In that time, several changes were made to the protocol by

the Zeus authors. The results presented here apply to all

recent P2P Zeus versions, except where noted differently.

We first provide a high level overview of the Zeus P2P

protocol in Section 3.1. Next, we describe the encryption

used in Zeus traffic in Section 3.2. Sections 3.3 and 3.4

provide a detailed overview of the Zeus message structure.

Finally, Section 3.5 describes in detail how the Zeus P2P

protocol operates.

3.1 Overview

As mentioned in Section 1, the Zeus P2P network’s main

functions are (1) to facilitate the exchange of binary and

configuration updates among bots, and (2) to propagate lists

of proxy bots. Most normal communication between bots

is based on UDP. The exceptions are Command and Con-

trol (C2) communication between harvester bots and proxy

bots, and binary/configuration update exchanges, both of

which are TCP-based.

Bootstrapping onto the network is achieved through a

hardcoded bootstrap peer list. This list contains the IP ad-

dresses, ports and unique identifiers of up to 50 Zeus bots.

Zeus port numbers range from 1024 to 10000 in versions

after June 2013, and from 10000 to 30000 in older versions.

Unique identifiers are 20 bytes long and are generated at

infection time by taking a SHA-1 hash over the Windows

ComputerName and the Volume ID of the first hard-drive.

These unique identifiers are used to keep contact informa-

tion for bots with dynamic IPs up-to-date.

Network coherence is maintained through a push-/pull-

based peer list exchange mechanism. Zeus generally prefers

to push peer list updates; when a bot receives a message

from another bot, it adds this other bot to its local peer

list if the list contains less than 50 peers. Bots in desper-

ate need of new peers can also actively request them. In

principle, the peer pushing mechanism facilitates peer list

poisoning attacks against Zeus. However, as we will see in

Sections 3.2, 3.5.1 and 4, Zeus includes several resilience

measures which severely complicate poisoning attacks.

Zeus bots check the responsiveness of their neighbors

every 30 minutes. Each neighbor is contacted in turn, and

given 5 opportunities to reply. If a neighbor does not re-

ply within 5 retries, it is deemed unresponsive, and is dis-

carded from the peer list. During this verification round,

every neighbor is asked for its current binary and config-

uration file version numbers. If a neighbor has an update

available, the probing bot spawns a new thread to download

the update. Updates are signed using RSA-2048, and are

applied after the bot has checked that the update’s embed-

ded version number is higher than its current version. Thus,

it is impossible to force bots to “update” to older versions.

The neighbor verification round is also used to pull peer

list updates if necessary. If the probing bot’s peer list con-

tains less than 25 peers, it asks each of its neighbors for a

list of new neighbors. The returned peer lists can contain

up to 10 peers. The returned peers are selected by minimal

Kademlia-like XOR distance to the requesting bot’s iden-

tifier [10]. However, we note that the Zeus P2P network

is not a Distributed Hash Table, and apart from this XOR

metric the protocol bears no resemblance to Kademlia.

In case a Zeus bot finds all of its neighbors to be un-

responsive, it attempts to re-bootstrap onto the network by

contacting the peers in its hardcoded peer list. If this also

fails, the bot switches to a DGA backup channel, which can

be used to retrieve a fresh, RSA-2048 signed, peer list. Ad-

ditionally, in recent variants of Zeus, the DGA channel is

also contacted if a bot is unable to retrieve updates for a

week or longer. This is a very important resilience feature,

as it allows the botnet to recover from peer list poisoning

attacks. The DGA mechanism is described in more detail in

Section 4.

As mentioned, one of the most important functions of

the Zeus P2P network is to propagate lists of proxy bots.

These proxy bots are periodically selected from the general

bot population, and are contacted by bots which need to

fetch commands and drop stolen data. Like the peer list ex-

change mechanism, the proxy list mechanism is also push-

/pull-based. When a new proxy bot is appointed by the bot-

masters, an RSA-2048 signed push message is disseminated

through the network to announce it.

Bots are commanded in two ways. (1) As mentioned be-

fore, harvester bots can contact proxy bots to retrieve com-

mands. (2) Configuration file updates can also be used to

convey commands to the bots.

3.2 Encryption

Until recently, bot traffic was encrypted using a rolling XOR

algorithm, known as “visual encryption” from centralized

Zeus [18], which encrypts each byte by XORing it with the

preceding byte. Since June 2013, Zeus uses RC4 instead

of the XOR algorithm, using the recipient’s bot identifier

as the key. Rogue bots used by analysts to infiltrate the

network typically use continuously changing bot identifiers

to avoid detection [11]. The new RC4 encryption is a prob-

lem, because a rogue bot may not always know under which

identifier it is known to other bots, thus preventing it from

decrypting messages it receives. In addition, RC4 increases

the load on botnet detection systems which rely on decrypt-

ing C2 traffic [12].

Zeus uses RSA-2048 to sign sensitive messages origi-

nating from the botmasters, such as updates and proxy an-

nouncements. In all P2P Zeus variants we studied, update

exchanges and C2 messages feature RC4 encryption over

an XOR encryption layer. For these messages, either the

identifier of the receiving bot or a hardcoded value is used

as the RC4 key, depending on the message type.

3.3 Message Structure

This section describes the structure of Zeus network mes-

sages. Zeus messages vary in size, but have a minimum

length of 44 bytes. The first 44 bytes of each message form

a header, while the remaining bytes form a payload con-

catenated with padding bytes. The Zeus message structure

is illustrated in Figure 2. The following message structure

diagrams are to scale. Shaded areas do not represent part of

the message structure itself, but serve to align the fields in

the figures.

rnd

(1B)

TTL

(1B)

LOP

(1B)

type

(1B)

session ID (20 bytes)

source ID (20 bytes)

payload + padding

...

Figure 2: The Zeus message structure.

3.3.1 rnd (random)

In Zeus versions which use the XOR encryption, this byte

is set to a random value. This is done to avoid leaking in-

formation, since the XOR encryption leaves the first byte in

plaintext. In Zeus versions which use RC4 for message en-

cryption, this byte is set to match the first byte of the session

ID, so that it can be used to confirm that packet decryption

was successful. Backward compatibility with older bots is

achieved by falling back to the XOR encryption if RC4 de-

cryption fails.

3.3.2 TTL (time to live)

The TTL field is usually unused, in which case it is set to

a random value, or to the second byte of the session ID for

variants using RC4 encryption. However, for certain mes-

sage types, this field serves as a time to live counter. A bot

receiving a message using the TTL field forwards it with a

decremented TTL. This continues iteratively until the TTL

reaches zero.

3.3.3 LOP (length of padding)

Zeus messages end with a random amount of padding bytes.

This is most likely done to confuse signature-based intru-

sion detection systems. The length of padding field indi-

cates the number of padding bytes appended to a message.

3.3.4 type

This field indicates the type of the message. The message

type is used to determine the structure of the payload, and in

certain cases the meaning of some of the header fields, such

as the TTL field. Valid Zeus message types are described in

Section 3.4.

3.3.5 session ID

When a Zeus bot sends a request to another bot, it includes

a random session ID in the request header. The correspond-

ing reply will include the same session ID, and incoming

replies with unexpected session ID values are discarded.

This makes it more difficult for attackers to blindly spoof

Zeus messages.

3.3.6 source ID

This field contains the 20 byte bot identifier of the sending

bot. The source ID field facilitates the push-based peer list

update mechanism, where a bot receiving a message adds

the sender of the message to its peer list in case the peer list

contains less than 50 peers.

3.3.7 payload

This is a variable-length field which contains a payload de-

pendent on the message type. The structures of relevant

message payload types are described in detail in Section 3.4.

3.3.8 padding

This field contains a random number of random (non-zero)

padding bytes. The number of padding bytes is specified in

the length of padding field in the message header.

3.4 Payload Structure

In this section, we describe the structure and usage of the

most relevant Zeus message types. Each of these message

types is communicated over UDP, except for C2 messages

and updates, which are exchanged over a TCP connection.

3.4.1 Version request (type 0x00)

Version request messages are used to request a bot’s current

binary and configuration file version numbers. These mes-

sages usually contain no payload, but may contain a payload

consisting of a little endian integer with value 1, followed

by 4 random bytes. Such a payload serves as a marker to in-

dicate that the requesting peer wants to receive a type 0x06

proxy reply message (see Section 3.4.7).

3.4.2 Version reply (type 0x01)

A version reply contains the version numbers of the binary

and configuration files of the sender. The binary version in-

dicates the sender’s Zeus version, while the configuration

file version indicates the sender’s configuration file version.

A TCP port is also sent, which may be contacted to down-

load the updates via TCP, although some Zeus variants also

support using UDP for this (see Sections 3.4.5 and 3.4.6).

Version replies end with 12 random bytes. The reply struc-

ture is shown in Figure 3.

binary version (4 bytes)

config file version (4 bytes)

TCP port (2 bytes)

random (12 bytes)

Figure 3: Version reply payload (22 bytes).

3.4.3 Peer list request (type 0x02)

Peer list requests (Figure 4) are used to request new peers

from other bots. Zeus only sends active peer list requests if

its peer list is becoming critically short (less than 25 peers).

Otherwise, bots typically rely on storing the senders of in-

coming requests.

The payload of a peer list request consists of a 20 byte

identifier, followed by 8 random bytes. The responding peer

will return the peers from its own peer list that are closest to

the requested identifier.

identifier (20 bytes)

random (8 bytes)

Figure 4: Peer list request payload (28 bytes).

3.4.4 Peer list reply (type 0x03)

Peer list replies contain 10 peers from the responding peer’s

peer list which are closest to the requested identifier. If the

responding peer knows fewer than 10 peers, then as many

peers as possible (potentially zero) are returned, and any re-

maining peer slots are zeroed out. For each returned peer,

the payload format is as shown in Figure 5. Zeus supports

both IPv4 and IPv6, but in practice we have observed very

few IPv6 peers. The IP type field indicates whether the peer

is reachable via IPv4 (set to 0) or IPv6 (set to 2). The re-

maining fields contain the peer’s identifier, IP address and

UDP port. Any unused fields are randomized.

IP type (1B)

peer ID (20 bytes)

IPv4 addr (4 bytes) IPv4 port

(2B)

IPv6 addr (16 bytes)

IPv6 port

(2B)

Figure 5: Peer struct (45 bytes).

3.4.5 Data request (type 0x04/0x68/0x6A)

A UDP data request payload, shown in Figure 6, starts with

a single byte indicating the kind of requested data. This byte

is set to 1 for a configuration file download, or to 2 for a bi-

nary update. The offset field indicates the word offset into

the data at which transmission should start, and the size field

specifies how many data bytes should be sent. TCP data re-

quests consist of a message header with type 0x68 for a

binary request, or type 0x6A for a configuration request.

type (1B)

offset (2 bytes) size (2 bytes)

Figure 6: Data request payload (5 bytes).

3.4.6 Data reply (type 0x05/0x64/0x66)

UDP data transfers (type 0x05) are sent in chunks of 1360

bytes, until no more data is available. If a bot receives a data

reply containing less than 1360 data bytes, it assumes that

this is the last data block, and ends the download. If a data

reply takes longer than 5 seconds to arrive, the download

is aborted, and the maximum total size of any download

is 10MB. These constraints mean that it is not possible to

launch “tarpit” attacks, where bots are tied up by very slow

and never ending downloads.

Each data reply (Figure 7) starts with a 4 byte randomly

chosen file identifier, followed by the requested data. The

transmitted files end with an RSA-2048 signature over the

MD5 hash of the plaintext data, and are encrypted with RC4

using a hardcoded key on top of an XOR encryption layer.

Before applying an update, Zeus checks that the version

number contained in the update is strictly higher than its

current version number. This means that it is not possible to

make Zeus bots revert to older versions.

TCP data transfers start with a message header of type

0x64 for a binary update, or 0x66 for a configuration up-

date, followed by the RC4 encrypted data.

data block ID (4 bytes)

data

...

Figure 7: Data reply payload (length varies).

3.4.7 Proxy reply (type 0x06)

Proxy replies return proxy bots in response to version re-

quests carrying a proxy request marker. A proxy reply can

contain up to 4 proxy bot entries, each of which is RSA-

2048 signed. Each proxy entry is formatted as shown in

Figure 8. The format is similar to that used in peer list

replies, except that the IP type field is 4 bytes long, and

there is an RSA signature at the end of each proxy entry.

3.4.8 Proxy announcement (type 0x32)

Proxy announcements are similar to proxy replies, but are

actively pushed through the Zeus network by bots which

are appointed as proxies by the botmasters. Newly ap-

pointed proxy bots announce themselves to all their neigh-

bors, which pass on the message to all their neighbors, and

so on. This continues until the TTL field (Section 3.3)

reaches zero. The TTL field has an initial value of 4 for

proxy announcements. Thus, proxy announcements prop-

agate very rapidly, although they cannot reach NATed bots

directly. Proxy announcements contain a single proxy entry

of the same format used in type 0x06 messages, as shown

in Figure 8.

IP type (4 bytes)

proxy ID (20 bytes)

IPv4 addr (4 bytes) IPv4 port

(2B)

IPv6 addr (16 bytes)

IPv6 port

(2B)

RSA signature (256 bytes)

...

Figure 8: Proxy struct (304 bytes).

3.4.9 C2 message (type 0xCC)

Unlike most message types, C2 messages are only ex-

changed between harvester bots and proxy bots, and are

exchanged over TCP. C2 messages are used as wrappers

for HTTP messages. Because of this, we suspect that the

communication between proxy bots and the C2 proxy layer

is HTTP-based. The HTTP-based C2 protocol is heavily

based on the C2 protocol used in centralized Zeus [2, 6].

An example C2 HTTP header for a command request is

shown in Figure 9. The X-ID field specifies the sub-botnet

for which a command is being requested.

POST /write HTTP/1.1

Host: default

Accept-Encoding:

Connection: close

Content-Length: 400

X-ID: 100

Figure 9: C2 HTTP header.

The HTTP header is followed by an HTTP payload,

which consists of several, optionally zlib-compressed, data

fields. The payload begins with a header specifying the pay-

load size and flags, and the number of data fields that follow.

The payload header ends with an MD5 hash of the com-

bined data fields, which is used to verify message integrity.

Each data field is XOR encrypted, and starts with a

header specifying the field type, flags, and compressed and

uncompressed sizes. After the header comes the actual data,

the structure of which is dependent on the field type.

C2 request messages typically contain several status and

information fields about the requesting bot. Typical fields

included in C2 requests are shown in Table 1. Note that

the type numbers of data fields are completely independent

from Zeus message type numbers.

Type Content

0x65 System name and volume ID

0x66 Bot identifier

0x67 Infecting spam campaign

0x6b System timing information

0x77 Stolen data

Table 1: Typical C2 request fields.

The most important data field contained in a C2 response

is the command field, which has type 0x01. It contains

an MD5 hash used to verify integrity of the command, fol-

lowed by the command itself in the form of an ASCII-string.

Notable command strings are listed in Table 2.

Command Meaning

user execute Execute file at URL

user certs get Steal crypto certificates

user cookies get Steal cookies

ddos url DDoS a given URL

user homepage set Set homepage to URL

fs pack path Upload local files to botmaster

bot bc add Open VNC server

Table 2: Notable C2 command strings.

As can be seen from Table 2, Zeus supports a diverse

set of commands, which goes far beyond that of a typical

banking trojan. The supported commands include dropping

files, launching DDoS attacks, providing remote access to

the botmasters, and stealing a plethora of credentials. Aside

from banking credentials, we have observed Zeus stealing

Skype and MSN database files, as well as Bitcoin wallets.

3.5 Communication Patterns

Each Zeus bot runs a passive thread, which listens for in-

coming requests, as well as an active thread, which peri-

odically generates requests to keep the bot up-to-date and

well-connected. We describe the behavior of each of these

threads in turn.

3.5.1 Passive thread

Every Zeus bot listens for incoming messages in its pas-

sive thread. A Zeus bot receiving an incoming request at-

tempts to handle this request as described in Section 3.4.

The sender of any successfully handled request is consid-

ered for addition to the receiving bot’s peer list. This is the

main mechanism used by externally reachable Zeus bots to

learn about neighbors, and it is also how new bots intro-

duce themselves to the network. If the receiving bot has

fewer than 50 neighbors, then it always adds the sender of

the request to its peer list. Additionally, if the identifier of

the sender is already present in the peer list, then the corre-

sponding IP address and port are updated. This is done to

accommodate senders with dynamic IPs and discard stale

dynamic IPs. If the identifier of the sender is not yet known,

but the peer list already contains 50 peers or more, then the

sending peer is stored in a queue of peers to be considered

for addition during the next neighbor verification round (see

Section 3.5.2).

Before adding a new peer to the peer list, a number of

sanity checks are performed. First, only peers which have a

source port in the expected range are accepted. NATed bots

may make it into the peer lists of other bots, if they happen

to choose a port in the valid range. Additionally, only one

IP address per /20 subnet may occur in a bot’s peer list at

once. This defeats peer list poisoning attempts which use

IP ranges within the same subnet. Recent versions of Zeus

also include an automatic blacklisting mechanism, which

blacklists IPs that contact a bot too frequently in a specified

time window. This mechanism further complicates efficient

crawling and poisoning of the network.

When a type 0x32 proxy announcement arrives, its sig-

nature is first checked for validity. If the message passes

the check, the TTL field is decremented and the message is

forwarded to all known neighbors if the TTL is still posi-

tive. Furthermore, new proxy bots which pass verification

are considered for addition to the receiving bot’s proxy list.

The proxy list is similar to the peer list, but is maintained

separately. If the identifier of the new proxy is already in

the proxy list, then the corresponding IP address and port

are updated. Otherwise, if a proxy list entry is found that

is over 100 minutes older than the new proxy, this entry is

overwritten with the new proxy (this is not done for type

0x06 proxy replies). In any other case, the new proxy is

added to the end of the proxy list. Finally, the proxy list is

truncated to its maximum length of 10 entries, effectively

discarding the new proxy if the proxy list was already 10

entries long.

3.5.2 Active thread

The Zeus active communication pattern consists of a large

loop which repeats every 30 minutes. The function of the

active communication loop is to keep Zeus itself, as well as

the peer list and proxy list, up to date.

In each iteration of the loop, Zeus queries each of its

neighbors for their binary and configuration file versions.

This step serves to keep the bot up to date, and to check each

neighbor for responsiveness. If Zeus knows fewer than 4

proxy bots, it piggybacks a proxy request marker with each

version request. Each peer is given 5 chances to respond to

a version request. If a peer fails to answer within the maxi-

mum number of retries, Zeus checks if it has working Inter-

net access by attempting to contact www.google.com or

www.bing.com. If it does, the unresponsive peer is dis-

carded. If the peer responded and is found to have an update

available, the update is downloaded in a separate thread.

After version querying all peers in its peer list, Zeus pro-

ceeds to handle any pending peers which were queued from

incoming requests (see Section 3.5.1). Pending peers are

only handled if the peer list contains fewer than 50 peers,

and the procedure is stopped as soon as the peer list reaches

length 50. Each pending peer is sent a single version re-

quest, and is added to the peer list if it responds.

Finally, if the peer list contains fewer than 25 peers, the

bot will actively send peer list requests to each of its neigh-

bors until the peer list reaches a maximum size of 150 peers.

This is only done once every 6 loop cycles (3 hours), and is

an emergency measure to prevent the bot from becoming

isolated. If, despite this effort, a bot does find itself iso-

lated, it will attempt to recover connectivity by contacting

its hardcoded bootstrap peer list. If this also fails, the bot

will enter DGA mode, as further described in Section 4.

4 Domain Name Generation Algorithm

As mentioned in Section 3.1, Zeus contains a Domain Gen-

eration Algorithm, activated if all of a bot’s neighbors are

unresponsive, or the bot cannot fetch updates for a week.

The DGA generates domains where Zeus can download a

fresh RSA-2048 signed peer list. The DGA is a very po-

tent backup mechanism, which makes long term poisoning

or sinkholing attacks against Zeus very difficult [11].

4.1 Algorithm Details

The Zeus Domain Generation Algorithm generates 1000

unique domains per week. A bot entering the DGA starts

at a random position in the current week’s domain list and

sequentially tries all domains until it finds a responsive do-

main. The DGA uses top-level domains taken from the

set {biz, com, info, net, org, ru}. The Zeus DGA

bears some resemblance to the DGA of Murofet, a malware

known to be related to centralized Zeus [8].

for(i = 0; i < 1000; i++) {

S[0] = (year + 48) % 256; S[1] = month;

S[2] = 7 * (day / 7); *(in t*)&S[3] = i;

/* convert hash to domain name */

name = ""; hash = md5(S);

for(j = 0; j < len(hash); j++) {

c1 = (hash[j] & 0x1F) + ’a’;

c2 = (hash[j] / 8) + ’a’;

i f(c1 != c2 && c1 <= ’z’) name += c1;

i f(c1 != c2 && c2 <= ’z’) name += c2;

}

/* select TLD for domain */

i f(i % 6 == 0) name += ".ru";

e l s e i f(i % 5 != 0) {

i f(i & 0x03 == 0) name += ".info";

e l s e i f(i % 3 != 0) {

i f((i % 256) & 0x01 != 0) name += ".com";

e l s e name += ".net";

} e l s e name += ".org";

} e l s e name += ".biz";

domains[i] = name;

}

Figure 10: The P2P Zeus Domain Name Generation Algorithm.

The Zeus DGA is shown in C-like pseudocode in Fig-

ure 10. The code shown generates all 1000 domains for

a given week. The generation of a domain name starts by

taking the MD5 hash over the concatenation of (transforma-

tions of) the year, month, day, and domain index. The MD5

hash is then used to generate a domain name of at most

32 lower case alphabetic characters. Finally, the domain is

completed by selecting one of the six top-level domains and

concatenating it to the domain name.

5 Related Work

Early insights on P2P Zeus were provided by Lelli [9] and

abuse.ch [17]. Special attention to the lifecycle of Zeus

has been given by Stone-Gross [15].

The most recent previous account of P2P Zeus that we

know of is given in a technical report by CERT.pl [3]. The

research of CERT.pl took place independently from, but

concurrently with, our own research. While CERT.pl has

focused on the P2P Zeus malware as a whole, we provide a

more in-depth account focused specifically on the peer-to-

peer protocol and its resilience. Additionally, the CERT.pl

report predates the Zeus protocol change of June 2013, and

thus does not include information on the new protocol fea-

tures and encryption mechanism.

Our previous work has provided a comparison of the

Zeus P2P protocol to other P2P botnet protocols [11]. Our

current work differs in that we provide a much more de-

tailed insight into the functionality and resilience of P2P

Zeus in particular. To the best of our knowledge, our work

is the most detailed account of P2P Zeus to date.

6 Conclusion

P2P Zeus is a significant evolution of earlier Zeus variants.

Compared to traditional centralized versions of Zeus, P2P

Zeus is much more resilient against takedown attempts. Po-

tential countermeasures against P2P Zeus are complicated

by its application of RSA-2048 signatures to mission crit-

ical messages, and rogue bot insertion is complicated by

the Zeus message encryption mechanism which makes the

use of random bot identifiers impossible. Poisoning at-

tempts are forced to use widely distributed IPs due to a

per-bot IP filter which only allows a single IP per /20 sub-

net. The network’s resilience against takedown efforts is

further increased by its use of a Domain Generation Al-

gorithm backup channel, and by an automatic blacklisting

mechanism. P2P Zeus demonstrates that modern P2P bot-

nets represent a new level of botnet resilience, previously

unseen in centralized botnets.

Acknowledgements

We would like to thank Tillmann Werner for the collabora-

tion on reversing the Zeus peer-to-peer protocol. We also

thank Christian J. Dietrich and Tomasz Bukowski for shar-

ing their insights with us. This work was supported by the

European Research Council Starting Grant “Rosetta” and

the EU FP7-ICT-257007 SysSec project.

References

[1] M. Antonakakis, R. Perdisci, Y. Nadji, N. Vasiloglou, S. Abu-Nimeh,

W. Lee, and D. Dagon. From Throw-Away Traffic to Bots: De-

tecting the Rise of DGA-Based Malware. In Proceedings of the

21st USENIX Security Symposium (USENIX Sec’12), Bellevue, WA,

USA, 2012.

[2] H. Binsalleeh, T. Ormerod, A. Boukhtouta, P. Sinha, A. Youssef,

M. Debbabi, and L. Wang. On the Analysis of the Zeus Botnet

Crimeware Toolkit. In Proceedings of the 8th Annual Conference

on Privacy, Security and Trust (PST’10), Ottawa, Ontario, Canada,

August 2010.

[3] CERT.pl. Zeus P2P Monitoring and Analysis, 2013. Tech-

nical Report. http://www.cert.pl/PDF/2013-06-p2p-

rap_en.pdf.

[4] D. Dagon, G. Gu, C. P. Lee, and W. Lee. A Taxonomy of Botnet

Structures. In Proceedings of the 23rd Annual Computer Security

Applications Conference (ACSAC’07), 2007.

[5] D. Dittrich and S. Dietrich. P2P as Botnet Command and Control:

A Deeper Insight. In Proceedings of the 3rd International Confer-

ence on Malicious and Unwanted Software (MALWARE’08), Octo-

ber 2008.

[6] N. Falliere and E. Chien. Zeus: King of the Bots, 2009. Technical

Report, Symantec.

[7] R. Hund, M. Hamann, and T. Holz. Towards Next-Generation Bot-

nets. In Proceedings of the 4th European Conference on Computer

Network Defense (EC2ND’08), 2008.

[8] K. Itabashi. How Trojan.Zbot.B!inf Uses the Crypto API, 2010.

Technical Report, Symantec. http://www.symantec.com/

connect/blogs/how-trojanzbotbinf-uses-crypto-

api.

[9] A. Lelli. Zeusbot/Spyeye P2P Updated, Fortifying the Botnet,

2012. Technical Report, Symantec. http://www.symantec.

com/connect/blogs/zeusbotspyeye-p2p-updated-

fortifying-botnet.

[10] P. Maymounkov and D. Mazières. Kademlia: A Peer-to-Peer Infor-

mation System Based on the XOR Metric. In Revised Papers from

the 1st International Workshop on Peer-to-Peer Systems (IPTPS’02),

2002.

[11] C. Rossow, D. Andriesse, T. Werner, B. Stone-Gross, D. Plohmann,

C. Dietrich, and H. Bos. P2PWNED: Modeling and Evaluating the

Resilience of Peer-to-Peer Botnets. In Proceedings of the 34th IEEE

Symposium on Security and Privacy (S&P’13), San Francisco, CA,

USA, May 2013.

[12] C. Rossow and C. J. Dietrich. ProVeX: Detecting Botnets with En-

crypted Command and Control Channels. In Proceedings of the 10th

Conference on Detection of Intrusions and Malware & Vulnerability

Assessment (DIMVA’13), July 2013.

[13] C. Rossow, C. J. Dietrich, H. Bos, L. Cavallaro, M. van Steen, F. C.

Freiling, and N. Pohlmann. Sandnet: Network Traffic Analysis of

Malicious Software. In Proceedings of the 1st ACM EuroSys Work-

shop on Building Analysis Datasets and Gathering Experience Re-

turns for Security (BADGERS’11), 2011.

[14] R. Sherstobitoff. Inside the World of the Citadel Trojan, 2013. Tech-

nical Report, McAfee.

[15] B. Stone-Gross. The Lifecycle of Peer-to-Peer Zeus, 2012. Tech-

nical Report, Dell SecureWorks. http://www.secureworks.

com/cyber-threat-intelligence/threats/The_

Lifecycle_of_Peer_to_Peer_Gameover_ZeuS/.

[16] D. Tarakanov. Ice IX: Not Cool At All, 2011. Technical Report,

Kaspersky Lab. http://www.securelist.com/en/blog/

563/Ice_IX_not_cool_at_all.

[17] abuse.ch. Zeus Gets More Sophisticated Using P2P Techniques,

2011. Technical Report. http://www.abuse.ch/?p=3499.

[18] J. Wyke. What is Zeus?, 2011. Technical Report, SophosLabs.

[19] G. Yan, S. Chen, and S. Eidenbenz. RatBot: Anti-enumeration Peer-

to-Peer Botnets. In Lecture Notes in Computer Science, vol. 7001,

2011.

[20] T.-F. Yen and M. K. Reiter. Revisiting Botnet Models and Their Im-

plications for Takedown Strategies. In Proceedings of the 1st Con-

ference on Principles of Security and Trust (POST’12), 2012.

