

NCC Group | Page 1 TLP: WHITE

Version 1.1

NCC Group Malware Technical Note

Derusbi Server variant (November 2014)

Handling information

This document was produced by the NCC Group Cyber Defence Operations team. The content of
this document should be considered proprietary information.

NCC Group gives permission to copy this report for the purposes of disseminating information at TLP
WHITE. Please see the US CERT website for full details of the traffic light marking system.

Contents

Derusbi Server variant (November 2014) ... 1

Contents .. 1

Introduction .. 2

Initial samples .. 2

Analysis of injection mechanism ... 3

Stage 1: WMI.DLL ... 3

Stage 2: WMRKINS.TBL ... 3

Stage 3: Embedded DLL ... 4

Stage 4: OFFICEUT32.DLL ... 4

Stage 5: dump_dumpfve.sys ... 5

Stage 6: Update.dll .. 5

Identifying suspicious files ... 6

Yara rules .. 6

Ssdeep fuzzy hashes ... 7

Identifying infected machines .. 7

Persistence mechanism - DLL Hijacking ... 7

Identifying driver components - GMER .. 8

Identifying driver components – accesschk ... 9

Identifying driver components – WinObj .. 10

Identifying over the network ... 10

Identifying firewall hooks – Volatility .. 11

Summary of files .. 12

Document history .. 13

https://www.us-cert.gov/tlp

NCC Group | Page 2 TLP: WHITE

Version 1.1

Introduction

This document provides brief technical details of one of the pieces of malware found during an
incident response engagement conducted on behalf of a client in November 2014.

During the overall incident the attackers made a number of attempts to remain persistent in the
network including:

 Elevating privileges with a technique similar to the Churrasco IIS6 token kidnapping exploit.
 Dropping ASPXSpy webshells on public facing servers.
 Using the Gh0st RAT.

The most sophisticated persistence attempt included the installation of the Derusbi Server backdoor
on a number of machines. This backdoor has previously been reported by both RSA1 and Novetta2.

This document outlines the key features of the persistence mechanism, which appears to be different
from previously reported samples seen in prior attacks. A number of mechanisms for detecting
whether the Derusbi Server backdoor is installed on a computer are also provided.

Initial samples

Two files were obtained from a Windows 2003 Server which had been created by the attacker. Both
were owned by an administrative user due to the attackers using pass the hash techniques to
impersonate a domain administrator.

No specific changes to the operating system’s configuration for persistence were identified. Further
analysis showed that the execution of the code contained in the malicious wmi.dll relies on DLL load
order hijacking. The legitimate wmi.dll is located in %System32%, however the malicious one is
loaded first by wmiprvse.exe as both files are located in the same directory.

During the execution of the malware a number of additional DLLs and device drivers are
deobfuscated and unpacked. However, although there are several layers to the malware, only two of
these files are written to disk. An overview of all files, including those unpacked and executed in
memory, is provided in the section Summary of files.

Original file path MD5

C:\Windows\system32\wbem\wmi.dll 81DF67FCA641A3EEA60072E81CEE039A

C:\Windows\system32\wmrkins.tbl 76D62E98AF4E9235DCC8AEDDF32840AC

1 http://www.emc.com/collateral/white-papers/h12756-wp-shell-crew.pdf
2 http://www.novetta.com/wp-content/uploads/2014/11/Executive_Summary-Final_1.pdf

NCC Group | Page 3 TLP: WHITE

Version 1.1

Analysis of injection mechanism

Stage 1: WMI.DLL

When loaded the DLL WMI.DLL reads wmrkins.tbl into heap memory. It then exclusive-ors (XORs)
each byte in the file with 0xB5 to decode its contents. Finally it calls a decompression routine using
MiniLZO3 and writes the decompressed data to an executable buffer on the heap. A new thread is
then created with code execution commencing at the start of the decompressed code. The usage of
MiniLZO in this DLL is consistent with usage elsewhere in the Derusbi Server backdoor.

The code also tries to open C:\windows\temp\WMI0I0ARK.AX for write access with the attribute set to
hidden. However, it does nothing with this file at this time. The presence of this file can be used to
identify machines which have been infected. The code installs a Windows messaging hook using
SetWindowsHookExA, though this appears to do nothing and the callback function simply passes the
message using CallNextHookEx.

The DLL exports the same functions as the real wmi.dll and essentially proxies them. DllMain loads
the real wmi.dll and stores its base address in a global variable. Each exported function calls a
function which uses GetProcAddress to find the real code and then jumps to it.

Stage 2: WMRKINS.TBL

The unobfuscated and decompressed code extracted from wmrkins.tbl runs directly from memory.
At least some parts, if not the entire code stub, have been hand-coded in x86 assembly language.
The main purpose is to extract an embedded PE stored within the binary image.

The code contains a PE loader that extracts each section into virtual memory, resolves imports and
calls the entry point. It provides the equivalent of LoadLibrary without the need to write the PE to
disk.

The code is highly similar to a typical exploit payload in that it is position-independent binary with no
external dependencies. All necessary APIs are found directly using native implementations of
GetModuleHandle and GetProcAddress using hashes rather than names. The following APIs are
resolved and stored in a table:

Library Function Offset

ntdll memcpy 0x0c

ntdll memset 0x10

ntdll RtlAllocateHeap 0x18

ntdll RtlReAllocateHeap 0x14

kernel32 GetProcAddress 0x04

kernel32 GetProcessHeap 0x1c

kernel32 IsBadReadPtr 0x20

kernel32 LoadLibraryA 0x00

kernel32 VirtualAlloc 0x24

kernel32 VirtualFree 0x28

kernel32 VirtualProtect 0x2c

3 http://www.oberhumer.com/opensource/lzo/

http://www.oberhumer.com/opensource/lzo/

NCC Group | Page 4 TLP: WHITE

Version 1.1

Stage 3: Embedded DLL

The DLL extracted has no exports and all functionality is exposed via the entry point DllMain. When
loaded it performs the following actions.

1. Creates a mutex called symantec_srv002
2. Decompresses an embedded DLL to memory
3. Attempts to open services.exe or if that fails dllhost.exe
4. Enables debugging privileges for itself
5. Injects the uncompressed DLL into the remote process
6. Injects a loader stub into the remote process
7. Creates a remote thread to call the loader stub

The loader stub is functionally identical to the PE loader in the previous version. There are minor
implementation-level differences; functions are resolved by name rather than hash, for example. The
embedded DLL is decompressed using the same MiniLZO code as in wmi.dll. From its export table
we can deduce that the embedded and injected DLL is called OfficeUt32.dll.

Stage 4: OFFICEUT32.DLL

This library is the usermode portion of the Derusbi Server variant and has five exported functions:

 DllRegisterServer
 Func
 ServiceMain
 SvchostPushServiceGlobals
 WUServiceMain

The entry point resolves the module name and stores it in a global variable, creates a thread and
exits. The thread created sleeps for 60 seconds then calls another function to spawn a worker thread
and exits. The worker thread performs a number of tasks.

1. Initializes a random number generator then enables various privileges: SeDebugPrivilege,
SeLoadDriverPrivilege, SeShutdownPrivilege and SeTcbPrivilege.

2. Checks whether \Device\{93144EB0-8E3E-4591-B307-8EEBFE7DB28F} exists and, if not,
extracts an embedded kernel driver and loads it. The kernel driver is obfuscated by
exclusive-or with a constant 32-bit mask and compressed using LZO. The driver is written to
dump_dumpfve.sys under the system’s drivers directory and loaded. This embedded driver

matches previous reporting about the Derusbi Server backdoor.
3. Creates another thread which contains the main command handler.
4. The command handler extracts an embedded DLL and writes it to disk using the same

obfuscation and compression as the driver. From its export table we can see the DLL is
called Update.dll.

The code has a number of unusual features. There is extensive use of SSE assembly instructions.
Normally this type of assembly code is only emitted by a compiler for highly optimized intrinsic
functions such as memset and memcpy or computational routines that vectorize easily.

The code checks the capabilities of the CPU extensively and in some cases selects routines based
on those capabilities.

Several analysed routines which would not appear to benefit from SSE implementation (such as
exclusive-or unmasking of embedded files) use SSE assembly instructions. This suggests parts of
the program may have been hand-coded is assembly. However, there are features that suggest it is
compiled code (failure to reuse dead registers for example). The most likely explanation is that it was
compiled using the Intel Compiler which tends to use vectorization more aggressively.

NCC Group | Page 5 TLP: WHITE

Version 1.1

Stage 5: dump_dumpfve.sys

This kernel driver is the Derusbi Server backdoor, which has been widely reported previously.

The PE timestamp is 3rd April 2014 04:24:28 and the driver is signed by "Luzhoushi Huicheng
Technology Co.,Ltd.”, certificate serial 1F 28 51 FC 5D F4 5D A8 44 65 05 20 39 08 F4 22. This
certificate expired on the 27th September 2014.

The driver installs custom firewall hooks which enable it to listen on any open port and coexist with
other network services. A magic “handshake” value is used at the start of connections to enable the
attackers to trigger the backdoor.

Detection mechanisms are discussed later in this document.

Stage 6: Update.dll

This library has a single exported function called Func. All functionality is exposed through this
function.

When called it starts a thread which creates a named pipe called \\.\pipe\usbpcgNNNN where NNNN is
a decimal number derived from taking the process identifier and calling ProcessIdToSessionId on it.
It then goes into an infinite loop reading from the pipe and taking appropriate action.

Code to connect to the named pipe can found in OfficeUt32.dll.

NCC Group | Page 6 TLP: WHITE

Version 1.1

Identifying suspicious files

Infected machines may be identified by:

 Searching for the MD5 hashes listed above.
 Using Yara rules (below) to search potentially compromised systems.
 Using ssdeep fuzzy hashes (below) to search potentially compromised systems.

Yara rules

The following Yara4 rules can be used to identify the main files reported in this document. Further
rules are available as a separate file.

An entire system can be searched using a command similar to: yara –r rules.yar c:\

rule wmi_dll {
 meta:
 description = "WMI shim / hook, used to load Derusbi"
 author = "David Cannings, NCC Group"
 tlp = "WHITE"
 md5 = "81DF67FCA641A3EEA60072E81CEE039A"

 strings:
 $str01 = "Function can not be found %hs,Program can not run properly"
 $str02 = "Unable to load %s,Program can not run properly"
 $str03 = "\\temp\\WMI0I0ARK.AX"
 $str04 = "\\wmrkins.tbl"
 $str05 = "RK_Wmi.dll"

 // Legitimate Windows APIs which are hooked by this DLL
 $str06 = "WmiQueryAllDataA"
 $str07 = "QueryAllTracesA"

 condition:
 3 of them
}

rule derusbi_server_kernel_driver {
 meta:
 description = "Strings from a Derusbi Server variant kernel driver"
 author = "David Cannings, NCC Group"
 tlp = "WHITE"
 md5 = "728A72B076EFF5E1A8887F3FF7D5F3BC"

 strings:
 $str01 = "%x:%d->%x:%d, Flag %s%s%s%s%s, seq %u, ackseq %u, datalen %u"
 $str02 = "%x->%x, icmp type %d, code %d"
 $str03 = ", id %d, seq %d"
 $str04 = "%x->%x" fullword
 $str05 = "\\BaseNamedObjects\\EKV0000000000" wide
 $str06 = "\\Registry\\Machine\\System\\CurrentControlSet\\Control\\Class\\{4D36E972-
E325-11CE-BFC1-08002BE10318}" wide
 $str07 = "{93144EB0-8E3E-4591-B307-8EEBFE7DB28F}" wide

 condition:
 4 of them
}

4 http://plusvic.github.io/yara/

NCC Group | Page 7 TLP: WHITE

Version 1.1

Ssdeep fuzzy hashes

Fuzzy hashes generated using ssdeep are provided below. These have been generated from the
two suspicious kernel drivers identified during the investigation.

These may be checked against suspicious files or a whole system using:

ssdeep -r -m rules.ssdeep c:\

ssdeep,1.1--blocksize:hash:hash,filename
384:q8999PUoojRezchW6x3iW4ndpkEYPLqK9y2g1eMb:1TlzcNMIE,"fake_wmi_dll"
768:s9dPsukYL9HhWTT3Lv3jf0M41Lhg3KeSa+Eu5Vz:5NI9HQnfsM41Lhg3LVg,"kernel_driver"

Identifying infected machines

This section provides a number of techniques which can be used to identify an infected machine. A
number are specific to the persistence mechanism and should not be relied upon as complete
assurance that a machine is not infected.

One simple mechanism is to look for the presence of the file C:\windows\temp\WMI0I0ARK.AX, which
was always empty during our testing. However, it is possible this file will be used or deleted if the
attackers successfully establish communication with the backdoor.

Persistence mechanism - DLL Hijacking

The specific persistence mechanism used in this example can be identified using Process Explorer,
when wmiprvse.exe is running. However, note that many other persistence mechanisms could be
used to load the Derusbi Server malware.

Below is an example of Sysinternals Process Explorer showing the malicious proxy wmi.dll loaded
in wmiprvse.exe (from %System32%\wbem\) and the legitimate wmi.dll (in %System32%).

NCC Group | Page 8 TLP: WHITE

Version 1.1

Identifying driver components - GMER

The GMER tool shows a number of the kernel devices, most likely because the original driver does
not exist on disk after it has been loaded.

NCC Group | Page 9 TLP: WHITE

Version 1.1

Identifying driver components – accesschk

The Sysinternals tool accesschk can be used to search for GUIDs associated with the driver. The
GUID values used here match previous reporting from Novetta, suggesting that they have not been
changed between driver versions.

The relevant objects are:

 Device: \Device\{93144EB0-8E3E-4591-B307-8EEBFE7DB28F}
 Driver: \Driver\{D9D5B985-05A5-4696-9E52-670DF856BE83}
 Object: \BaseNamedObjects\{93144EB0-8E3E-4591-B307-8EEBFE7DB28F}
 Object: \BaseNamedObjects\{93144EB0-8E3E-4591-B307-8EEBFE7DB28E}

On an infected machine, the output looks similar to the below:

C:\Documents and Settings\Administrator\Desktop\Bundle>accesschk -o -q -u -accep
teula \BaseNamedObjects\{93144EB0-8E3E-4591-B307-8EEBFE7DB28E}
\BaseNamedObjects\{93144EB0-8E3E-4591-B307-8EEBFE7DB28E}
 Type: Event
 RW Everyone

C:\Documents and Settings\Administrator\Desktop\Bundle>accesschk -o -q -u -accep
teula \BaseNamedObjects\{93144EB0-8E3E-4591-B307-8EEBFE7DB28F}
\BaseNamedObjects\{93144EB0-8E3E-4591-B307-8EEBFE7DB28F}
 Type: Event
 RW Everyone

C:\Documents and Settings\Administrator\Desktop\Bundle>accesschk -o -q -u -accep
teula \Driver\{D9D5B985-05A5-4696-9E52-670DF856BE83}
No matching objects found.

C:\Documents and Settings\Administrator\Desktop\Bundle>accesschk -o -q -u -accep
teula \Device\{93144EB0-8E3E-4591-B307-8EEBFE7DB28F}
\Device\{93144EB0-8E3E-4591-B307-8EEBFE7DB28F}
 Type: Device
 RW Everyone
 RW NT AUTHORITY\SYSTEM
 RW BUILTIN\Administrators
 R NT AUTHORITY\RESTRICTED

NCC Group | Page 10 TLP: WHITE

Version 1.1

Identifying driver components – WinObj

The same GUIDs can also be looked for manually using WinObj. Below is an example of one kernel

object in \Device:

Identifying over the network

NCC Group have written a Python script that will trigger known variants of the Derusbi Server
backdoor using the correct “magic” values. This script is available separately.

Below the script is shown when run against an infected machine. Note that the port(s) used for
testing need to be open, if Windows Firewall is blocking connections then the packets do not appear
to reach the kernel driver.

-> % python derusbi-server-trigger.py 192.168.99.50
[+] Sending 64 byte handshake to 192.168.99.50:80
[E] Port not open or timed out reading from socket!
[+] Sending 64 byte handshake to 192.168.99.50:139
[D] Received:
3b12751cc4ed8ae324ea38767854736d4d08d067be548258be66db43c257461241582b5d8c63fa03306f7f5270
5af00aa7465479860732239512aa7d5b4f6825
[D] Values: 1c75123b e38aedc4 7638ea24
[!] Got a valid reply from 192.168.99.50, this machine is potentially infected!
[+] Sending 64 byte handshake to 192.168.99.50:445
[D] Received:
e658fc1b19a703e4b1f837cc9f0d89738a38410a1b64fd15b87c4f63686ff61a723a7b001460990ecd33d3270d
7ff00444203a18b41fa613664f537133780b19
[D] Values: 1bfc58e6 e403a719 cc37f8b1
[!] Got a valid reply from 192.168.99.50, this machine is potentially infected!

NCC Group | Page 11 TLP: WHITE

Version 1.1

Identifying firewall hooks – Volatility

NCC Group have produced a Volatility plugin which can be obtained from our Github repository5.

When run against a memory dump of an infected machine, the output should look similar to the
below. Please note that there are legitimate reasons to use the firewall hooking API on Windows
(such as the usage in ipnat.sys, below) but this is one way of identifying suspicious behaviour.

[FWHook] Found tcpip.sys at offset 0x17b7098 with DllBase 0xf117d000
[FWHook] PE Header Offset: 0x0000d8
[FWHook] Image Base Address: 0x010000
[FWHook] FQ Block Address: 0xf11be860
[FWHook] FQ Counter Address: 0xf11be880
[FWHook] FQ Counter Value: 16 0x000010
[FWHook] Final FQ Block Address: 0xf11be870
[FWHook] Total hooks registered 3
[FWHook] ---
[FWHook] Call Out Address: 0xf0582246
[FWHook] Module Base Address: 0xf0580000
[FWHook] Module DLL Name dump_dumpfve.sys
[FWHook] Module Binary Path \??\C:\WINDOWS\system32\drivers\dump_dumpfve.sys
[FWHook] ---
[FWHook] Call Out Address: 0xf103c6dc
[FWHook] Module Base Address: 0xf1027000
[FWHook] Module DLL Name ipnat.sys
[FWHook] Module Binary Path \SystemRoot\system32\DRIVERS\ipnat.sys
[FWHook] ---
[FWHook] Call Out Address: 0xf0582270
[FWHook] Module Base Address: 0xf0580000
[FWHook] Module DLL Name dump_dumpfve.sys
[FWHook] Module Binary Path \??\C:\WINDOWS\system32\drivers\dump_dumpfve.sys

5 https://github.com/nccgroup/WindowsFirewallHookDriverEnumeration

NCC Group | Page 12 TLP: WHITE

Version 1.1

Summary of files

Please note that because some files are never saved to disk they have been recovered through a
combination of memory forensics and reverse engineering. Therefore the MD5 values below
represent the files which are provided with this report.

Name wmi.dll

MD5 81DF67FCA641A3EEA60072E81CEE039A

Linker timestamp 15th August 2014, 08:37:21

Description DLL hijack for legitimate wmi.dll, proxies requests to the real functionality
and loads additional code.

Name wmrkins.tbl

MD5 76D62E98AF4E9235DCC8AEDDF32840AC

Description Compressed and XOR obfuscated data, loaded by wmi.dll. Contains all
other components. Decompresses to B4845947A31A7A1C4A271D91A369E975.

Name Unnamed (not saved to disk, discussed in Stage 3: Embedded DLL)

MD5 15444857488C9C93C672A246F41AE313

Linker timestamp 7th August 2014, 14:13:51

Description First DLL, unpacked by wmi.dll from WMRKINS.TBL.

Name dump_dumpfve.sys

MD5 C2780885305FCB20D2B76D23AA124D51

Linker timestamp 3rd April 2014, 04:24:28

Description Derusbi Server variant, kernel driver.

Name officeut32.dll

MD5 728A72B076EFF5E1A8887F3FF7D5F3BC

Linker timestamp 3rd April 2014, 04:25:53

Description Derusbi Server variant, usermode portion.

Name Update.dll

MD5 70470DFBD248D8A85843B552D3392156

Linker timestamp 3rd April 2014, 04:25:38

Description Unpacked and saved to disk by officeut32.dll

NCC Group | Page 13 TLP: WHITE

Version 1.1

Document history

Document History

Issue No. Issue Date Issued By Change Description
0.1 28/11/2014 Pete Beck Draft for NCC Group internal use
0.2 08/01/2015 David Cannings Added Yara rules, ssdeep and network

scanning script, added detail ready for public
release.

0.3 08/01/2015 David Cannings Changes from QA process integrated
1.0 12/01/2015 David Cannings Initial release to industry partners, TLP:

AMBER.
1.1 06/03/2015 David Cannings Public release at TLP: WHITE.

