
1/14

July 14, 2020

Python Malware On The Rise
cyborgsecurity.com/cyborg_labs/python-malware-on-the-rise/

The vast majority of serious malware over the past 30 years has been written in Assembly or
compiled languages such as C, C++, and Delphi. However, ever-increasing over the past
decade, a large amount of malware has been written in interpreted languages, such as
Python. The low barrier to entry, ease of use, rapid development process, and massive
library collection has made Python attractive for millions of developers- including malware
authors. Python has quickly become a standard language in which threat actors create
Remote Access Trojans (RATs), information stealers, and vulnerability exploit tools.
As Python continues to grow radically in popularity and the C malware
monoculture continues to be challenged, it would seem only certain that Python will be
increasingly utilized as malware in cyber attacks.

https://www.cyborgsecurity.com/cyborg_labs/python-malware-on-the-rise/
https://software.imdea.org/~juanca/papers/malsource_raid16.pdf
https://www.techrepublic.com/article/python-is-eating-the-world-how-one-developers-side-project-became-the-hottest-programming-language-on-the-planet/
https://research.checkpoint.com/2019/malware-against-the-c-monoculture/


2/14

Image Source: Stack Overflow

THE TIMES THEY ARE A-CHANGIN’

In comparison to a standard compiled language like C, writing malware in Python comes with
a whole host of difficulties. The first being that Python is required to be installed on the
operating system in order to interpret and execute Python code. However, as we’ll see in the
next section, a Python program can easily be converted into a native executable using a
variety of different methods.

Malware written in Python will also have adverse effects on file size, memory footprint, and
processing power. Serious malware is often designed to be small, stealthy, have low memory
footprint, and use limited processing power. A compiled malware sample written in C might
be 200 KB, while a comparable malware sample written in Python might be 20 MB after
converted into an executable. Both the CPU & RAM usage will also be significantly higher
when using an interpreted language.

However, it’s 2020 and the digital landscape isn’t what it once was. The internet is faster than
it’s ever been, our computers have more memory & storage capacity than ever, and CPUs
get faster every year. Python is also more ubiquitous than ever, coming pre-installed on
macOS and most all Linux distributions by default.

NO INTERPRETER? NO PROBLEM!

Microsoft Windows is still the primary target for most malicious campaigns, and it does not
come with Python installed by default. Therefore, for threat actors to distribute their malware
effectively they must convert their Python code into an executable format. There are many
methods to “compile Python” into a native executable. Let’s take a look at the few most
popular methods…

PyInstaller

PyInstaller is capable of building Python applications into stand-alone executables for
Windows, Linux, macOS and more by “freezing” Python code. It is one of the most popular
methods to convert Python code into executable format and has been used widely for both
legitimate and malicious purposes.

Let’s create a simple “Hello, world!” program in Python and freeze it into a stand-alone
executable using PyInstaller:

https://cta-redirect.hubspot.com/cta/redirect/7924572/ec572148-ebc2-449f-8ccc-0353bc94df5e
https://www.pyinstaller.org/


3/14

$ cat hello.py 
print('Hello, world!') 

$ pyinstaller --onefile hello.py 
... 

$ ./dist/hello  
Hello, world! 

$ file dist/hello  
dist/hello: ELF 64-bit LSB executable, x86-64, version 1 (SYSV), dynamically linked, 
interpreter 
/lib64/ld-linux-x86-64.so.2, for GNU/Linux 2.6.32, 
BuildID[sha1]=294d1f19a085a730da19a6c55788ec0 
8c2187039, stripped 

$ du -sh dist/hello  
7.0M dist/hello 

This process created a portable, stand-alone Linux ELF (Executable and Linkable Format)
which is the equivalent to an EXE on Windows. Now let’s create and compile a “Hello, world!”
program in C on Linux for comparison:

$ cat hello.c 
#include  
int main() { 
   printf("Hello, world!"); 
} 

$ gcc hello.c -o hello 

$ ./hello  
Hello, world! 

$ file hello 
hello: ELF 64-bit LSB pie executable, x86-64, version 1 (SYSV), dynamically linked, 
interpreter 
/lib64/ld-linux-x86-64.so.2, BuildID[sha1]=480c7c75e09c169ab25d1b81bd28f66fde08da7c, 
for GNU/Li 
nux 3.2.0, not stripped 

$ du -sh hello 
20K hello 

Notice how much larger the file size is: 7 MB (Python) vs 20 KB (C)! This demonstrates the
major drawback we discussed previously about file size and memory usage. The Python
executable is so much larger due to the fact it must bundle the Python interpreter (as a
shared object file on Linux) inside the executable itself in order to run.

py2exe



4/14

Py2exe is another popular method to convert Python code into Windows EXE (executable)
format that can be run natively. Similar to PyInstaller, it bundles the Python interpreter with
your Python code to make a portable executable. Py2exe is likely to fall out of style with time
as it has not been supported past Python 3.4, this is due to the bytecode in CPython being
heavily changed in Python 3.6 and beyond.

Py2exe utilizes distutils and requires a small setup.py  script to be created to produce an
executable. Let’s create an example “Hello, world!” executable using py2exe:

> type hello.py 
print('Hello, world!') 

> type setup.py 
import py2exe 
from distutils.core import setup 
setup( 
   console=['hello.py'], 
   options={'py2exe': {'bundle_files': 1, 'compressed': True}}, 
   zipfile=None 
) 

> python setup.py py2exe 
... 

> dist\hello.exe 
Hello, world! 

The hello.exe  created by py2exe is similar in size to PyInstaller coming in at 6.83 MB.

https://www.py2exe.org/
https://docs.python.org/3/whatsnew/3.6.html#cpython-bytecode-changes


5/14

Nuitka

Nuitka is perhaps the most underutilized, and yet more advanced method of compiling
Python code to an executable. It translates Python code into a C program that then is linked
against libpython to execute code the same as CPython. Nuitka can use a variety of C
compilers including gcc, clang, MinGW64, Visual Studio 2019+, and clang-cl to convert your
Python code to C.

Let’s create a “Hello, world!” Python program on Linux and compile it using Nuitka:

https://nuitka.net/


6/14

$ cat hello.py 
print('Hello, world!') 

$ nuitka3 hello.py 
... 

$ ./hello.bin 
Hello, world! 

$ file hello.bin  
hello.bin: ELF 64-bit LSB pie executable, x86-64, version 1 (SYSV), dynamically 
linked, interpreter 
/lib64/ld-linux-x86-64.so.2, BuildID[sha1]=eb6a504e8922f8983b23ce6e82c45a907c6ebadf, 
for GNU/Linux  
3.2.0, stripped 

$ du -sh hello.bin 
432K hello.bin 

Nuitka produced a portable binary very simply, and at 432 KB is a fraction of the size of what
PyInstaller or py2exe can produce! How is Nuitka able to do this? Let’s take a look at the
build folder:

$ cloc hello.build/ 
------------------------------------------------------------------------------- 
Language                     files          blank        comment           code 
------------------------------------------------------------------------------- 
C                               11           2263            709           8109 
C/C++ Header                     1              1              0              7 
------------------------------------------------------------------------------- 
SUM:                            12           2264            709           8116 
------------------------------------------------------------------------------- 

Nuitka produced over 8,000 lines of C code from our 1 line Python program. The way Nuitka
works is it actually translates the Python modules into C code and then uses libpython and
static C files of its own to execute in the same way as CPython does.

This is very impressive, and it seems highly likely the Nuitka “Python compiler” will see
further adoption as time goes on. As we’ll see later, Nuitka might have a further, built-in
advantage in protection against Reverse Engineering (RE). There already exist several tools
to easily analyze binaries produced by PyInstaller and py2exe to recover Python source
code. However, by Nuitka translating the Python code to C it is much more difficult to reverse
engineer.

YO DAWG, I HEARD YOU LIKE TOOLS…



7/14

Python malware can take advantage of a massive ecosystem of open-source Python
packages and repositories. Almost anything you could think of, someone has already built it
using Python. This is a huge advantage to malware authors as simplistic capabilities can be
cherry-picked from the open web and more complex capabilities likely don’t need to be
written from scratch.

Let’s take a look at three simple, yet powerful tool examples:

1. Code Obfuscation
2. Taking Screenshots
3. Performing Web Requests

Tool Example 1 — Obfuscation

Malware authors using Python have many libraries they could use to obfuscate their Python
code to make code readability much more difficult, such as: pyminifier and pyarmor.

Here’s a small example of how pyarmor  can obfuscate Python code:

https://github.com/liftoff/pyminifier
https://github.com/dashingsoft/pyarmor


8/14

$ cat hello.py  
print('Hello, world!') 

$ pyarmor obfuscate hello.py 
... 

$ cat dist/hello.py 
from pytransform import pyarmor_runtime 
pyarmor_runtime() 
__pyarmor__(__name__, __file__, 
b'\x50\x59\x41\x52\x4d\x4f\x52\x00\x00\x03\x08\x00\x55\x0d\x0d\ 
x0a\x04\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x40\x00\x00\x00\xd5\x00\x00\x00\x0

\x18\xf4\x63\x79\xf6\xaa\xd7\xbd\xc8\x85\x25\x4e\x4f\xa6\x80\x72\x9f\x00\x00\x00\x00\x

0\x00\xec\x50\x8c\x64\x26\x42\xd6\x01\x10\x54\xca\x9c\xb6\x30\x82\x05\xb8\x63\x3f\xb0\

97\x0b\xc1\x49\xc9\x47\x86\x55\x61\x93\x75\xa2\xc2\x8c\xb7\x13\x87\xff\x31\x46\xa5\x29

xdf\x32\xed\x7a\xb9\xa0\xe1\x9a\x50\x4a\x65\x25\xdb\xbe\x1b\xb6\xcd\xd4\xe7\xc2\x97\x3

\xd3\xd0\x74\xb8\xd5\xab\x48\xd3\x05\x29\x5e\x31\xcf\x3f\xd3\x51\x78\x13\xbc\xb3\x3e\x

a\x05\xfb\xac\xed\xfa\xc1\xe3\xb8\xa2\xaa\xfb\xaa\xbb\xb5\x92\x19\x73\xf0\x78\xe4\x9f\

7a\x1c\x0c\x6a\xa7\x8b\x19\x38\x37\x7f\x16\xe8\x61\x41\x68\xef\x6a\x96\x3f\x68\x2b\xb7

x39\x51\xa3\xfc\xbd\x65\xdb\xb8\xff\x39\xfe\xc0\x3d\x16\x51\x7f\xc9\x7f\x8b\xbd\x88\x8

\xe1\x23\x61\xd0\xf1\xd3\xf8\xfa\xce\x86\x92\x6d\x4d\xd7\x69\x50\x8b\xf1\x09\x31\xcc\x

f\x37\x12\xd4\xbd\x3d\x0d\x6e\xbb\x28\x3e\xac\xbb\xc4\xdb\x98\xb5\x85\xa6\x19\x11\x74\

df', 1) 

$ python dist/hello.py 
Hello, world! 

Tool Example 2 — Screenshots

Information stealing malware will often come with the capability to take screenshots of the
users desktop in order to steal sensitive information. Using Python this is all too easy and
there are several libraries to accomplish this, including: pyscreenshot and python-mss.

A screenshot can easily be taken with python-mss  like this:

from mss import mss 

with mss() as sct: 
   sct.shot() 

Tool Example 3 — Web Requests

https://github.com/ponty/pyscreenshot
https://github.com/BoboTiG/python-mss


9/14

Malware will often conduct web requests to do a variety of different things on a compromised
endpoint, including: web-based command & control (C2), obtaining the external IP address,
downloading a second stage payload, and more. Using Python, making web requests is very
simple and can be done using the standard library or with open-source libraries such
as: requests and httpx.

The external IP address of a compromised endpoint can easily be obtained
using requests  like so:

import requests 

external_ip = requests.get('http://whatismyip.akamai.com/').text 

THE STRENGTH OF EVAL()

Typically, Python’s eval()  built-in function is seen as very dangerous as it presents serious
security risks when used in production code. However, eval()  has a huge strength when
used within Python malware.

The eval()  function is very powerful and can be used to execute strings of Python code
from within the Python program itself. This single function is often seen as an advanced
capability in compiled malware. It is the ability to run high-level scripts or “plugins” on-the-fly
when utilized correctly. This is similar to when C malware includes a Lua scripting engine to
give the malware the ability to execute Lua scripts. This has been seen in high-profile
malware such as Flame.

Let’s imagine a hypothetical APT group is interacting remotely with some Python-based
malware. If this group came into an unexpected situation where they needed to react quickly,
being able to directly execute Python code on the end target would be highly beneficial. In
addition, the Python malware could be placed on a target effectively “featureless” and
capabilities could be executed on the target on an as-needed basis to remain stealthy.

INTO THE WILD

Alright, let’s take a look at a few real world Python malware samples!

https://github.com/psf/requests
https://github.com/encode/httpx
https://nedbatchelder.com/blog/201206/eval_really_is_dangerous.html
https://en.wikipedia.org/wiki/Flame_(malware)


10/14

Image Source: Lord of the Rings — Fellowship of the Ring

SeaDuke

The SeaDuke malware is likely the most high-profile compromise that Python-based
malware has been involved in. During 2015 and 2016, the Democratic National Committee
(DNC) was compromised by two threat actor groups that have been attributed by many
analysts to APT 28 & 29.

Some fantastic analysis of SeaDuke was conducted by Palo Alto’s Unit 42. The decompiled
Python source code Unit 42 uncovered can be found here. In addition, F-Secure published a
great whitepaper on Duke malware that covers SeaDuke and associated malware.

The SeaDuke malware is a Python trojan that was made into a Windows executable using
PyInstaller and packed with UPX. The Python source code was obfuscated to make the code
more difficult for analysts to read. The malware had many capabilities including several
methods to establish persistence on Windows, ability to run cross-platform, and perform web
requests for command & control.

PWOBot

PWOBot is Python-based malware, similar to SeaDuke it is compiled using PyInstaller into a
Windows executable. It was prevalent during 2013–2015 and affected several European
organizations, mostly in Poland.

The malware was very full featured and included the ability to log key strokes, establish
persistence on Windows, download & execute files, execute Python code, create web
requests, and mine cryptocurrency. Some great analysis of PWOBot was conducted by Palo
Alto’s Unit 42.

PyLocky

https://unit42.paloaltonetworks.com/unit-42-technical-analysis-seaduke/
https://github.com/pan-unit42/iocs/blob/master/seaduke/decompiled.py
https://blog-assets.f-secure.com/wp-content/uploads/2020/03/18122307/F-Secure_Dukes_Whitepaper.pdf
https://en.wikipedia.org/wiki/UPX
https://unit42.paloaltonetworks.com/unit42-python-based-pwobot-targets-european-organizations/


11/14

PyLocky is a Python-based ransomware, compiled with PyInstaller into a Windows
standalone executable. It targeted several different countries including the USA, France,
Italy, and Korea. It included anti-sandbox capabilities, command & control, and encrypted
files using 3DES (Triple DES) cipher.

Some great analysis of PyLocky was conducted by Trend Micro. Talos Intelligence analysts
reversed engineered PyLocky and were able to create a file decryptor for victims to restore
their encrypted files.

PoetRAT

PoetRAT is a Python-based trojan that targeted the Azerbaijan government and energy
sector in early 2020. The trojan enumerated systems and stole information related to
ICS/SCADA systems that control wind turbines.

The malware was dropped using malicious Microsoft Word documents. The RAT presented
many capabilities for stealing information including file extraction over FTP, taking images
with webcams, uploading additional tools, keylogging, browser enumeration, and credential
theft. Talos Intelligence reported on this threat actor and produced a fantastic writeup on the
unknown actor that used this malware.

This short script was used by the threat actor to capture web cam images:

Image Source: Talos Intelligence

Open Source

In addition to the malware found in the wild, several Python RATs are available open-source
such as pupy and Stitch. These open-source Python trojans show just how complex and
feature rich Python malware can be. The pupy RAT is cross-platform, features an all-in-
memory execution guideline, leaves a very low footprint, can combine several C2 encryption
methods, migrate into processes using reflective injection, and can load remote python code
from memory.

PYTHON MALWARE ANALYSIS TOOLS

https://www.cyborgsecurity.com/glossary/ransomware/
https://blog.trendmicro.com/trendlabs-security-intelligence/a-closer-look-at-the-locky-poser-pylocky-ransomware/
https://talosintelligence.com/pylocky
https://blog.talosintelligence.com/2020/04/poetrat-covid-19-lures.html
https://github.com/n1nj4sec/pupy
https://github.com/nathanlopez/Stitch


12/14

There are many tools available to analyze Python malware, even in compiled form. Let’s take
a cursory look at what tools malware analysts can use to tear into Python malware.

uncompyle6

The successor to decompyle, uncompyle, and uncompyle2- uncompyle6 is a native Python
cross-version decompiler and fragment decompiler. It can be used to translate Python
bytecode back into Python source code.

For example, taking our “Hello, world!” script from earlier and executing it as a module I’m
presented with a pyc file (byte code). We can recover the source code of our script by using
uncompyle.

$ xxd hello.cpython-38.pyc  
00000000: 550d 0d0a 0000 0000 16f3 075f 1700 0000  U.........._.... 
00000010: e300 0000 0000 0000 0000 0000 0000 0000  ................ 
00000020: 0002 0000 0040 0000 0073 0c00 0000 6500  [email protected] 
00000030: 6400 8301 0100 6401 5300 2902 7a0d 4865  d.....d.S.).z.He 
00000040: 6c6c 6f2c 2077 6f72 6c64 214e 2901 da05  llo, world!N)... 
00000050: 7072 696e 74a9 0072 0200 0000 7202 0000  print..r....r... 
00000060: 00fa 2d2f 686f 6d65 2f75 7365 722f 746d  ..-/home/user/tm 
00000070: 702f 7079 7468 6f6e 5f61 7274 6963 6c65  p/python_article 
00000080: 2f6e 2f74 6573 742f 6865 6c6c 6f2e 7079  /n/test/hello.py 
00000090: da08 3c6d 6f64 756c 653e 0100 0000 f300  ........ 
000000a0: 0000 00 

$ uncompyle6 hello.cpython-38.pyc | grep -v '#' 
print('Hello, world!') 

pyinstxtractor.py (PyInstaller Extractor)

The PyInstaller Extractor can extract Python data from PyInstaller compiled executables. It’s
very simple to run:

> python pyinstxtractor.py hello.exe 
... 

This will produce pyc files you can then use with the uncompyle6 decompiler to recover
source code.

python-exe-unpacker

The pythonexeunpack.py script can be used to unpack and decompile executables that are
built with py2exe. It can be used like so:

> python python_exe_unpack.py -i hello.exe 
... 

DETECTING PYTHON COMPILED EXECUTABLES

https://github.com/rocky/python-uncompyle6/
https://www.cyborgsecurity.com/cdn-cgi/l/email-protection
https://github.com/extremecoders-re/pyinstxtractor
https://github.com/countercept/python-exe-unpacker


13/14

Both PyInstaller and py2exe when compiled on Windows place unique strings within their
binary executable. Which means they can be detected with simple YARA rules.

PyInstaller writes the string “pyi-windows-manifest-filename” near the end of the executable,
you can see it here in a hex editor (HxD):

Here’s a YARA rule for detecting PyInstaller compiled executables (Source):

import "pe" 

rule PE_File_pyinstaller 
{ 
   meta: 
       author = "Didier Stevens (https://DidierStevens.com)" 
       description = "Detect PE file produced by pyinstaller" 
   strings: 
       $a = "pyi-windows-manifest-filename" 
   condition: 
       pe.number_of_resources > 0 and $a 
} 

https://isc.sans.edu/forums/diary/Python+Malware+Part+1/21057/


14/14

Here’s a second YARA rule for detecting py2exe compiled executables (Source):

import "pe" 

rule py2exe 
{ 
 meta: 
       author = "Didier Stevens (https://www.nviso.be)" 
       description = "Detect PE file produced by py2exe" 
 condition: 
       for any i in (0 .. pe.number_of_resources - 1): 
         (pe.resources[i].type_string == 
"P\x00Y\x00T\x00H\x00O\x00N\x00S\x00C\x00R\x00I\x00P\x00T\x00") 
} 

CONCLUSION

That’s all for now from the world of Python malware. It’s very interesting watching malware
trends change as computer systems become faster and easier to operate. As a security
industry we need to keep an eye on Python-based malware, or it might just sink its fangs into
us when we’re least expecting.

https://github.com/NVISO-BE/YARA/blob/master/py2exe.yara
https://cta-redirect.hubspot.com/cta/redirect/7924572/ae832f8f-83db-4b26-8f4d-f37f258623e2

