
Evidence Aurora Operation Still Active Part 2: More
Ties Uncovered Between CCleaner Hack & Chinese
Hackers

02
OCT
2017

Since my last post, we have found new evidence in the next stage
payloads of the CCleaner supply chain attack that provide a stronger link
between this attack and the Axiom group.

First of all, our researchers would like to thank the entire team at Cisco
Talos for their excellent work on this attack (their post regarding stage 2
can be found here) as well as their cooperation by allowing us access to
the stage 2 payload. Also, we would like to give a special thanks to
Kaspersky Labs for their collaboration.

javascript:void(0)
http://www.intezer.com/evidence-aurora-operation-still-active-supply-chain-attack-through-ccleaner/
http://blog.talosintelligence.com/2017/09/ccleaner-c2-concern.html

The Next Connection
Starting from the stage 2 payload, I reverse engineered the module,
extracting other hidden shellcode and binaries within. After uploading the
di�erent binaries to Intezer Analyze™, the �nal payload (that I have access
to) had a match with a binary relating to the Axiom group.

At �rst glance, I believed it was going to be the same custom base64
function as mentioned in my previous blog post. A deeper look in the
shared code proved otherwise.

Binary in screenshot:

f0d1f88c59a005312faad902528d60acbf9cd5a7b36093db8ca811f763e129
2a

Related APT17 samples:

07f93e49c7015b68e2542fc591ad2b4a1bc01349f79d48db67c53938ad4b5
25d

0375b4216334c85a4b29441a3d37e61d7797c2e1cb94b14cf6292449fb25c
7b2

20cd49fd0f244944a8f5ba1d7656af3026e67d170133c1b3546c8b2de38d4f
27

ee362a8161bd442073775363bf5fa1305abac2ce39b903d63df0d7121ba60
550

http://www.intezer.com/intezer-analyze/
http://www.intezer.com/wp-content/uploads/2017/10/ccleaner_pt2.png
http://www.intezer.com/evidence-aurora-operation-still-active-supply-chain-attack-through-ccleaner/

Not only did the �rst payload have shared code between the Axiom group
and CCBkdr, but the second did as well. The above photo shows the same
function between two binaries. Let me put this into better context for you:
out of all the billions and billions of pieces of code (both trusted and
malicious) contained in the Intezer Code Genome Database, we found this
code in only these APTs. It is also worth noting that this isn’t a standard
method one would use to call an API. The attacker used the simple
technique of employing an array to hide a string from being in clear sight
of those analyzing the binary (although to those who are more
experienced, it is obvious) and remain undetected from antivirus

http://www.intezer.com/wp-content/uploads/2017/10/image2.jpg

signatures. The author probably copied and pasted the code, which is
what often happens to avoid duplicative e�orts: rewriting the same code
for the same functionality twice.

Due to the uniqueness of the shared code, we strongly concluded that the
code was written by the same attacker.

Technical Analysis:
The stage two payload that was analyzed in this report
(dc9b5e8aa6ec86db8af0a7aa897ca61db3e5f3d2e0942e319074db1aaccfd
c83), after launching the infected version of CCleaner, was dropped to
only a selective group of targets, as reported by Talos. Although there is
an x64 version, the following analysis will only include the x86 version
because they are nearly identical. I will not be going too far in depth as full
comprehension of the technical analysis will require an understanding of
reverse engineering.

Instead of using the typical API (VirtualAlloc) to allocate memory, the
attackers allocated memory on the heap using LocalAlloc, and then copied
a compressed payload to the allocated memory.

It looks like the attackers used version 1.1.4 of zlib to decompress the
payload into this allocated memory region.

Depending on if you’re running x86 or x64 Windows, it will drop a
di�erent module. (32-bit
07fb252d2e853a9b1b32f30ede411f2efbb9f01e4a7782db5eacf3f55cf3490
2, 64-bit
128aca58be325174f0220bd7ca6030e4e206b4378796e82da460055733bb
6f4f) Both modules are actually legitimate software with additional code
and a modi�ed execution �ow.

The last modi�ed time on the modules is changed to match that of the
msvcrt.dll that is located in your system32 folder–a technique to stay
under the radar by not being able to check last modi�ed �les.

Some shellcode and another module are written to the registry.

After the module is successfully dropped, a service is created under the
name Spooler or SessionEnv, depending upon your environment, which
then loads the newly dropped module.

The new module being run by the service allocates memory, reads the
registry where the other payload is located, and then copies it to memory.

The next payload is executed, which decrypts another module and loads
it. If we look at the memory of the next decrypted payload, we can see
something that looks like a PE header without the MZ signature. From
here, it is as simple as modifying the �rst two bytes to represent MZ and
we have a valid PE �le.
(f0d1f88c59a005312faad902528d60acbf9cd5a7b36093db8ca811f763e129
2a)

The next module is a essentially another backdoor that connects to a few
domains; before revealing the true IP, it will connect to for the next stage
payload.

It starts by ensuring it receives the correct response from
https://www.microsoft.com and https://update.microsoft.com.

https://www.microsoft.com/
https://update.micrsoft.com/

The malware proceeds to decrypt two more URLs.

The malware authors used steganography to store the IP address in a
ptoken �eld of the HTML.

Here you can see the GitHub page with the ptoken �eld.

The value is then XOR decrypted by 0x31415926 which gives you
0x5A093B0D or the IP address: 13.59.9.90

Conclusion:

The complexity and quality of this particular attack has led our team to
conclude that it was most likely state-sponsored. Considering this new
evidence, the malware can be attributed to the Axiom group due to both
the nature of the attack itself and the speci�c code reuse throughout that
our technology was able to uncover.

IOCs:

Stage 2 Payload:
dc9b5e8aa6ec86db8af0a7aa897ca61db3e5f3d2e0942e319074db1aaccfdc
83

x86 Trojanized Binary:
07fb252d2e853a9b1b32f30ede411f2efbb9f01e4a7782db5eacf3f55cf3490
2

x86 Registry Payload:
f0d1f88c59a005312faad902528d60acbf9cd5a7b36093db8ca811f763e129
2a

x64 Trojanized Binary:
128aca58be325174f0220bd7ca6030e4e206b4378796e82da460055733bb
6f4f

x64 Registry Payload:
75eaa1889dbc93f11544cf3e40e3b9342b81b1678af5d83026496ee6a1b2ef
79

Registry Keys:

HKLM\Software\Microsoft\Windows NT\CurrentVersion\WbemPerf\001

HKLM\Software\Microsoft\Windows NT\CurrentVersion\WbemPerf\002

HKLM\Software\Microsoft\Windows NT\CurrentVersion\WbemPerf\003

HKLM\Software\Microsoft\Windows NT\CurrentVersion\WbemPerf\004

HKLM\Software\Microsoft\Windows NT\CurrentVersion\WbemPerf\HBP

About Intezer:
Through its ‘DNA mapping’ approach to code, Intezer provides enterprises
with unparalleled threat detection that accelerates incident response and
eliminates false positives, while protecting against �leless malware, APTs,
code tampering and vulnerable software.

Curious to learn what’s next for Intezer? Join us on our journey toward achieving
these endeavors here on the blog or request a community free edition invite

https://intezer.viewpage.co/free-community-edition

By Jay Rosenberg

Jay Rosenberg is a self-taught reverse engineer from a very young
age (12 years old), specializing in Reverse Engineering and Malware
Analysis. Currently working as a Senior Security Researcher in
Intezer.

Try it now

Request a Demo

Evidence Aurora Operatio… North Korea And Iran Use …

Home

Products

Technology

Company

Intezer Analyze™

Intezer Immune™

https://twitter.com/jaytezer
javascript:void(0)
http://www.intezer.com/evidence-aurora-operation-still-active-supply-chain-attack-through-ccleaner/
http://www.intezer.com/evidence-aurora-operation-still-active-supply-chain-attack-through-ccleaner/
http://www.intezer.com/north-korea-iran-use-codeproject-develop-malware/
http://www.intezer.com/north-korea-iran-use-codeproject-develop-malware/
http://www.intezer.com/
javascript:void(0);
http://www.intezer.com/technology/
javascript:void(0);
http://www.intezer.com/evidence-aurora-operation-still-active-supply-chain-attack-through-ccleaner/
http://www.intezer.com/north-korea-iran-use-codeproject-develop-malware/
http://www.intezer.com/intezer-analyze/
http://www.intezer.com/intezer-immune/

Blog

Terms of Use

Privacy Policy

© Intezer.com 2017 All rights reserved

About

News and Events

Contact Us

http://www.intezer.com/blog/
http://www.intezer.com/terms-of-use/
http://www.intezer.com/privacy/
https://twitter.com/intezerlabs
https://www.linkedin.com/company/intezer-labs
https://www.facebook.com/IntezerLabs/
http://www.intezer.com/about/
http://www.intezer.com/intezer-news/
http://www.intezer.com/contact-us/

