
SecurityScorecard.com

info@securityscorecard.com

©2022 SecurityScorecard Inc.

214 West 29th St, 5th Floor

New York, NY 10001

1.800.682.1707

A Detailed Analysis
of The SunCrypt
Ransomware

 www.securityscorecard.com | 2

Table of Contents
Executive Summary 3

Analysis and Findings 3

Delete Volume Shadow Copies 9

Thread activity – sub_1235120 function 13

Thread activity – sub_12115D0 function 19

Thread activity – sub_12363D0 function 20

Indicators of Compromise 24

 www.securityscorecard.com | 3

Executive Summary
SunCrypt ransomware is a less sophisticated malware that has impacted multiple companies
since 2019. The malware can run with one of the following parameters: "-noshares", "-nomutex",
"-noreport", "-noservices", "-vm", "-path", "-justcrypt", and "-keep_exe". The ransomware kills a list
of targeted processes and deletes all Volume Shadow Copies using COM objects.

The encryption is done using multithreading with I/O completion ports, which is a common
technique used by most current ransomware families. SunCrypt uses a combination of
Curve25519 and ChaCha20 algorithms during the encryption routine. The binary deletes the
Windows event logs via two different methods and performs self-deletion at the end of the
execution.

Analysis and Findings
SHA256: 759f2b24be12e208903b00f9719db71a332ddf8252986c26afbcda9f32623bc4

The malware forces the system not to display the critical-error-handler message box using
SetErrorMode (0x1 = SEM_FAILCRITICALERRORS):

Figure 1

The binary loads multiple DLLs into the address space of the process by calling the LoadLibraryA
API. The list of DLLs contains "ntdll.dll", "advapi32.dll", "kernel32.dll", and "rstrtmgr.dll". An example
of such a function call is displayed below:

Figure 2

GetProcAddress is utilized to retrieve the address of multiple exported functions: "strncpy",
"_atoi64", "atoi", "isxdigit", "isdigit", "memset", "memcpy", "NtSetInformationFile",
"SystemFunction036", "SetVolumeMountPointW", "RmStartSession", "RmRegisterResources",
"RmGetList", and "RmEndSession" (see figure 3).

Figure 3

SunCrypt can run with the following parameters "-noshares", "-nomutex", "-noreport", "-
noservices", "-vm", "-path", "-justcrypt", "-keep_exe". We’ll explain the purpose of each parameter
in the upcoming paragraphs:

 www.securityscorecard.com | 4

Figure 4

The ransomware uses the FNV hash function in order to compute 4-byte hash values that are
compared with the hard-coded ones corresponding to different parameters. The
implementation of the hash function can be spotted through the identification of the FNV prime
(0x01000193):

Figure 5

The GetCommandLineW routine is used to extract the command-line string for the current
process:

 www.securityscorecard.com | 5

Figure 6

The malicious process retrieves an array of pointers to the command line arguments, along with
a count of the arguments via a function call to CommandLineToArgvW:

Figure 7

OpenProcessToken is utilized to open the access token associated with the current process (0x20
= TOKEN_ADJUST_PRIVILEGES):

Figure 8

The malware performs multiple calls to LookupPrivilegeValueA in order to extract the locally
unique identifier (LUID) for the following privileges: "SeTakeOwnershipPrivilege",
"SeBackupPrivilege", "SeSecurityPrivilege", "SeRestorePrivilege", "SeDebugPrivilege",
"SeImpersonatePrivilege", and "SeIncreaseBasePriorityPrivilege". Figure 9 displays an example of
a function call:

Figure 9

The malicious executable enables the above privileges using the AdjustTokenPrivileges function:

Figure 10

SunCrypt retrieves information about the current system via a function call to GetSystemInfo:

 www.securityscorecard.com | 6

Figure 11

The GetModuleHandleA routine is utilized to extract a module handle for "ntdll.dll":

Figure 12

The malware retrieves version information about the operating system by calling the
RtlGetVersion routine:

Figure 13

The binary creates a mutex called
"0c91c96fd7124f21a0193cf842e3495f6daf84a394f44013e92a87ad9d2ef4a0ceec9dd2e2eca22e" in
order to ensure that only one copy of the executable is running at a single time:

Figure 14

The executable takes a snapshot of all processes in the system using CreateToolhelp32Snapshot
(0x2 = TH32CS_SNAPPROCESS):

Figure 15

The processes are enumerated using the Process32First and Process32Next APIs:

 www.securityscorecard.com | 7

Figure 16

Figure 17

SunCrypt targets a list of processes that will be killed:

● "ocssd" "dbsnmp" "synctime" "agntsvc" "isqlplussvc" "xfssvccon" "mydesktopservice"
"ocautoupds" "encsvc" "firefox" "tbirdconfig"

● "mydesktopqos" "ocomm" "dbeng50" "sqbcoreservice" "excel" "infopath" "msaccess"
"mspub" "onenote" "outlook" "powerpnt" "steam"

● "thebat" "thunderbird" "visio" "winword" "wordpad" "ssms" "notepad" "fdhost"
"fdlauncher" "launchpad" "sqlceip" "sqlwriter"

The comparison between a process name and one of the above processes is employed using
StrStrIA:

Figure 18

The ransomware opens a targeted process via a function call to OpenProcess (0x1FFFFF =
PROCESS_ALL_ACCESS):

Figure 19

The TerminateProcess routine is used to kill a targeted process:

Figure 20

The malicious file tries to locate the "winlogon.exe" process:

 www.securityscorecard.com | 8

Figure 21

OpenProcess is used to retrieve a handle to the above process (0x400 =
PROCESS_QUERY_INFORMATION):

Figure 22

The executable opens the access token associated with “winlogon.exe” (0xF =
TOKEN_ASSIGN_PRIMARY | TOKEN_DUPLICATE | TOKEN_IMPERSONATE | TOKEN_QUERY):

Figure 23

The DuplicateTokenEx API is used to create a new access token that duplicates the token
extracted above (0x2000000 = MAXIMUM_ALLOWED, 0x2 = SecurityIdentification, 0x2 =
TokenImpersonation):

Figure 24

The process assigns the impersonation token to the calling thread using SetThreadToken:

Figure 25

SunCrypt sets the highest possible priority for the current process (0x100 =
REALTIME_PRIORITY_CLASS):

 www.securityscorecard.com | 9

Figure 26

The process I/O priority is set to 3 (High) via a function call to ZwSetInformationProcess (0x21 =
ProcessIoPriority):

Figure 27

A new thread is created by calling the CreateThread API:

Figure 28

There is a function call to RevertToSelf that terminates the impersonation.

Delete Volume Shadow Copies
CoInitialize is used to initialize the COM library on the current thread:

Figure 29

The ransomware creates an IWbemContext Interface by calling the CoCreateInstance API with
the {674B6698-EE92-11D0-AD71-00C04FD8FDFF} parameter:

Figure 30

 www.securityscorecard.com | 10

The IsWow64Process routine is utilized to determine whether the current process is running on
a 64-bit environment:

Figure 31

The malware creates an IWbemLocator object with the CLSID {4590f811-1d3a-11d0-891f-
00aa004b2e24}”:

Figure 32

The malicious executable calls the ConnectServer function for connecting to the local
“ROOT\CIMV2” namespace:

Figure 33

There is a function call to CoSetProxyBlanket that sets the authentication information used to
make calls on a proxy (0xA = RPC_C_AUTHN_WINNT, 0x3 = RPC_C_AUTHN_LEVEL_CALL, 0x3 =
RPC_C_IMP_LEVEL_IMPERSONATE):

Figure 34

The malware retrieves an enumerator of all shadow copies using the following WQL query
“SELECT * FROM Win32_ShadowCopy”:

 www.securityscorecard.com | 11

Figure 35

The id property value of a specific shadow copy is extracted using the IwbemClassObject::Get
method:

Figure 36

The Volume Shadow Copies are deleted using the DeleteInstance function:

Figure 37

SunCrypt utilizes multithreading with I/O completion ports when encrypting files. The main
purpose is to establish a communication between the main thread and the worker threads that
are responsible for files encryption.

The ransomware creates an I/O completion port that is not yet associated with a file handle using
CreateIoCompletionPort:

Figure 38

The binary creates 4 (2 * number of cores) threads that will handle the files encryption (the IOCP
handle is passed as a parameter):

 www.securityscorecard.com | 12

Figure 39

The GetLogicalDrives API is used to extract a bitmask representing the available disk drives:

Figure 40

The drive type is retrieved via a call to GetDriveTypeW. It expects a return value that is less or
equal to 5:

Figure 41

SunCrypt verifies whether the Windows Boot Manager (bootmgr) file is present in any of the
extracted drives using the GetFileAttributesW routine:

Figure 42

For example, the above file exists in the C drive, and this one will not be encrypted by the malware.
This operation is unusual for most of the ransomware families, because other families choose to
whitelist specific directories (“Program Files”) rather than avoiding to encrypt the drive
completely.

The malware verifies the presence of a boot file called bootmgr.efi:

Figure 43

The CreateThread function is used to create a new thread that will traverse the targeted drive
(see figure 44). It’s important to mention that there is no checking to determine if the drive is

 www.securityscorecard.com | 13

empty or not (for example, the D drive might correspond to CD/DVD drive).

Figure 44

Thread activity – sub_1235120 function
There is a comparison between the drive name and the "\\AppData" or "\\Application Data"
strings:

Figure 45

SetFileAttributesW is utilized to set an attribute for the drive (0x80 = FILE_ATTRIBUTE_NORMAL):

Figure 46

The ransomware enumerates the above drive using FindFirstFileW (figure 47); however, it
corresponds to the DVD drive and it’s empty. This execution flow will be explained in detail when
encrypting network shares.

Figure 47

We continue with the analysis of the main thread.

The malware starts to enumerate the network resources via a function call to WNetOpenEnumW
(0x2 = RESOURCE_GLOBALNET, 0x0 = RESOURCETYPE_ANY, 0x13 = RESOURCEUSAGE_ALL):

 www.securityscorecard.com | 14

Figure 48

The enumeration of network resources continues by calling the WNetEnumResourceW API:

Figure 49

The binary makes a connection to a network share using the WNetAddConnection2W routine:

Figure 50

SunCrypt starts enumerating a network share using FindFirstFileW:

Figure 51

A file extension is extracted by calling the PathFindExtensionW function:

Figure 52

The files that have the following extensions will be skipped: ".exe", ".dll", ".ocx", and ".sys". An
example of such comparison is displayed in figure 53:

 www.securityscorecard.com | 15

Figure 53

The following directories/files will not be encrypted: "windows", "$Recycle.bin", "System Volume
Information", "ntldr", "ntdetect.com", "bootfont.bin", "boot.ini", and
"YOUR_FILES_ARE_ENCRYPTED.HTML". An example of such comparison is displayed below:

Figure 54

The file enumeration continues by calling the FindNextFileW routine:

Figure 55

SunCrypt generates 32 random bytes by calling the SystemFunction036 function:

Figure 56

This buffer represents a 32-byte secret key for Curve25519 (ECC algorithm). The ransomware
jumps to the curve function that is used to compute the session public key (observe a base point
of 09 followed by all zeros):

Figure 57

The capa tool identifies the implementation of the Curve25519 algorithm (see figure 58). The
session public key computed above is shown in figure 59.

 www.securityscorecard.com | 16

Figure 58

Figure 59

The session public key is appended to the file chosen for encryption:

Figure 60

The ransomware opens the newly modified file using CreateFileW (0xc0010000 =
GENERIC_READ | GENERIC_WRITE | DELETE, 0x1 = FILE_SHARE_READ, 0x3 = OPEN_EXISTING,
0x50000000 = FILE_FLAG_OVERLAPPED | FILE_FLAG_RANDOM_ACCESS):

Figure 61

 www.securityscorecard.com | 17

SunCrypt comes with a hard-coded Curve25519 public key:

Figure 62

The ransomware computes a shared secret between the above key and the generated session
public key using the Curve25519 algorithm:

Figure 63

The shared secret is a 32-byte buffer that will be used to encrypt the targeted file using the
ChaCha algorithm, as we will describe later on:

Figure 64

The binary adds the “expand 32-byte k” string to the above buffer, which suggests that the
encryption algorithm will be Salsa20 or ChaCha:

Figure 65

SunCrypt associates the IOCP created earlier with the targeted file handle using the
CreateIoCompletionPort API:

Figure 66

PostQueuedCompletionStatus is utilized to send an I/O completion packet to the IOCP:

 www.securityscorecard.com | 18

Figure 67

The ransomware creates a ransom note called "YOUR_FILES_ARE_ENCRYPTED.HTML" in every
directory (0x40000000 = GENERIC_WRITE, 0x1 = FILE_SHARE_READ, 0x1 = CREATE_NEW):

Figure 68

The ransom note is displayed below:

Figure 69

 www.securityscorecard.com | 19

Thread activity – sub_12115D0 function
The malicious process retrieves a handle that can be used to enumerate the list of channels that
are registered on the local computer via a call to EvtOpenChannelEnum:

Figure 70

The enumeration starts by extracting a channel name from the enumerator using
EvtNextChannelPath:

Figure 71

The purpose of the malware is to clear the event logs using the EvtClearLog routine:

Figure 72

Figure 73

The channels enumeration continues using the same API as above:

 www.securityscorecard.com | 20

Figure 74

The ransomware opens the "SYSTEM\CurrentControlSet\Services\EventLog" registry key using
the RegOpenKeyA function (0x80000002 = HKEY_LOCAL_MACHINE):

Figure 75

The file enumerates the subkeys of the above registry key using RegEnumKeyA:

Figure 76

SunCrypt opens a handle to the “Application” event log via a function call to OpenEventLogA:

Figure 77

The malware clears the “Application” event log using the ClearEventLogA API. This is the 2nd
method employed by SunCrypt to clear all event logs:

Figure 78

Thread activity – sub_12363D0 function
A worker thread responsible for file encryption dequeues an I/O completion packet from the IOCP
using GetQueuedCompletionStatus:

 www.securityscorecard.com | 21

Figure 79

SunCrypt passes the ChaCha20 key along with the encrypted file name to the encryption
function:

Figure 80

The ChaCha20 algorithm implementation is manual, and it doesn’t rely on Windows APIs, as
highlighted below:

 www.securityscorecard.com | 22

Figure 81

The encrypted content is written to the file by calling the WriteFile API (see figure 82). The
targeted files should be at least 512 bytes long; otherwise they will not be encrypted by SunCrypt.

Figure 82

We continue with the analysis of the main thread. It’s worth mentioning that the events log
deletion operation is repeated in the main thread with an identical execution flow.

The ransomware extracts the path of the current executable using GetModuleFileNameW:

Figure 83

The ransomware deletes itself via a function call to CreateProcessW (0x8000000 =
CREATE_NO_WINDOW):

 www.securityscorecard.com | 23

Figure 84

We want to provide some observations regarding the usage of command-line parameters.

Parameter Explanation

-nomutex No difference in execution

-noservices No difference in execution

-noreport No difference in execution

-vm No difference in execution

-path Encrypt a single directory

-noshares Do not encrypt network shares

-keep_exe Do not delete the executable

-justcrypt Do not kill the targeted processes. Do not
delete the Volume Shadow Copies

SunCrypt proves that a relatively low-level complexity code could still produce significant
damages. As opposed to ransomware families such as LockBit or Conti, the encryption of a
system takes tens of minutes and can be detected by monitoring the CPU usage for a longer
time period.

 www.securityscorecard.com | 24

Indicators of Compromise
Mutex

0c91c96fd7124f21a0193cf842e3495f6daf84a394f44013e92a87ad9d2ef4a0ceec9dd2e2eca22e

SunCrypt Ransom Note

YOUR_FILES_ARE_ENCRYPTED.HTML

Processes spawned

cmd.exe /C ping 127.0.0.1 -n 10 > nul & del /f /q \"<Path to executable>" > nul

