
The KeyBoys are back in town
www.pwc.co.uk/issues/cyber-security-data-privacy/research/the-keyboys-are-back-

in-town.html

Analysis

Our analysis starts with a Microsoft Word document named 2017 Q4 Work Plan.docx
(with a hash of 292843976600e8ad2130224d70356bfc), which was created on 2017-10-
11 by a user called “Admin’’, and first uploaded to VirusTotal, a website and file scanning
service, on the same day, by a user in South Africa.

Curiously, the Word document does not contain any macros, or even an exploit. Rather,
it uses a technique recently reported on by SensePost, which allows an attacker to craft
a specifically created Microsoft Word document, which uses the Dynamic Data Exchange
(DDE) protocol. DDE traditionally allows for the sending of messages between
applications that share data, for example from Word to Excel or vice versa. In the case
reported on by SensePost, this allowed for the fetching or downloading of remote
payloads, using PowerShell for example.

Figure 1 – Word Error

Once we extract the initial document, using 7-zip for example, we can observe the usual
structure, and inside, a file called document.xml is of interest. In this XML, a remote

payload, in this case a DLL, will be downloaded using PowerShell, moved to the user’s
temporary folder, and run using rundll32.exe, starting in the HOK function or export.
Figure 2 shows the relevant part in our XML file.

Figure 2 - Download and payload execution

This debug.dll is a PE32 binary file with the following properties:

 md5 hash: 64b2ac701a0d67da134e13b2efc46900
 sha1 hash: 1bb516d70591a5a0eb55ee71f9f38597f3640b14
 sha256 hash:

f3f55c3df39b85d934121355bed439b53501f996e9b39d4abed14c7fe8081d92
 size: 531,456 bytes
 internal DLL name: InstallClient.dll
 compiler: Microsoft
 linker: Microsoft Linker(14.0)[DLL32]
 compilation time: 2017-07-06 08:50:10

This DLL serves as a dropper for the actual payload, and as such the internal name of
‘InstallClient’ is an apt choice by the threat actor. Developing a Yara rule for the simple
dropper DLL, yielded several new binaries:

1dbbdd99cb8d7089ab31efb5dcf09706
5708e0320879de6f9ac928046b1e4f4e
a6903d93f9d6f328bcfe3e196fd8c78b
cf6f333f99ee6342d6735ac2f6a37c1e
ac9b8c82651eafff9a3bbe7c69d69447
d6ddecdb823de235dd650c0f7a2f3d8f

We have analysed d6ddecdb823de235dd650c0f7a2f3d8f, which also has InstallClient.dll
as its internal name, as it seems to be the earliest dropper DLL used in this campaign,
and does not appear to be very different from any of the other DLLs so far uncovered.

The DLL starts in the function named Insys, which performs some simple checks, for
example, if the current user account is an administrator, and will subsequently call the
function named SSSS, which is the main function.

A substantial amount of actions will follow according to what’s defined in the SSSS
function, as follows:

 Prepare target DLL, in this case rasauto.dll, for replacement in
C:\Windows\System32;

 Stop the service belonging to the target DLL, and use the takeown and icacls
commands to gain full permissions for the system service DLL;

 Disable Windows File Protection, which normally prevents software or users from
replacing critical Windows files;

 Suppress any error messages from Windows from popping up on boot;
 Copy the target DLL, rasauto.dll, to a new file named rasauto32.dll;
 Replace the target DLL with the malware’s DLL, which is time-stomped in order to

evade detection;
 Start the now malicious service using net.exe and net1.exe; and,
 Create configuration and keylogs in C:\Windows\system32, using an uncommon

extension, in this case .tsp, and additionally create a folder in C:\Programdata for
the purpose of screen captures.

The malware will also, in some observed cases, output debug or error messages in a
newly created file in the user’s Application Data folder as DebugLog.TXT, for example:

\AppData\Roaming\Microsoft\Windows\Cookies\DebugLog.TXT

Then, the original dropper DLL will then be deleted, using a simple batch file that runs in
a loop. In Figures 3 to 5, the target DLL, the original and new DLL, as well as the full
process flow are shown.

Figure 3 - Target DLL, config and keylog file built dynamically on the stack

Figure 4 - Real and fake rasauto.dll (rasauto32.dll is the real or original DLL)

Figure 5 - Complete process flow

While visually there is apparently no difference, due to the malware being time-stomped
(altering the created and modified dates of a file or folder), we can however observe a
few subtle differences in the real and malicious binary.

Figure 6 - Subtle differences

As can be seen in Figure 6, the fake DLL has a different link date, some minor spelling
mistakes, and does not include the build in the file version details. As the malware also

disables Windows File Protection and thus any pop-ups, it may not be immediately
obvious to system administrators that a legitimate DLL was actually replaced. The
following commands are issued in order to achieve persistence:

 reg add "HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Winlogon" /v
SFCDisable /t REG_DWORD /d 4 /f

 reg add "HKLM\SYSTEM\CurrentControlSet\Control\Windows" /v
NoPopUpsOnBoot /t REG_DWORD /d 1 /f

Taking a look at the Windows registry for our service, RasAuto, short for Remote Access
Auto Connection Manager and historically used for connecting dial-up modems to the
internet for example, reveals no specific additional modifications.

Dllhost.exe is additionally seen to call back or phone home to a hardcoded range of C2
servers, on ports 53, 80, and 443.

Figure 7 - Dllhost connecting to a remote address

Dllhost usually has no need to connect to the internet or WAN, and as such it is a
possible indicator of malicious activity.

Attaching a debugger to dllhost.exe, reveals the keylogger files and configuration,
replaced DLL file, as well as another folder, which is likely used to store screenshots and
other data. Another ASCII string can be discovered in the DLL’s config,
MDDEFGEGETGIZ, which likely pertains to the specific KeyBoy campaign, or target.

Figure 8 - ASCII dump

The malware leveraged by KeyBoy has a plethora of functionality, including, but not
limited to:

 Screen grabbing/taking screenshots;
 Determine public or WAN IP address (using a public IP service), likely for

determining a suited target;
 Gather extended system information, such as information about the operating

system, disks, memory and so on;
 A ‘file browser’ or explorer;
 Shutdown and reboot commands (in addition to the point below);
 Launching interactive shells for communicating with the victim machine;
 Download and upload functionality; and
 Usage of custom SSL libraries for masquerading C2 traffic.

Interestingly enough, the malware developers left several unique debug messages, for
example:

 GetScreenCmd from file:%s
 Take Screen Error,May no user login!
 Take Screen Error,service dll not exists

Earlier, we mentioned the threat actor uses custom SSL libraries to communicate to the
C2. While we have been unable to observe this behavior in any traffic logs, we were able
to extract a certificate, which can be found in Appendix B. Converting this certificate to
the DER format, we find strings pointing to jessma.org, and an email address,
ldcsaa@21cn.com. These belong to projects by a Chinese developer, where one of the
tools or libraries is named HP-Socket, which is a ‘High Performance TCP/UDP Socket
Component’.

Additionally, said library sported an interesting debug path:

D:\Work\VS\Horse\TSSL\TSSL_v0.3.1_20170722\TClient\Release\TClient.pdb

In addition to writing a Yara rule for the dropper DLL and finding additional samples as
mentioned above, we repeated the same process for the payload DLL. In Table 1 below,
you may find other payloads, with their related and fake, or replaced Windows DLL or
service.

Hash Impersonated DLL Impersonated service

a55b0c98ac3965067d0270a95e60e87e ikeext.dll IKE and AuthIP IPsec
Keying Modules

2e04cdf98aead9dd9a5210d7e601cca7 rasauto.dll Remote Access Auto
Connection Manager

d6ddecdb823de235dd650c0f7a2f3d8f rasauto.dll Remote Access Auto
Connection Manager

1dbbdd99cb8d7089ab31efb5dcf09706 sinet.dll Unknown
581ddf0208038a90f8bc2cdc75833425 sinet.dll Unknown

Table 1 - Impersonated DLLs

Sinet.dll may relate to SPlayer, a popular video player in China.

Related samples

Hunting further, we have discovered similar samples to the ones described above, with
additional interesting debug paths:

Hash Debug path
7d39cef34bdc751e9cf9d46d2f0bef95 D:\work\vs\UsbFerry_v2\bin\UsbFerry.pdb
29e44cfa7bcde079e9c7afb23ca8ef86 E:\Work\VS Project\cyassl-3.3.0\out\SSLClient_x64.pdb

Table 2 - Other debug paths

Both samples include references to a “work” folder, and a “VS” or “VS Project”. The latter
likely points to a Visual Studio project short name, or VS. While the connection initially
seems rather weak, it did hit the same Yara rule as mentioned before and the sample
with hash 29e44cfa7bcde079e9c7afb23ca8ef86 additionally includes an SSL certificate,
which, when converted, points to another custom SSL library, called WolfSSL, which is a
“a small, fast, portable implementation of TLS/SSL for embedded devices to the cloud”.
The same hash or binary also includes what we assess to be a campaign name or
KeyBoy version identifier, which is weblogic20170727.

Another sample which hit our Yara rule is 7aea7486e3a7a839f49ebc61f1680ba3, which
was first uploaded to VirusTotal on 2017-08-25. This sample appears to be an older
variant of KeyBoy, as there are several plain-text strings present, which are consistent
with CitizenLab’s report referenced in the introduction.

All samples (hashes) and other indicators are provided in Appendix A.

Infrastructure

We have mapped out the complete infrastructure that we have discovered, using
Maltego, as shown in Figure 9.

Figure 9 - C2 graphing

There was some overlap with the samples and infrastructure, and one email address
appears to jump out, which is linked to several domains: 657603405@qq[.]com. This
email address does not appear to have been observed before.

One other relevant point to note in regards to the infrastructure, is the use of dates,
likely relating to campaign names, as part of the C2 servers. Examples include:

 Weblogic727.xxuz[.]com (2017-07-27 campaign); and,
 Weblogic1709.zzux[.]com (2017-09-17 campaign).

All C2’s are provided in Appendix A.

