
1/16

August 31, 2020

Trickbot rdpscanDll – Transforming Candidate
Credentials for Brute-Forcing RDP Servers

cyber.wtf/2020/08/31/trickbot-rdpscandll-password-transof/

After some weeks of not seeing the RDP scanner module of Trickbot, I recently observed
that the module was again distributed among the bots in our tracking lab. Since Bitdefender
already published a report on the module in March 2020, I focused on checking whether or
not the command-and-control (C2) communication of the module remained more or less the
same or if there was anything groundbreakingly new. Short answer: there wasn’t. There may
be some under-the-hood fixes or improvements but I (as of yet) did not stumble upon
anything significant that wasn’t already found by Bitdefender: the module still receives its
mode of action, target servers, usernames, and password candidates from the C2 server and
then does what the mode tells it to do. But while I was checking that, I also had a look at the
actual data that we received from the C2 server.

Password List

My intuition on the password list was that it is just a dictionary of words to try. This is also
suggested by the URL which is used to retrieve the password list:
hxxps://%c2%/%gtag%/%bot_id%/rdp/dict . Thus I did not have a closer look at the

password list at that time, because everything looked the way Bitdefender described it and I
had no reason to look at it in detail. But one or two days later, I re-requested the list of
passwords to see whether the list changed in the meantime – and it did indeed. Because of
that I had a quick look at what changed and then I noticed that I overlooked something right
from the start (literally, duh!). On the left side of the picture you see what I had a quick look at
after retrieving the password list from the C2 server with curl (and thus seeing only the last
lines of the output). On the right side there is the very same password list, just seen from the
start.

https://cyber.wtf/2020/08/31/trickbot-rdpscandll-password-transof/
https://labs.bitdefender.com/2020/03/new-trickbot-module-bruteforces-rdp-connections-targets-select-telecommunication-services-in-us-and-hong-kong/


2/16

To the keen eye it seems that they may be using some kind of templating mechanism to
adjust the list of passwords and use more specific credential candidates. With that thought in
mind I spun up my analysis environment and started digging into the module to see what the
Trickbot gang is actually doing there (spoiler: yes, they do some kind of templating – but not
just the find-and-replace kind).

Transforming them P@ssw0rds

As mentioned before, this is not a simple find-and-replace but instead they can change the
credential candidates to better fit the attacked host. In that sense, I decided to call those
things transforms instead of templates because they are not just templates that are filled out
but a little bit more dynamic. Example:



3/16

%username%123 → myuser123 (lowercase)
%Username%123 → Myuser123 (lowercase but first char uppercase)
%UsErNaMe%123 → MyUsEr123 (alternating case, starting with uppercase char)
%EMANRESU%123 → RESUYM123 (uppercase and reversed)

And that is essentially how the markers in the password list work. I was able to extract all 91
transformations that are currently available to the rdpscanDll (as of 2020-08-14). Please find
the list with all transforms with an example and a description for each of them at the end of
this blog post.

Some of the transforms can even be parameterized to a certain degree:
%OriginalUsername%, %OriginalDomain%, and %domain% can be prepended or appended
with an (N) to indicate whether the first N or last N characters of the element should be used
(or everything if no parameters are present).

Reconnaissance

After finding the list of transforms, I decided to ask my favorite internet search engine
whether these names for the transforms are known related to RDP. And I indeed found a
RDP brute force tool by a certain z668 which seemingly makes use of some of the
transforms that are used in the rdpscanDll. Although this tool seems to be a standalone
application, the names of the transforms and the context of their use could suggest a
connection between z668 and the Trickbot gang – at least to a certain degree. Sure, the
connection may not be really strong because the Trickbot module is written in C++ and the
RDP tool seems to be written in C#. But given the fact that C# can load and use native DLLs
and considering that z668 forked the FreeRDP project on Github, the actual scanner may
indeed be written in C/C++ (and probably using FreeRDP). Thus it is possible that the
Trickbot gang may have obtained the source code from z668 to integrate the RDP scanner
into their module framework and to use their C2 communication protocol. But: this is just
guessing based on some more or less loose facts – I could easily be completely wrong with
that.



4/16

Transform List

Transform Identifier Example Description

EmptyPass tries an empty
password

https://cyber.wtf/2020/08/31/trickbot-rdpscandll-password-transof/trickbot_tool1/
https://cyber.wtf/2020/08/31/trickbot-rdpscandll-password-transof/trickbot_tool2/


5/16

Transform Identifier Example Description

GetHost fills in the
hostname of the
currently
attacked IP (ex:
myhost)

IP the currently
attacked IP
address (ex:
234.234.234.234)

Port fills in the
currently
attacked port (ex:
3389)

IpReplaceDot 234.234.234.234 →
234234234234

remove the dots
of the IP address

RemoveNumerics us3rn4me → usrnme removes all
number from the
username

RemoveLetters us3rn4m3 → 343 removes all
letters from the
username

RemoveOtherSymbols usern@m3 → usernm3 removes all non-
alphanumeric
characters from
the username

OriginalUsernameLettersBeginInverse 123admin456 →
123654nimda

keeps all non-
letters (i.e. digits,
special chars) at
the beginning of
the username
and reverses the
rest (“invert [from
where] letters
begin

OriginalUsernameLettersBeginSwap 123admin456 →
admin456123

swaps all non-
letters (i.e. digits,
special chars) at
the beginning of
the username
with the rest
(“swap [where]
letters begin”)



6/16

Transform Identifier Example Description

OriginalUsernameLettersEndInverse admin123root →
admintoor321

keeps all letters
at the beginning
of the username
and reverses the
rest (“invert
[where] letters
end”)

OriginalUsernameLettersEndSwap admin123root →
123rootadmin

swaps all letters
at the beginning
of the username
with the rest
(“swap [where]
letters end”)

OriginalUsernameNumsBeginInverse admin123root →
admintoor321

keeps all non-
digits at the
beginning of the
username and
reverses the rest
(“invert [from
where] nums
begin

OriginalUsernameNumsBeginSwap admin123root →
admintoor321

swaps all non-
digits at the
beginning of the
username with
the rest (“swap
[where] nums
begin”)

OriginalUsernameNumsEndInverse 123admin → 123nimda keeps all digits at
the beginning of
the username
and reverses the
rest (“invert
[where] nums
end”)

OriginalUsernameNumsEndSwap 123admin456 →
admin456123

swaps all digits at
the beginning of
the username
with the rest
(“swap [where]
nums end”)



7/16

Transform Identifier Example Description

OriginalUsernameInsert %OriginalUsernameInsert%
(N)SOMESTRING →
SOMEusernameSTRING (ex:
N = 4)

insert username
after Nth
character of
SOMESTRING

OriginalUsername use the
username as
password

OnlyName Firstname Lastname →
Firstname

uses only the first
name (everything
left of the first
space) of the
username as
password

OnlySurname Firstname Lastname →
Lastname

uses only the last
name (everything
right of the first
space) of the
username as
password

username Admin → admin username in
lowercase

Username AdMin → Admin username
lowercase but
first char upper

UsErNaMe Admin → AdMiN username in
alternating case,
starting with
uppercase

uSeRnAmE Admin → aDmIn username in
alternating case,
starting with
lowercase

USERNAME Admin → ADMIN username in
uppercase

EMANRESU Admin → NIMDA username in
uppercase and
reversed



8/16

Transform Identifier Example Description

EmanresuLowercase AdMin → Nimda username
reversed and
lowercase, first
char uppercase

Emanresu AdMin → NiMdA username
reversed, first
char upper

emanresuLowercase AdMin → nimda username
reversed and
lowercase

emanresuUppercase AdMin → NIMDA username
reversed and
uppercase

emanresu Admin → nimda username
reversed and
lowercase

ReplaceFirst_X-x administrator →
@dministrator (ex:
%ReplaceFirst_a-@%)

replaces the first
occurrence of X
with x in the
username
(needle and
replacement can
be more than 1
char)

ReplaceFirstI_X-x Administrator →
@dministrator (ex:
%ReplaceFirstI_a-@%)

case insensitively
replaces the first
occurrence of X
with x in the
username
(needle and
replacement can
be more than 1
char)

ReplaceLast_X-x administrator →
@dministrator (ex:
%ReplaceLast_a-@%)

replaces the last
occurrence of X
with x in the
username
(needle and
replacement can
be more than 1
char)



9/16

Transform Identifier Example Description

ReplaceLastI_X-x Administrator →
@dministrator (ex:
%ReplaceLastI_a-@%)

case insensitively
replaces the last
occurrence of X
with x in the
username
(needle and
replacement can
be more than 1
char)

ReplaceAll_X-x administrator →
@dministrator (ex:
%ReplaceAll_a-@%)

replaces all
occurrences of X
with x in the
username
(needle and
replacement can
be more than 1
char)

ReplaceAllI_X-x Administrator →
@dministrator (ex:
%ReplaceAllI_a-@%)

case insensitively
replaces all
occurrences of X
with x in the
username
(needle and
replacement can
be more than 1
char)

DomainRemoveNumerics test-123.com → test-.com removes all digits
from the domain

DomainRemoveLetters test-123.com → -123. removes all
letters from the
domain

DomainRemoveOtherSymbols test-123.com → test123com removes all non-
alphanum chars
from the domain

OriginaldomainInsert %OriginaldomainInsert%
(N)SOMESTRING →
SOMEdomainSTRING (ex: N
= 4)

insert domain
after Nth
character of
SOMESTRING



10/16

Transform Identifier Example Description

OriginaldomainPart test-123.com → 123com (ex:
%OriginaldomainPart%(6))

takes the last N
chars of the
domain name
(ignoring any
dots)

OriginaldomainNumsBeginInverse test-123.com → test-moc.321 keeps all non-
digits at the
beginning of the
domain and
reverses the rest
(“invert [from
where] nums
begin

OriginaldomainNumsBeginSwap test-123.com → 123.comtest- swaps all non-
digits at the
beginning of the
domain with the
rest (“swap
[where] nums
begin”)

OriginaldomainNumsEndInverse 123-test.com → 123moc.tset- keeps all digits at
the beginning of
the domain and
reverses the rest
(“invert [where]
nums end”)

OriginaldomainNumsEndSwap 123-test.com → -test.com123 swaps all digits at
the beginning of
the domain with
the rest (“swap
[where] nums
end”)

OriginaldomainLettersBeginInverse test-123.com → test-moc.321 keeps all non-
letters (i.e. digits,
special chars) at
the beginning of
the domain and
reverses the rest
(“invert [from
where] letters
begin



11/16

Transform Identifier Example Description

OriginaldomainLettersBeginSwap 123-test.com → test.com123- swaps all non-
letters (i.e. digits,
special chars) at
the beginning of
the domain with
the rest (“swap
[where] letters
begin”)

OriginaldomainLettersEndInverse test-123.com → testmoc.321- keeps all letters
at the beginning
of the domain
and reverses the
rest (“invert
[where] letters
end”)

OriginaldomainLettersEndSwap test-123.com → -123.comtest swaps all letters
at the beginning
of the domain
with the rest
(“swap [where]
letters end”)

Originaldomainleft test-123.com → test-123 takes the left part
of the domain
(everything left of
the first dot) and
lowercases the
first character

OriginalDomainleft test-123.com → Test-123 takes the left part
of the domain
(everything left of
the first dot) and
capitalizes the
first character

Originaldomainright test-123.com → test-123 takes the right
part of the
domain
(everything right
of the first dot)
and lowercases
the first character



12/16

Transform Identifier Example Description

OriginalDomainright test-123.com → Test-123 takes the right
part of the
domain
(everything right
of the first dot)
and capitalizes
the first character

Originaldomain uses the plain
domain name

OriginalDomain test-123.com → Test-123.com uses the domain
name and
capitalizes the
first character

NiamodLowercase abc%NiamodLowercase%123 abc123

niamodLowercase test-123.com → Moc.321-tset reverses and
lowercases the
domain name,
first character
capitalized

niamodUppercase test-123.com → mOC.312-
TSET

reverses and
capitalizes the
domain name,
first char
lowercase

domainleftHyphen test-123.com → test takes everything
left of the first
hyphen

DOMAINLEFTHYPHEN test-123.com → TEST takes everything
left of the first
hyphen,
capitalized

DomainleftHyphen test-123.com → Test takes everything
left of the first
hyphen, first char
capitalized

domainrightHyphen test-123.com → 123.com takes everything
right of the first
hyphen



13/16

Transform Identifier Example Description

DOMAINRIGHTHYPHEN test-123.com → 123.COM takes everything
right of the first
hyphen,
capitalized

DomainrightHyphen test-abc.com → Abc.com takes everything
right of the first
hyphen, first char
capitalized

domainleftUnderscore test_123.com → test takes everything
left of the first
underscore

DOMAINLEFTUNDERSCORE test_123.com → TEST takes everything
left of the first
underscore,
capitalized

DomainleftUnderscore test_123.com → Test takes everything
left of the first
underscore, first
char capitalized

domainrightUnderscore test_abc.com → abc.com takes everything
right of the first
underscore

DOMAINRIGHTUNDERSCORE test_123.com → 123.COM takes everything
right of the first
underscore,
capitalized

DomainrightUnderscore test_abc.com → Abc.com takes everything
right of the first
underscore, first
char capitalized

DomainReplaceFirst_X-x EXAMPLE-attack.com →
EXAMPLE-@ttack.com (ex:
%DomainReplaceFirst_a-
@%)

replaces the first
occurrence of X
with x in the
domain (needle
and replacement
can be more than
1 char)



14/16

Transform Identifier Example Description

DomainReplaceFirstI_X-x EXAMPLE-attack.com →
EX@MPLE-attack.com (ex:
%DomainReplaceFirstI_a-
@%)

case insensitively
replaces the first
occurrence of X
with x in the
domain (needle
and replacement
can be more than
1 char)

DomainReplaceLast_X-x EXAMPLE-attack.com →
EXAMPLE-att@ck.com (ex:
%DomainReplaceLast_a-
@%)

replaces the last
occurrence of X
with x in the
domain (needle
and replacement
can be more than
1 char)

DomainReplaceLastI_X-x EXAMPLE-attack.com →
EXAMPLE-att@ck.com (ex:
%DomainReplaceLastI_a-
@%)

case insensitively
replaces the last
occurrence of X
with x in the
domain (needle
and replacement
can be more than
1 char)

DomainReplaceAll_X-x EXAMPLE-attack.com →
EXAMPLE-@tt@ck.com (ex:
%DomainReplaceAll_a-@%)

replaces all
occurrences of X
with x in the
domain (needle
and replacement
can be more than
1 char)

DomainReplaceAllI_X-x EXAMPLE-attack.com →
EX@MPLE-@tt@ck.com (ex:
%DomainReplaceAllI_a-@%)

case insensitively
replaces all
occurrences of X
with x in the
domain (needle
and replacement
can be more than
1 char)

niamod test-123.com → moc.321-tset reverses the
domain name



15/16

Transform Identifier Example Description

Niamod test-123.com → Moc.321-tset reverses the
domain name,
first char
capitalized

domainleft TEST-123.com → test-123 everything left of
the first dot,
lowercased

DOMAINLEFT Test-123.com → TEST-123 everything left of
the first dor,
capitalized

Domainleft test-123.com → Test-123 everything left of
the first dot,
lowercased but
first char
capitalized

domainright TEST-123.com → com everything right
of the first dot,
lowercased

DOMAINRIGHT Test-123.com → COM everything right
of the first dor,
capitalized

Domainright test-123.com → Com everything right
of the first dot,
lowercased but
first char
capitalized

domain TEST-123.com → test-
123.com

domain name,
lowercase

Domain TEST-123.com domain name
lowercased, first
char capitalized

DoMaIn test-123.com → TeSt-
123.cOm

domain name in
alternating case,
starting with
uppercase

dOmAiN test-123.com → tEsT-
123.CoM

domain name in
alternating case,
starting with
lowercase



16/16

Transform Identifier Example Description

DOMAIN test-123.com → TEST-
123.COM

domain name
capitalized

NIAMOD test-123.com → MOC.321-
TSET

domain name
reversed and
capitalized


